
Journal of Mathematics and Statistics 10 (3): 401-407, 2014 
ISSN: 1549-3644 
© 2014 A.A. Neamah, This open access article is distributed under a Creative Commons Attribution  
(CC-BY) 3.0 license 
doi:10.3844/jmssp.2014.401.407 Published Online 10 (3) 2014 (http://www.thescipub.com/jmss.toc) 

 
401 Science Publications

 
JMSS 

LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD 
FOR SOLVING VOLTERRA INTEGRO-DIFFERENTIAL 

EQUATIONS WITHIN LOCAL FRACTIONAL OPERATORS 

Ammar Ali Neamah 
 

Kufa University, Faculty of Computer Science and Mathematics, Najaf, Iraq 
 

Received 2014-05-15; Revised 2014-05-27; Accepted 2014-08-20 

ABSTRACT 

The paper uses the Local fractional variational Iteration Method for solving the second kind Volterra 
integro-differential equations within the local fractional integral operators. The analytical solutions 
within the non-differential terms are discussed. Some illustrative examples will be discussed. The 
obtained results show the simplicity and efficiency of the present technique with application to the 
problems for the integral equations. 
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1. INTRODUCTION 

The theory of local fractional calculus is one of 
useful tools to process the fractal and continuously non 
differentiable functions (Kolwankar and Gangal, 1998; 
He, 2011; He et al., 2012; Parvate and Gangal, 2009; 
Carpinteri et al., 2004; Yang, 2011a; 2011b; 2011c). It 
was successfully applied in local fractional Fokker-
Planck equation (Kolwankar and Gangal, 1998), the 
fractal heat conduction equation (He, 2011; Yang, 
2011c), fractal-time dynamical systems (Parvate and 
Gangal, 2009), fractal elasticity (Carpinteri et al., 
2004), local fractional diffusion equation (Yang, 
2011c), local fractional Laplace equation (Yang, 2011b; 
2012a), local fractional integral equations (Yang, 
2012b; 2012c; 2012d), local fractional differential 
equations (Yang, 2012e; Zhong et al., 2012; Zhong and 
Gao, 2011), fractal wave equation (Yang, 2011b; 
2012a; Yang and Baleanu, 2012). 

Recently, the local fractional variational iteration 
method (Yang and Baleanu, 2012) is derived from local 
fractional operators (Yang, 2011a; 2011b; 2011c; 
2012a; 2012b; 2012c; 2012d; 2012e; Zhong et al., 
2012; Zhong and Gao, 2011). The method, which 

accurately computes the solutions in a local fractional 
series form or in an exact form, presents interest to 
applied sciences for problems where the other methods 
cannot be applied properly. 

This study is organized as follows. In section 2, the 
basic mathematical tools are reviewed. Section 3 
presents the local fractional variational iteration method 
based on local fractional operator. Illustrative examples 
is shown in section 4. Conclusions are in section 5. 

2. PRELIMINARY DEFINITIONS 

In this section, we recall briefly some basic theory of 
local fractional calculus and for more details, (Yang and 
Baleanu, 2012; Su et al., 2013; Yang et al., 2013a; 
2013b; 2013c; Yang, 2012f; Wang et al., 2014;    
Yang et al., 2013d; Kilbas et al., 2006; Ma et al., 2013; 
Yang et al., 2013e; 2013f; 2013g). 

Definition 1 

Suppose that there is the relation Equation 2.1: 

 

 0( ) ( ) ,0 1f x f x αε α− < < ≤   (2.1) 
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With 0x x δ− < , for , 0ε δ >  and , Rε δ ∈ , then the 

function ( )f x  is called local fractional continuous at 

0x x=  and it is denoted by 
0

0lim ( ) ( )
x x

f x f x
→

= .  

Definition 2 

Suppose that the function( )f x satisfies condition 
(2.1), for ( , )x a b∈ ; it is so called local fractional 

continuous on the interval ( , )a b , denoted by 

( ) ( , )f x C a bα∈ . 

