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ABSTRACT 

Monthly counts of industrial machine part errors are modeled using a two-state Hidden Markov Model 
(HMM) in order to describe the effect of machine part error correction and the amount of time spent on 
the error correction on the likelihood of the machine part to be in a “defective” or “non-defective” 
state. The number of machine parts errors were collected from a thermo plastic injection molding 
machine in a car bumper auto parts manufacturer in Liberec city, Czech Republic from January 2012 to 
November 2012. A Bayesian method is used for parameter estimation. The results of this study 
indicate that the machine part error correction and the amount of time spent on the error correction do 
not improve the machine part status of the individual part, but there is a very strong month-to-month 
dependence of the machine part states. Using the Mean Absolute Error (MAE) criterion, the 
performance of the proposed model (MAE = 1.62) and the HMM including machine part error 
correction only (MAE = 1.68), from our previous study, is not significantly different. However, the 
proposed model has more advantage in the fact that the machine part state can be explained by both the 
machine part error correction and the amount of time spent on the error correction. 
 
Keywords: Hidden Markov Model (HMM), Machine Part Errors, Defective and Non-Defective States, 

Bayesian Method 

1. INTRODUCTION 

Industrial machine part data, including a number of 
machine part errors and amounts of time spent on error 
correction for each part over an entire time period can be 
collected. These data are useful for the study of 
effectiveness of machine part error correction and the 
amount of time for error correction. A model for these 
data can be constructed and used to estimate the effect of 
the machine error correction and the amount of time 
spent on error correction. 

In the study of industrial machine parts, it is 
legitimate to hypothesize an unobserved machine part 
state that governs individual errors. The normal error rate 
corresponds to a “non-defective” state and an excess 
error rate corresponds to “defective” state. The 

probability of being in the “defective” or “non-defective” 
state for a particular part in a given month will differ. It 
depends on its past state in which that part was in and 
other possible covariates including specifically error 
correction and an amount of time spent on error 
correction. The terms “defective” and “non-defective” 
are used throughout this study as labels for the two 
different states. It is important to point out that the two 
states reflect periods of high and low machine errors 
which are the surrogates for the concepts of 
“defective” and “non-defective” respectively. As such 
there may be periods of frequent machine errors 
corresponding to a “defective” state being predicted by 
the models that do not represent a “defective” period in 
the machine part and vice versa for infrequent machine 
errors and the “non-defective” state. 
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In this study we propose a model for “defective” and 
“non-defective” unobserved machine states as a hidden 
Markov chain including some covariates. It is the 
extension of our pervious study of defective industrial 
machine parts in which a Hidden Markov Model (HMM) 
with machine part error correction dummy variables 
(Sirima and Pokorny, 2014) was proposed. The major 
research question is whether the machine part error 
correction and the amount of time spent on error 
correction reduce the probability of subsequently 
entering the “defective” state as measured by the 
machine part errors. We consider fitting the two-state 
hidden Markov model to the number of machine part 
errors per month. A Bayesian method is used for 
parameter estimation. Within the Bayesian method, the 
MCMC technique is used to sample from the posterior 
distribution of the parameters (Albert and Chib, 1993). 
Moreover, Gibbs sampling MCMC is implemented in the 
existing OpenBUGS software which is adopted in this 
study. For the structure of this study, the methodology and 
application, including HMM, Bayesian method, Gibbs 
sampling, MCMC convergence and an application, are 
given in section 2. The results are presented in section 
3. Section 4 and 5 give some discussion and 
conclusion, respectively.  

2. MATERIALS AND METHODS 

2.1. Hidden Markov Models (HMMs) 

Let y = (y1, …, yT)
T be a vector of observed variables, 

indexed by time t = 1,…,T. HMMs (Poritz, 1998; 
Rabiner, 1989) assume that the distribution of each 
observed data point yt depends on an unobserved 
(hidden) variable, denoted as s, that takes on values from 
1 to k. The hidden variable s = (s1,…, sT)

T characterizes 
the “state” which the generating process is at any time t. 
HMMs further postulate a Markov Chain for the 
evolution of the unobserved state variable and, hence, the 
process for st is assumed to depend on the past 
realizations of y and s only through st-1 Equation 1: 
 

