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ABSTRACT

Monthly counts of industrial machine part errore arodeled using a two-state Hidden Markov Model
(HMM) in order to describe the effect of machinetparror correction and the amount of time spent on
the error correction on the likelihood of the mawhipart to be in a “defective” or “non-defective”
state. The number of machine parts errors wereec@tl from a thermo plastic injection molding
machine in a car bumper auto parts manufactureibarec city, Czech Republic from January 2012 to
November 2012. A Bayesian method is used for pat@amestimation. The results of this study
indicate that the machine part error correction #relamount of time spent on the error correction d
not improve the machine part status of the indialdpart, but there is a very strong month-to-month
dependence of the machine part states. Using thanM&bsolute Error (MAE) criterion, the
performance of the proposed model (MAE = 1.62) dahd HMM including machine part error
correction only (MAE = 1.68), from our previous @iy is not significantly different. However, the
proposed model has more advantage in the factlieahachine part state can be explained by both the
machine part error correction and the amount oétgpent on the error correction.

Keywords: Hidden Markov Model (HMM), Machine Part Errors, Refive and Non-Defective States,
Bayesian Method

1. INTRODUCTION probability of being in the “defective” or “non-dsdtive”
state for a particular part in a given month wiffet. It
Industrial machine part data, including a number of depends on its past state in which that part wasnih
machine part errors and amounts of time spent mr er other possible covariates including specificallyroer
correction for each part over an entire time pedad be  correction and an amount of time spent on error
collected. These data are useful for the study ofcorrection. The terms “defective” and “non-defeetiv
effectiveness of machine part error correction Hmel are used throughout this study as labels for the tw
amount of time for error correction. A model foesle  different states. It is important to point out thia¢ two
data can be constructed and used to estimate it of states reflect periods of high and low machine rsrro
the machine error correction and the amount of timewhich are the surrogates for the concepts of
spent on error correction. “defective” and “non-defective” respectively. Ascsu
In the study of industrial machine parts, it is there may be periods of frequent machine errors
legitimate to hypothesize an unobserved machineé parcorresponding to a “defective” state being predidiy
state that governs individual errors. The normadrerate  the models that do not represent a “defective”qukin
corresponds to a “non-defective” state and an excesthe machine part and vice versa for infrequent rimech
error rate corresponds to “defective” state. The errors and the “non-defective” state.
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In this study we propose a model for “defectivetlan observed data, givesy Applications of HMMs appear in
“non-defective” unobserved machine states as aehidd various fields. Dorjet al (2013), as an example,
Markov chain including some covariates. It is the proposed a data-driven approach for anomaly detecti
extension of our pervious study of defective indakt in electronic systems based on a Bayesian Hidden
machine parts in which a Hidden Markov Model (HMM) Markov model classification technique. Shi and Sun
with machine part error correction dummy variables (2012) studied on the HMM model based on systeis cal
(Sirima and Pokorny, 2014) was proposed. The majoranomaly detection in order to improve the detection
research question is whether the machine part erroaccuracy. Conesat al (2011) introduced a framework of
correction and the amount of time spent on errormodels for the early detection of the onset ofrdluénza
correction reduce the probability of subsequently epidemic. The process of the observed cases waalletbd
entering the “defective” state as measured by thevia a Bayesian Hierarchical Poisson model. Wall and
machine part errors. We consider fitting the twatest (2009; MacDonald and Zucchini, 1997) used Poisson
hidden Markov model to the number of machine part HMM for count data. Naret al. (2008) proposed an
errors per month. A Bayesian method is used forapplication of multiScale hidden Markov modeling
parameter estimation. Within the Bayesian methbd, t wavelet coefficients to Functional Magnetic Resargan
MCMC technique is used to sample from the posteriorimages (FMRI) activation detection Bayesian models.
distribution of the parameters (Albert and Chib93p Amutha and Ponnavaikko (2009) presented a practical
Moreover, Gibbs sampling MCMC is implemented in the target tracking system based on the Hidden Markov
existing OpenBUGS software which is adopted in this Model in a distributed signal processing framework.
study. For the structure of this study, the methagloand Hongkong and Pattanasethanon (2013) proposed a
application, including HMM, Bayesian method, Gibbs HMM for predicting global and diffuse solar radati
sampling, MCMC convergence and an application, areon the horizontal plane.
given in section 2. The results are presented dhice .