Definition 3 

In fractal space, let ( ) ( , )f x C a bα∈ , local fractional 

derivative of ( )f x  of order α  at 0x x=  is given by 

Equation 2.2: 
 

 
0

0

0

( ) 0

0

( ) ( )

( ( ) ( ))
( ) lim

( )

x x x

x x

d
D f x f x

dx

f x f x
f x

x x

α
α

α

α
α

α

=

→

=

∆ −
= =

−

  (2.2) 

 

where, 0 0( ( ) ( )) ( 1) ( ( ) ( )).f x f x f x f xα α∆ − ≅ Γ + ∆ −   

Local fractional derivative of high order is written in 
the form Equation 2.3: 
 

 ( ) ( ) ( ) ...... ( ).

k times
k

k
x x xk

d
f x f x D D D f x

dx

α
α α α α

α= =
�������

 (2.3) 

 
Definition 4 

A partition of the interval [ , ]a b  is denoted as 

1 0( , ) , 0,..., 1,j jt t j N t a+ = − =  and Nt b=  with 

1j j jt t t+∆ = −  and 0 1max{ , ,.....}.t t t∆ = ∆ ∆ Local fractional 

integral of ( )f x  in the interval [ , ]a b  is given by 
Equation 2.4: 
 

 

( )

1

0
0

1
( ) ( ) ( )

(1 )

1
lim ( )( )

(1 )

b

a b

a

N

j j
t

j

I f x f t dt

f t t

α α

α

α

α

−

∆ →
=

=
Γ +

= ∆
Γ +

∫

∑
  (2.4) 

 
Note: If the functions are local fractional continuous 

then the local fractional derivatives and integrals exist. 

Some properties of local fractional derivative and 
integrals are given in (Yang, 2012f). 

Definition 5 

In fractal space, the Mittage Leffler function, sine 
function and cosine function are, respectively 
Equation 2.5 to 2.7: 
 

0

( ) , 0 1
(1 )

k

k

x
E x

k

α
α

α α
α

∞

=

= < ≤
Γ +∑   (2.5)  

 
(2 1)

0

sin ( ) ( 1) , 0 1
[1 (2 1) ]

k
k

k

x
x

k

α
α

α α
α

∞ +

=

= − < ≤
Γ + +∑  (2.6) 

 
2

0

cos ( ) ( 1) , 0 1
[1 2 ]

k
k

k

x
x

k

α
α

α α
α

∞

=

= − < ≤
Γ +∑  (2.7) 

 
3. ANALYSIS OF THE METHOD 

The standard ka order local fractional Volterra integro-
differential equation of the second kind is given by: 
 

( )

0

1
( ) ( ) ( , ) ( )( )

(1 )

x
ku x f x K x t u t dtα α

α
= +

Γ + ∫   (3.1) 

 

where, ( ) ( )
( )

k
k

k

d u x
u x

dx

α
α

α=  and 

( ) (2 ) (( 1) )
0 1 2 1(0) , (0) , (0) ,..., (0)k

ku a u a u a u aα α α−
−= = = = ar

e the initial conditions. 
According to the rule of local fractional variational 

iteration method, the correction local fractional 
functional for Equation 3.1 is given by Equation 3.2: 
 

1

( )

0

0

( ) ( )

1
( ) ( )

(1 )
1 ( )

( )
(1 ) (1 )

( , ) ( )( )

n n

k
nx

n

u x u x

u f

d

K r u r dr

α

α
αζ

α

ζ ζ
α

λ ζ ζ
α α

ζ

+ =

 − − Γ +
 

+  
Γ + Γ +  

 
  

∫
∫

(3.2) 

 

where, 
( )

(1 )

αλ ζ
αΓ +

 is a general fractal Lagrange’s 

multiplier. 
Here, we can construct a correction functional as 

follows Equation 3.3: 
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( )
1

0 0

1 ( ) 1
( ) ( ) ( ) ( ) ( , ) ( )( ) ( )

(1 ) (1 ) (1 )

x
k

n n n nu x u x u f K r u r dr d

ζα
α α αλ ζ ζ ζ ζ ζ

α α α+

 
 = + − −
 Γ + Γ + Γ +
  

∫ ∫ ɶ   (3.3) 

 
where, nuɶ  is considered as a restricted local fractional 

variation; that is, 0,nuαδ =ɶ  we obtain the following 

fractal Lagrange multiplier Equation 3.4: 
 

( 1)( ) ( )
( 1)