1( | )t t ijP s j s i λ−= = =  (1) 

 
where, λij is the generic element of the transition matrix 
Λ = (λij), with a vector of stationary probability π 
satisfying πT Λ = πT Fig. 1 illustrates the dependency 
structure in a HMM, showing that each observation yt is 
conditionally independent of all other unobserved and 

observed data, given st. Applications of HMMs appear in 
various fields. Dorj et al. (2013), as an example, 
proposed a data-driven approach for anomaly detection 
in electronic systems based on a Bayesian Hidden 
Markov model classification technique. Shi and Sun 
(2012) studied on the HMM model based on system calls 
anomaly detection in order to improve the detection 
accuracy.  Conesa et al. (2011) introduced a framework of 
models for the early detection of the onset of an influenza 
epidemic. The process of the observed cases was modelled 
via a Bayesian Hierarchical Poisson model. Wall and Li 
(2009; MacDonald and Zucchini, 1997) used Poisson 
HMM for count data. Nan et al. (2008) proposed an 
application of multiScale hidden Markov modeling 
wavelet coefficients to Functional Magnetic Resonance 
Images (FMRI) activation detection Bayesian models. 
Amutha and Ponnavaikko (2009) presented a practical 
target tracking system based on the Hidden Markov 
Model in a distributed signal processing framework. 
Hongkong and Pattanasethanon (2013) proposed a 
HMM for predicting global and diffuse solar radiation 
on the horizontal plane. 

2.2. Bayesian Models 

Suppose y is a vector of observations, y = 
(y1,…,ym) and θ is a vector of parameters, θ = (θ1,…,θk) 
that are not observable. For Bayesian models (Congdon, 
2010), Let f (y|θ) represent the probability density 
function of y given θ which is equivalent to the 
likelihood function and π(θ) is a prior for θ. Then, the 
posterior probability density function of θ is given by: 
 

( θ) (θ)
(θ | )

( |θ) (θ) θ

f y | π
p y =

f y π d∫
 (2) 

 
Since ( |θ) (θ) θf y π d∫ is a normalizing constant, 

Equation 2 can be expressed as Equation 3: 
 
p(θ | y) µ f(y |θ)π(θ)  (3) 

 
The goal of Bayesian inference is to get the posterior. 

In particular, some numerical summaries may be 
obtained from the posteriors. For example, to keep things 
simple, a Bayesian point estimator for a univariate θ is 
often obtained as the posterior mean: 
 

(θ | ) = θ (θ | ) θ

θ ( | θ) ( ) θ

E y p y d

= f y π θ d

∫

∫
 (4) 



Pornpit Sirima and Premysl Pokorny / Journal of Mathematics and Statistics 10 (3): 322-330, 2014 

 
324 Science Publications

 

JMSS 

 
 

Fig. 1. Dependency structure in a HMM 
 

Markov Chain Monte Carlo (MCMC) methods are 
proposed to handle the computation in Equation 4. 
Tongkhow and Kantanantha (2013) used Bayesian 
models for time series with covariates, trend, seasonality, 
autoregression and outliers. Lekdee and Ingsrisawang 
(2013) used a hierarchical Bayesian method in 
generalized linear mixed models with spatial random 
effects for spatio-temporal data. 

2.3. Gibbs Sampling  

The Gibbs sampling (Geman and Geman, 1984), an 
MCMC method, decomposes the joint posterior 
distribution into full conditional distributions for each 
parameter in the model and then sample from them. The 
sampler can be efficient when the parameters are not 
highly dependent on each other and the full conditional 
distributions are easy to sample from. It does not require 
an instrumental proposal distribution as Metropolis 
methods do. However, while deriving the conditional 
distributions can be relatively easy, it is not always 
possible to find an efficient way to sample from these 
conditional distributions. 

Suppose θ = (θ1,…,θk)
T is the parameter vector, f 

(y|θ) is the likelihood and π(θ) is the prior distribution. 
The full posterior conditional distribution of p (θi|θj, i ≠ 
j,y) is proportional to the joint posterior density; that is, p 
(θi|θj,i ≠ j, y) ∝ f (y|θ)π(θ). For instance, the one-
dimensional conditional distribution of θ1 given θj = θj

*, 
2≤j≤k, is computed as Equation 5: 
 

1

1 1

*
j

* * * *
2 2

(θ | θ = θ , 2 )

( (θ (θ ,θ ,...,θ ) ) (θ (θ ,θ ,...,θ ) )

j

T T
k k

p j k, y

µf y | = π =

≤ ≤
 (5) 

 
The Gibbs sampler works as follows: 
Set t = 0 and choose an arbitrary initial value of  

0 0 0
1θ (θ ,...,θ )k= . Generate each component of θ as follows: 

 
( 1) ( ) ( )

1 1 2

( 1) ( 1) ( ) ( )
2 2 1 3
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1 3 1

draw from ( | ,..., , )
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+ +
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−

θ θ θ
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Set t = t +1. If t<T, the number of desired samples, 
return to step 2. Otherwise, stop. In the MCMC, there are 
other related processes, called convergence, which are 
described in the following topics. 