3. Section 4 and 5 give some discussion and2'2' Bayesian Models

conclusion, respectively. Supposey is a vector of observationsy =
(Y1,---,ym) @and@ is a vector of parameter8,= (0,...,6y)

2. MATERIALSAND METHODS that are not observable. For Bayesian models (Gamgd

) 2010), Letf (y|8) represent the probability density

2.1. Hidden Markov Models (HMMs) function of y given 8 which is equivalent to the

Lety = (yi, ..., y7)" be a vector of observed variables, Iikelihqod functio_r_w andn(e_) is a prior fpre._ Then, the
indexed by timet = 1,...T. HMMs (Poritz, 1998; posterior probability density function 6fis given by:
Rabiner, 1989) assume that the distribution of each f

. __ fyl6)=(®)
observed data point; depends on an unobserved pPO|Y)= (2)
(hidden) variable, denoted gsthat takes on values from jf(yle)”(e)de
1 tok. The hidden variable = (s,,..., sy)' characterizes
the “state” which the generating process is attang t.
HMMs further postulate a Markov Chain for the Equation 2 can be expressed as Equation 3:
evolution of the unobserved state variable andcégethe
process fors is assumed to depend on the past P@|Y)u f(y|0)x(6) )
realizations ofy ands only throughs,.; Equation 1:

Since J'f(y|e)n(e)de is a normalizing constant,

The goal of Bayesian inference is to get the paster

P(§ = jlsg.=0=4 1) In particular, some numerical summaries may be

obtained from the posteriors. For example, to kbems
where, J; is the generic element of the transition matrix simple, a Bayesian point estimator for a univartate
A = (), with a vector of stationary probabilityr often obtained as the posterior mean:
satisfying 7 A = 77 Fig. 1 illustrates the dependency
structure in a HMM, showing that each observaiipis E@]y)=]0p0]y)d (4)
conditionally independent of all other unobserved a = [6f (y [0)z(0)do
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Fig. 1. Dependency structure in a HMM

Markov Chain Monte Carlo (MCMC) methods are Sett =t +1. Ift<T, the number of desired samples,
proposed to handle the computation in Equation 4.return to step 2. Otherwise, stop. In the MCMCréhare
Tongkhow and Kantanantha (2013) used Bayesianother related processes, called convergence, wduieh
models for time series with covariates, trend, ceality, described in the following topics.
autoregression and outliers. Lekdee and Ingsrisgwan )

(2013) used a hierarchical Bayesian method in2.4. Assessing MCMC Convergence
generalized linear mixed models with spatial random

. Simulation-based Bayesian inference requires
effects for spatio-temporal data. Y 9

using simulated draws to summarize the posterior
2.3. Gibbs Sampling distribution or calculate any relevant quantitieE o
) ] interest. We have to decide whether the Markov rchai
The Gibbs sampling (Geman and Geman, 1984), anh55 reached its stationary, or the desired posterio
MCMC method, decomposes the joint posterior yisiribution and to determine the number of iterasi
dlstnbutlon_ into full conditional distributions foeach keep after the Markov chain has reached
parameter in the model and then sample from thete. T gationarity. Convergence diagnostics help to nesol

sampler can be efficient when the parameters ate noy,qqe jssues (Brooks and Roberts, 1997). The common
highly dependent on each other and the full coméli 05 o1 visual analysis via history plots and kern
distributions are easy to sample from. It doesraqtire density plots

an instrumental proposal distribution as Metropolis
methods do. However, while deriving the conditional 2.5. An Application
distributions can be relatively easy, it is not ayw

possible to find an efficient way to sample fronese ~ 1he data were collected from a thermo plastic
conditional distributions. injection molding machine in a car bumper auto art

Supposed = (©,,....0)"is the parameter vectof, manufacturer in Liberec city, Czech Republic.
(y|6) is the likelihood andit®) is the prior distribution.  Altogether 27 machine parts were randomly chosen fo
The full posterior conditional distribution gf 6/, i #  this study, during the time period from January 264
@8, # j, y) O f (y9)76). For instance, the one- Were recorded. A Hidden Markov model for the number
dimensional conditional distribution & given®, =, ~ °f machine part errog has the following details:

2<j<k, is computed as Equation 5: i

. . OPois( 8,
p(O,16, =6;,2< j<k,Y) - oI5 LPois(s )
. . g
pf(y|(6—(61,62,...,9k)T)71'(6— (05,05,...0,)") log(8,) = A, + A, (6)
The Gibbs sampler works as follows: )
Sett = 0 and choose an arbitrary initial value of S | $¢-y ~Bin(pl)
0° =(607,...,07) . Generate each componenfafs follows: logitp = B, + B,§,_y + B,Correct + B, Time
drawg"* fromp @, 8, ,..8,7 y) or:
drawd, ™ fromp @, 18,V 8,9 .89 y)
log p .
———— =0+ _,+B,Correct + 3, Tim 7
drawek(“l) fromp @k Iel(nl) 93(1+1) mek_l(tﬂ) y: Iog(l— p) 180 ﬁlﬁ(t 1) ﬂz E ﬂa F ( )
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S, © Bin(my 1) for 10, T’ Ta’s T’ T and 7z, The visual analysis,
history plots and Kernel density plots are used tfar
MCMC convergence diagnostics. To evaluate the model
performance, the proposed model is compared with ou
Note that Pois, Bin and Beta stand for Poisson,proposed previous model (Sirima and Pokorny, 2044),
Binomial and Beta distribution, repectivelys, A1, 5, HMM with a machine part error correction dummy
B B and B; are regression coefficient§;, can be  variables, using Mean Absolute Error (MAE) as a
viewed as the mean of the Poisson. It is determimed criterion. The HMM without covariates is the same a
the unobserved a machine part s&gtelThis unobserved Equation 6 and 7 except #Time; term.
machine parts state follows a Markov chain, with
transition probability modeled by a logistic regies 3.RESULTS
with the previous machine part stafg;). The parameter
76 represents the initial probability of being in the  We performed 25,000 MCMC iterations with burn-
“defective” machine state at the first morth The in of 5,000. The visual analysis is used for MCMC
dummy variableCorrect, = 1 indicates the status of convergence diagnostics. The history plot§ig. 2-7
montht for parti as being after error correction (with show no trend and snake around the mean and the
before correction as the reference groQurrect; = Kernel density plots ifrig. 8-13 look more bell-shape
0). Thus, the estimate for the coefficientQdrrect; is or not multi-modal. These indicate each parameter i
of primary interest to see if the probability ofitg in converged to a stationary density.
the “defective” state has significantly decreasétéra Table 1 shows the results of the HMM fit to the
correction. Timg, are the covariates refer to the machine part error counts per month. The estimi o
amount of time (minute) spent on error correction f (9,7002) implies that the odds of transitioning do
machine part at timet. remaining in the “defective” state in any given rtfon

The number of machine part errggsin a particular — 4fier correction is exp (0.7002) = 2.0142 of whatias
montht, is governed by the two state hidden variaple before correction. This provides evidence in fawbr

(I;/_Iotrgbstpecmchally,)t/iFI c:)me;_f;rom ta two sta;tte Pmsson the machine part error correction not improving the
Istribution where the two difterent means o on machine part status of individual part. Similarly,

distribution correspond to the two different valudéghe . .

. . S . although the amount of time spent on error coroecti
hidden variables; which in turn depends on the previous increases. the odds of transitioning to or remarim
stateseq). To make the unobserved states identifiable, weth “def ,t' " state | ! 9 thi 7@’ 5
assume that the lower mean correspondg t0 and the  ~ € “detec |\;e E atein anybgl;/en montn 1S exp ﬁg ) |
higher mean corresponds $p= 1, which is operational =~ 2-1027 of what it was before correction. Thisoals

provides evidence that the increase in the amofint o

zed by constraining, to be larger than zero. Thgs= 0 X _ )
corresponds to the “non-defective” state agd= 1 time spent on error correction does not improve the