(1 ) [1 ( 1) ]

k
k x

k

α αλ ζ ζ
α α

−−= −
Γ + Γ + −

 (3.4) 

 
Therefore Equation 3.5 and 3.6: 

 

( )
0

( 1)
(( 1) )

( ) (0) (0)
(1 )

[1 ( 1) ]

k
k

x
u x u u

x
u

k

α
α

α
α

α

α

−
−

= + + ⋅ ⋅ ⋅
Γ +

+
Γ + −

 (3.5) 

 

( )

1

( 1)

0

( )

0

( ) ( )

1 ( )
( 1)

(1 ) 1 ( 1)

1
( ) ( )

(1 )
( ) , 0.

( , ) ( )( )

n n

x k
k

k
n

n

u x u x

x

k

u f

d n

K r u r dr

α

α

αζ
α

ζ
α

ζ ζ
α

ζ
ζ

+

−

=

−+ −
Γ + Γ + −

 − − Γ +
 

≥ 
 
 
  

∫

∫

 (3.6) 

 
Finally, the solution is Equation 3.7: 

 
( ) lim ( )n

n
u x u x

→∞
=  (3.7) 

 
4. ILLUSTRATIVE EXAMPLES 

In this section three examples for the local fractional 
Volterra integro-differential equation is presented in 
order to demonstrate the simplicity and the efficiency of 
the above method. 

Example 1 

We consider the local fractional Volterra integro-
differential Equation 4.1: 
 

( )

0

1
( ) 1 ( )( ) , (0) 1

(1 )

x

u x u t dt uα α
α

= + =
Γ + ∫   (4.1) 

 
The correction functional for this Equation 4.2 is 

given by: 

1

0

( )

0

1
( ) ( )

(1 )

1
( ) 1 ( )( ) ( )

(1 )

x

n n

n n

u x u x

u u r dr d

ζ
α α α

α

ζ ζ
α

+ = −
Γ +

 
 − −
 Γ +
  

∫

∫

 (4.2) 

 

where, we used 
( )

1
(1 )

αλ ζ
α

= −
Γ +

 for first-order integro-

differential equation as shown in (3.4). 
We can use the initial condition to select u0(x) = 

u(0) = 1. Using this selection into the correction 
functional gives the following successive 
approximations Equation 4.3 to 4.7: 
 

0( ) 1u x =  (4.3) 
 

1 0

( )
0

00
0

2

( ) ( )

( ) 1
1

( )1(1 ) ( )( )
(1 )

1
(1 ) (1 2 )

x

u x u x

u

d
u r dr

x x

α

ζ α
α

α α

ζ

ζ
α

α

α α

=

 −
 
 −
 Γ + −
 Γ +
 

= + +
Γ + Γ +

∫ ∫
 (4.4) 

 
2 1

( )
1

10
0

2 3 4

( ) ( )

( ) 1
1

( )1(1 ) ( )( )
(1 )

1
(1 ) (1 2 ) (1 3 ) (1 4 )

x

u x u x

u

d
u r dr

x x x x

α

ζ α
α

α α α α

ζ

ζ
α

α

α α α α

=

 −
 
 −
 Γ + −
 Γ +
 

= + + + +
Γ + Γ + Γ + Γ +

∫ ∫
 (4.5) 

 
3 2

( )
2

20
0

2 3

4 5 6

( ) ( )

( ) 1
1

( )1(1 ) ( )( )
(1 )

1
(1 ) (1 2 ) (1 3 )

(1 4 ) (1 5 ) (1 6 )

x

u x u x

u

d
u r dr

x x x

x x x

α

ζ α
α

α α α

α α α

ζ

ζ
α

α

α α α

α α α

=

 −
 
 −
 Γ + −
 Γ +
 

= + + +
Γ + Γ + Γ +

+ + +
Γ + Γ + Γ +

∫ ∫
 (4.6) 
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And so on: 
 

2

3 2

2 3 4

( ) 1
(1 ) (1 2 )

(1 3 ) (1 2 )

( ) lim ( ) 1
(1 )

(1 2 ) (1 3 ) (1 4 )

n

n

n
n

x x
u x

x x

n

x
u x u x

x x x

α α

α α

α

α α α

α α

α α

α

α α α

→∞

= + +
Γ + Γ +

+ + ⋅ ⋅ ⋅ +
Γ + Γ +

= = +
Γ +

+ + + + ⋅ ⋅ ⋅ ⋅
Γ + Γ + Γ +

 (4.7) 

 
That gives the exact solution Equation 4.8: 

 

( ) ( ).u x E xα
α=  (4.8) 

 
Example 2 

We consider the local fractional Volterra integro-
differential Equation 4.9: 
 

 

(2 )

( )

0

( ) 1

1 ( )
( )( ) , (0) 1, (0) 0.