2.4. Assessing MCMC Convergence 

Simulation-based Bayesian inference requires 
using simulated draws to summarize the posterior 
distribution or calculate any relevant quantities of 
interest. We have to decide whether the Markov chain 
has reached its stationary, or the desired posterior 
distribution and to determine the number of iterations 
to keep after the Markov chain has reached 
stationarity. Convergence diagnostics help to resolve 
these issues (Brooks and Roberts, 1997). The common 
ones are visual analysis via history plots and Kernel 
density plots. 

2.5. An Application 

The data were collected from a thermo plastic 
injection molding machine in a car bumper auto parts 
manufacturer in Liberec city, Czech Republic. 
Altogether 27 machine parts were randomly chosen for 
this study, during the time period from January 2012 to 
November 2012. The number of machine parts errors 
were recorded. A Hidden Markov model for the number 
of machine part errors yit has the following details: 
 

( )Pois|
iid

it it ity s θ∼  

 

0 1( )it itlog sθ λ λ= +  (6) 

 

( 1)

0 1 ( 1) 2 3

| Bin( ,1)

log it 

it i t

i t it it

s s p

p s Correct Timeβ β β β
−

−= + + +

∼

 

 
Or: 

 

0 1 ( 1) 2 3
(1 )

i t it it

log p
s Correct Time

log p
β β β β−= + + +

−
 (7) 
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: ( 1)

(1,1)

it 00

0

s Bin π ,

π ~ Beta
 

 
Note that Pois, Bin and Beta stand for Poisson, 

Binomial and Beta distribution, repectively. λ0, λ1, β0, 
β1, β2 and β3 are regression coefficients. θit can be 
viewed as the mean of the Poisson. It is determined by 
the unobserved a machine part state sit. This unobserved 
machine parts state follows a Markov chain, with 
transition probability modeled by a logistic regression 
with the previous machine part state si(t-1). The parameter 
π0 represents the initial probability of being in the 
“defective” machine state at the first month ti1. The 
dummy variables Correctit = 1 indicates the status of 
month t for part i as being after error correction (with 
before correction as the reference group, Correctit = 
0). Thus, the estimate for the coefficient of Correctit is 
of primary interest to see if the probability of being in 
the “defective” state has significantly decreased after 
correction. Timeit are the covariates refer to the 
amount of time (minute) spent on error correction for 
machine part i at time t. 

The number of machine part errors yit in a particular 
month t, is governed by the two state hidden variable sit. 
More specifically, yit comes from a two state Poisson 
distribution where the two different means of the Poisson 
distribution correspond to the two different values of the 
hidden variable sit which in turn depends on the previous 
state si(t-1). To make the unobserved states identifiable, we 
assume that the lower mean corresponds to sit = 0 and the 
higher mean corresponds to sit = 1, which is operational 
zed by constraining λ1 to be larger than zero. Thus sit = 0 
corresponds to the “non-defective” state and sit = 1 
corresponds to the “defective” state.  

2.6. Parameter Estimation 

The MCMC Gibbs sampling for parameter estimation 
are performed in OpenBUGS software. The joint 
posterior is decomposed into the full conditional 
posterior distribution with respect to each parameter and 
the Gibbs sampling is used. Once the chain converges, 
the empirical joint posterior distribution for all the 
parameters can be used to obtain the posterior mean and 
the 2.5  and 97.5% quantiles can be used as the credible 
interval for all the parameters. The no informative priors 
were chosen. Assume N(0,τλ0

2), N(0,τβ0
2), N(0,τβ1

2), 
N(0,τβ2

2) and N(0,τβ3
2) prior for λ0, β0, β1, β2 and β3, 

respectively and N(0, τλ1
2) with positive value restriction 

was used for λ1. Similarly, assume Inverse Gamma (IG) 

for τλ0
2, τλ1

2, τβ0
2, τβ1

2, τβ2
2 and τβ3

2. The visual analysis, 
history plots and Kernel density plots are used for the 
MCMC convergence diagnostics. To evaluate the model 
performance, the proposed model is compared with our 
proposed previous model (Sirima and Pokorny, 2014), a 
HMM with a machine part error correction dummy 
variables, using Mean Absolute Error (MAE) as a 
criterion. The HMM without covariates is the same as 
Equation 6 and 7 except no β3Timeit term. 