7, ~ Betg1,1)

corresponds to the “defective” state. machine part status of individual part.
o In addition to this main finding, the results frahe
2.6. Parameter Estimation model also characterize a very strong month-to-mont

The MCMC Gibbs sampling for parameter estimation dépendence of machine part staigs< 3.6220) where
are performed in OpenBUGS software. The joint the odds of remaining in the “defective” state et
posterior is decomposed into the full conditional current month if an machine part was in the
posterior distribution with respect to each paramaend  “defective” state the last month is estimated toelsp
the Gibbs sampling is used. Once the chain conserge (3.6220) = 37.4123 times the odds of newly
the empirical joint posterior distribution for athe transitioning to the “defective” state if an indiwial
parameters can be used to obtain the posterior m@én part was “non-defective” in the previous month. hggi
the 2.5 and 97.5% quantiles can be used as tdébere the MAE criterion for model comparison, the
interval for all the parameters. The no informatprers performance of the proposed Model (MAE = 1.62) ahd

were chosen. Assum&(0,7)%), N(O,7x°), N(0,74°), our previous model (Sirima and Pokorny, 2014), a
N(0,7z°) and N(0,zz°) prior for Ao, S, B, B and S, HMM with Machine part error correction dummy
respectively and N(0z;,?) with positive value restriction  variables (MAE = 1.68), are not significantly

was used forl;. Similarly, assume Inverse Gamma (IG) different. They both have good performance.
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Table 1. Parameter estimates from the HMM

Parameter Mean SD 95% Credible Interval
Ao 0.0627 0.0620 -0.0543 0.1887
A1 2.6630 0.0820 2.5020 2.8220
Lo -5.8570 2.0980 -10.0100 -3.9070
Yy 3.6220 1.2180 1.4660 6.2940
5 (Correct) 0.7002 2.0250 -0.2725 4.8950
B (Time) 0.7432 0.2074 0.3868 1.2050
JMSS

% Science Publications 328



Pornpit Sirima and Premysl Pokorny / Journal of iatatics and Statistics 10 (3): 322-330, 2014

4. DISCUSSION 7. REFERENCES

A HMM with covariates for machine part errors is Albert, J.H. and S. Chib, 1993. Bayes inferencegilidos
proposed. We assume there are unobserved machine pa  sampling of autoregressive time series subject to
states that govern the machinery care utilizatiérao markov mean and variance shifts. J. Bus. Econ.
particular machine part and the machine part stte Stat., 11: 1-15.
governed only by the frequency of errors. The main ~ DOI:10.1080/07350015.1993.10509929 N
purpose of the HMM is to model changing maching par Amutha, B. and M. Ponnavaikko, 2009. Energy efficie
states over time not necessarily modeling the dnang hidden markov model based target tracking
number of machine part errors. In a HMM, the obeérv mgchanlsm in wireless sensor networks. J. Comput.
machine errors are only a surrogate for “machingspa 58'5844/. 5'2009 108212?)301090. DOl:
status”. Measurement errors is allowed between the ' JCSSP. ’ : .

: X . Brooks, S.P. and G.O. Roberts, 1997. Assessing
observed machine errors and the underlying machine converaence of markov chain  monte  carlo
state. The HMM with covariates explains the dateyve g X

Il (MAE = 1.62). E thouah th f s ¢ algorithms.  Stat.  Comput.,, 8:  319-335.
well ( - ) ven thougn the pertormance http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1
proposed model is not significantly different fromar 0.1.1.40.2642

previous model (Siima and Pokorny, 2014). conesa D., M.A. Martinez-Beneito, R. Amorés and A.
Nevertheless, the proposed model has more advaimtage Lopez-Quilez, 2011. Bayesian hierarchical poisson

the fact that the machine part state can be exgaly models with a hidden Markov structure for the
the amount of time spent on error correction. detection of influenza epidemic outbreaks. Stat.
Methods Med., 25: 1-38, DOL:
5. CONCLUSION 10.1177/0962280211414853

, , Congdon, P.D., 2010. Applied Bayesian Hierarchical
This study proposes a two-state hidden Markov Methods. 1st Edn., CRC Press, Boca Raton, ISBN-

model with covariates in order to describe the cbffef 10: 1584887214, pp: 604.