(1 ) (1 )

x

u x

x t
u t dt u u

α

α
α α

α α

=

−+ = =
Γ + Γ +∫

 (4.9) 

The correction functional for this Equation 4.10 is 
given by: 
 

1

(2 )

0

0

( ) ( )

( ) 1

1 ( ) 1
( )

(1 ) (1 ) (1 )

( )
( )( )

(1 )

n n

n
x

n

u x u x

u

x
d

r
u r dr

α

α
α

ζ α
α

ζ
ζ ζ

α α α

ζ
α

+ =

 
 
 

− 
 −
 + −

Γ + Γ + Γ + 
 
 −
 

Γ + 
 

∫

∫

 (4.10) 

 

where, we used 
( ) ( )

(1 ) (1 )

x

k

α αλ ζ ζ
α α

−=
Γ + Γ +

 for second-order 

integro-differential equation as shown in Equation 3.4. 
We can use the initial condition to select 

( )
0( ) (0) (0) 1

(1 )

x
u x u u

α
α

α
= + =

Γ +
. Using this selection into 

the correction functional gives the following successive 
approximations: Equation 4.11 to 4.15: 
 

0( ) 1u x =  (4.11) 

 

(2 )
1 0 00

0 0

2 4

1 ( ) 1 ( )
( ) ( ) ( ) 1 ( ) ( ) ( )

(1 ) (1 ) (1 ) (1 )

1
(1 2 ) (1 4 )

x
x r

u x u x u u r dr d

x x

ζα α
α α α

α α

ζ ζζ ζ
α α α α

α α

 − − = + − −
 Γ + Γ + Γ + Γ +
  

= + +
Γ + Γ +

∫ ∫
 (4.12) 

 

(2 )
2 1 11

0 0

2 4 6 8

1 ( ) 1 ( )
( ) ( ) ( ) 1 ( )( ) ( )

(1 ) (1 ) (1 ) (1 )

1
(1 2 ) (1 4 ) (1 6 ) (1 8 )

x
x r

u x u x u u r dr d

x x x x

ζα α
α α α

α α α α

ζ ζζ ζ
α α α α

α α α α

 − − = + − −
 Γ + Γ + Γ + Γ +
  

= + + + +
Γ + Γ + Γ + Γ +

∫ ∫
 (4.13) 

 

(2 )
3 2 22

0 0

2 4 6 8 10 12

1 ( ) 1 ( )
( ) ( ) ( ) 1 ( )( ) ( )

(1 ) (1 ) (1 ) (1 )

1
(1 2 ) (1 4 ) (1 6 ) (1 8 ) (1 10 ) (1 12 )

x
x r

u x u x u u r dr d

x x x x x x

ζα α
α α α

α α α α α α

ζ ζζ ζ
α α α α

α α α α α α

 − − = + − −
 Γ + Γ + Γ + Γ +
  

= + + + + + +
Γ + Γ + Γ + Γ + Γ + Γ +

∫ ∫
 (4.14) 

 
And so on: 
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2 4 6 4

2 4 6 8

( ) 1
(1 2 ) (1 4 ) (1 6 ) (1 4 )

( ) lim ( )

1
(1 2 ) (1 4 ) (1 6 ) (1 8 )

n

n

n
n

x x x x
u x

n

u x u x

x x x x

α α α α

α α α α

α α α α

α α α α

→∞

= + + + + ⋅ ⋅ ⋅ +
Γ + Γ + Γ + Γ +

=

= + + + + + ⋅ ⋅ ⋅ ⋅
Γ + Γ + Γ + Γ +

  (4.15) 

 
That gives the exact solution Equation 4.16: 

 