3. RESULTS 

We performed 25,000 MCMC iterations with burn-
in of 5,000. The visual analysis is used for MCMC 
convergence diagnostics. The history plots in Fig. 2-7 
show no trend and snake around the mean and the 
Kernel density plots in Fig. 8-13 look more bell-shape 
or not multi-modal. These indicate each parameter is 
converged to a stationary density. 

Table 1 shows the results of the HMM fit to the 
machine part error counts per month. The estimate of β2 
(0.7002) implies that the odds of transitioning to or 
remaining in the “defective” state in any given month 
after correction is exp (0.7002) = 2.0142 of what it was 
before correction. This provides evidence in favor of 
the machine part error correction not improving the 
machine part status of individual part. Similarly, 
although the amount of time spent on error correction 
increases, the odds of transitioning to or remaining in 
the “defective” state in any given month is exp (0.7432) 
= 2.1027 of what it was before correction. This also 
provides evidence that the increase in the amount of 
time spent on error correction does not improve the 
machine part status of individual part. 

In addition to this main finding, the results from the 
model also characterize a very strong month-to-month 
dependence of machine part states (β1 = 3.6220) where 
the odds of remaining in the “defective” state in the 
current month if an machine part was in the 
“defective” state the last month is estimated to be exp 
(3.6220) = 37.4123 times the odds of newly 
transitioning to the “defective” state if an individual 
part was “non-defective” in the previous month. Using 
the MAE criterion for model comparison, the 
performance of the proposed Model (MAE = 1.62) and of 
our previous model (Sirima and Pokorny, 2014), a 
HMM with Machine part error correction dummy 
variables (MAE = 1.68), are not significantly 
different. They both have good performance.
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Fig. 2. History plot of λ0 indicating convergence 
 

 
 

Fig. 3. History plot of λ1 indicating convergence 
 

 
 

Fig. 4. History plot of β0 indicating convergence 
 

 
 

Fig. 5. History plot of β1 indicating convergence 
 

 
 

Fig. 6. History plot of β2 indicating convergence 
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Fig. 7. History plot of β3 indicating convergence 
 

 
 

Fig. 8. Kernel density plot of λ0 indicating convergence 
 

 
 

Fig. 9. Kernel density plot of λ1 indicating convergence 
 

 
 

Fig. 10. Kernel density plot of β0 indicating convergence 
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Fig. 11. Kernel density plot of β1 indicating convergence 
 

 
 

Fig. 12. Kernel density plot of β2 indicating convergence 
 

 
 

Fig. 13. Kernel density plot of β3 indicating convergence 
 
Table 1. Parameter estimates from the HMM 
Parameter  Mean   SD 95% Credible Interval 
λ0 0.0627 0.0620 -0.0543 0.1887 
λ1 2.6630 0.0820 2.5020 2.8220 
β0 -5.8570 2.0980 -10.0100 -3.9070 
β1 3.6220 1.2180 1.4660 6.2940 
β2 (Correct) 0.7002 2.0250 -0.2725 4.8950 
β3 (Time) 0.7432 0.2074 0.3868 1.2050
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4. DISCUSSION 

A HMM with covariates for machine part errors is 
proposed. We assume there are unobserved machine part 
states that govern the machinery care utilization of a 
particular machine part and the machine part state is 
governed only by the frequency of errors. The main 
purpose of the HMM is to model changing machine part 
states over time not necessarily modeling the changing 
number of machine part errors. In a HMM, the observed 
machine errors are only a surrogate for “machine parts 
status”. Measurement errors is allowed between the 
observed machine errors and the underlying machine 
state. The HMM with covariates explains the data very 
well (MAE = 1.62). Even though the performance of the 
proposed model is not significantly different from our 
previous model (Sirima and Pokorny, 2014). 
Nevertheless, the proposed model has more advantage in 
the fact that the machine part state can be explained by 
the amount of time spent on error correction. 

5. CONCLUSION 

This study proposes a two-state hidden Markov 
model with covariates in order to describe the effect of 
machine part error correction and the amount of time 
spent on error correction on the likelihood of the 
machine parts to be in a “defective” or “non-defective” 
state. A Bayesian method is used for parameter 
estimation. The result shows that the machine part error 
correction and the amount of time spent on error 
correction do not improve the machine part status of 
individual part and there is a very strong month-to-month 
dependence of machine part states. Using the MAE, the 
performance of the proposed model is not significantly 
different from of our previous model (Sirima and 
Pokorny, 2014). Nonetheless, the proposed model is 
more advantageous in the fact that the machine part state 
can be explained by the amount of time spent on error 
correction. For further study, the proposed model can be 
applied to other similar problems and can be extended to 
multivariate Poisson count data. 
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