machine part error correction and the amount oktim Dorj, E., C. Chen and M. Pecht, 2013. A Bayesian
spent on error correction on the likelihood of the hidden Markov model-based approach for anomaly
machine parts to be in a “defective” or “non-deffiext detection in electronic systems. Proceedings of the
state. A Bayesian method is used for parameter |EEE Aerospace Conference, Mar9, IEEE Xplore
estimation. The result shows that the machine @aar Press, Big Sky, MT, pp: 1-10. DOl

correction and the amount of time spent on error ~ 10.1109/AERO.2013.6497204
correction do not improve the machine part statiis o Geman, S. and D. Geman, 1984. Stochastic relaxation

individual part and there is a very strong monthrtonth Gibbs distributions and the Bayesian restoration of
dependence of machine part states. Using the MIAE, t images. IEEE Trans. Pattern Anal. Machine Intelli.,
performance of the proposed model is not signifigan 6: 721-741. DOI: 10.1109/TPAMI.1984.4767596

different from of our previous model (Sirima and Hongkong, S. and S. Pattanasethanon, 2013. Observat
Pokorny, 2014). Nonetheless, the proposed model is modeling for continuous predicting global and

more advantageous in the fact that the machinespstet diffuse solar radiation on horizontal surface. Am.
can be explained by the amount of time spent oarerr Environ. Sci., 9: 201-209. DOl
correction. For further study, the proposed moael be 10.3844/ajessp.2013.201.209
applied to other similar problems and can be extdrtd ~ Lekdee, K. and L. Ingsrisawang, 2013. Generalized
multivariate Poisson count data. linear mixed models with spatial random effects for
spatio-temporal data: An application to dengue rfeve
6. ACKNOWLEDGMENT mapping. J. Math. Stat.,, 9: 137-143. DOI:

10.3844/jmssp.2013.137.143
We gratefully thank the Department of MacDonald, I.L. and W. Zucchini, 1997. Hidden
Manufacturing Systems and Processes, the Faculty of Markov and Other Models for Discrete-Valued
Mechanical Engineering, Technical University of Time Series. 1st Edn, CRC Press, ISBN-10:
Liberec, Czech Republic for technical support. 0412558505, pp: 256.

///// Science Publications 329 JMSS



Pornpit Sirima and Premysl Pokorny / Journal of iatatics and Statistics 10 (3): 322-330, 2014

Nan, F., Y. Wang and X. Ma, 2008. Application of Sirima, P. and P. Pokorny, 2014. Hidden Markov
multiscale hidden Markov modeling wavelet models for analysis of defective industrial
coefficients to FMRI activation detection. J. Math. machine parts. Proceedings of the International
Stat., 4: 255-263. DOI: 10.3844/jmssp.2008.255.263 Multi Conference of Engineers and Computer

Poritz, A.M., 1988. Hidden Markov models: A guided Scientists, Mar. 12-14, IEEE Xplore Press, Hong
tour. Proceedings of the International Conferente o Kong, pp:1100-1104.

Acoustics, Speech and Signal Processing, Apr. 11qgngkhow, P. and N. Kantanantha, 2013. Bayesian
14, IEEE Xplore Press, New York, pp: 7-13. DOL: models for time series with covariates, trend,

10.1109/ICASSP.1988.196495 . . .
: . ; seasonality, autoregression and outliers. J.
Rabiner, L., 1989. A tutorial on hidden Markov mtsde Comput. Sci.. 9 291-298. DOI:

and selected applications in speech recognition. .

Proc. IEEE, 77: 257-286. DOI: 10.1100/5.18626 10 38441Cosp 2018290298
Shi, S. and M. Sun, 2012. Study on HMM based r;'dd. .M K ' ,d | '-h P licati

anomaly intrusion detection using system calls. \aden Viarkov: mode with an app |f:at|on to

Proceedings of the 2nd International Conference on ~ Medical utilization data. Stat. Med., 28: 293-310.

Electronic and Mechanical Engineering and DOI: 10.1002/sim.3463

Information Technology, (EIT' 12), Atlantis Press,

Paris, France, pp: 139-144. DOI:

10.2991/emeit.2012.27

///// Science Publications 330 JMSS