 ( ) cosh ( ).u x xα
α=  (4.16) 

 
Example 3 

We consider the local fractional Volterra integro-differential Equation 4.17 and 4.18: 
 

 
3

(3 ) ( ) (2 )

0

1 ( )
( ) 1 ( )( ) , (0) 1, (0) 0, (0) 1

(1 ) (1 3 ) (1 ) (1 )

x
x x x t

u x u t dt u u u
α α α

α α α α
α α α α

−= + + + = = =
Γ + Γ + Γ + Γ +∫  (4.17)  

 
The correction functional for this equation is given by: 

 

1

2 3
(3 )

0 0

1
( ) ( )

(1 )

( ) 1 ( )
( ) 1 ( ) ( ) ( )

(1 2 ) (1 ) (1 3 ) (1 ) (1 )

n n

x

n n

u x u x

x r
u u r dr d

ζα α α α
α α α

α

ζ ζ ζ ζζ ζ
α α α α α

+ = −
Γ +

 − − − − − −
 Γ + Γ + Γ + Γ + Γ +
  

∫ ∫
 (4.18) 

 

where, we used 
2( ) ( )

(1 ) (1 2 )

xα αλ ζ ζ
α α

−= −
Γ + Γ +

 for third-order integro-differential equation as shown in (3.4). 

Now, we have Equation 4.19 to 4.22: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
2 2 2

2
0 0 0 0 1 1

1 1 2 1 2 (1 2 )

x x x x
u x u u u

α α α α
α α

α α α α
= + + = + = +

Γ + Γ + Γ + Γ +
  (4.19)  

 

1 0

2 3
(3 )

00

0 0

2 3 4 5 6 7

( ) ( )

1 ( ) 1 ( )
( ) 1 ( ) ( ) ( )

(1 ) (1 2 ) (1 ) (1 3 ) (1 ) (1 )

1
(1 2 ) (1 3 ) (1 4 ) (1 5 ) (1 6 ) (1 7 )

x

u x u x

x r
u u r dr d

x x x x x x

ζα α α α
α α α

α α α α α α

ζ ζ ζ ζζ ζ
α α α α α α

α α α α α α

=

 − − − − − − −
 Γ + Γ + Γ + Γ + Γ + Γ +
  

= + + + + + +
Γ + Γ + Γ + Γ + Γ + Γ +

∫ ∫  (4.20) 

 

2 1

2 3
(3 )

11

0 0

2 3 4 5 6 7

( ) ( )

1 ( ) 1 ( )
( ) 1 ( )( ) ( )

(1 ) (1 2 ) (1 ) (1 3 ) (1 ) (1 )

1
(1 2 ) (1 3 ) (1 4 ) (1 5 ) (1 6 ) (1 7 )

x

u x u x

x r
u u r dr d

x x x x x x

ζα α α α
α α α

α α α α α α

ζ ζ ζ ζζ ζ
α α α α α α

α α α α α α

=

 − − − − − − −
 Γ + Γ + Γ + Γ + Γ + Γ +
  

= + + + + + + + ⋅ ⋅ ⋅ ⋅
Γ + Γ + Γ + Γ + Γ + Γ +

∫ ∫   (4.21) 
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And so on: 
 

2 3

2 3

( ) 1
(1 ) (1 2 ) (1 3 )

(1 ) (1 )

( ) lim ( )

1
(1 ) (1 2 ) (1 3 ) (1 )

n

n

n
n

x x x
u x

x x

n

u x u x

x x x x

α α α

α α

α α α α

α α α

α α

α α α α

→∞

= + + + + ⋅ ⋅ ⋅
Γ + Γ + Γ +

+ −
Γ + Γ +

=

= + + + + ⋅ ⋅ ⋅ −
Γ + Γ + Γ + Γ +

 (4.22) 

 
That gives the exact solution Equation 4.23: 

 

 ( ) ( ) .
(1 )

x
u x E x

α
α

α α
= −

Γ +
 (4.23) 

 
5. CONCLUSION 

In this study the Volterra integro-differential 
equations within the local fractional differential operator 
had been analyzed using the local fractional variational 
iteration method. The non-differentiable solutions are 
obtained. The present method is a powerful tool for 
solving many integral equations within the local 
fractional derivatives. 
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