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ABSTRACT 

One of the most important issues that confront statisticians in longitudinal studies is dropouts. A variety of 
reasons may lead to withdrawal from a study and produce two different missingness mechanisms, namely, 
missing at random and non-ignorable dropouts. Nevertheless, none of these mechanisms is tenable in most 
studies. In addition, it may be that not all of dropouts are nonignorable. Many dropout handling methods 
have been employed by assuming only one of these dropout mechanisms. In this study, the dropout 
indicator is improved to take into account both dropout mechanisms. In this two-stage approach, a selection 
model is combined with an imputation method for dropout process in a longitudinal study with two time 
points. Simulation studies in a variety of situations are conducted to evaluate this approach in estimating the 
mean of the response variable at the second time point. This parameter is estimated by using maximum 
likelihood method. The results of the simulation studies indicate the superiority of the proposed method to 
the existing ones in estimating the mean of the variable with dropouts. In addition, this method is performed 
on a methadone dataset of 161 patients admitted to an Iranian clinic to estimate the final methadone dose. 
 
Keywords: Longitudinal Data, Dropout Mechanism, Imputation Method, Ignorability, Non-Ignorability 

 
1. INTRODUCTION 

A longitudinal data study is designed to measure the 
variables of every subject during a specific period. 
However, dropouts still occur because of different 
reasons. A dropout is a type of missingness wherein 
the subject leaves a study after a certain time. One of 
the most important questions is whether variables with 
dropouts are related to the values of the outcome 
variable that describes the dropout mechanism. The 
dropout mechanism has a principal role in data 
analysis because parameters that are related to the 
probability of dropout may affect the parameter 
estimation of the response’s distribution. Hence, 
choosing an appropriate method to handle dropouts 
depends on the dropout mechanism. Little and Rubin 
(1987; Diggle and Kenward, 1994) studied these 
mechanisms in detail and introduced the following 

classifications of dropout processes: Completely at 
Random Dropout (CRD), Random Dropout (RD) and 
Informative (not at random) dropout (ID). 

In CRD, observed data can be considered a random 
sample and can be analyzed by using common statistical 
models. Dropouts in CRD are uncorrelated with study 
variables. Thus, a chance mechanism causes dropout. In 
RD, the probability of dropout depends on several 
observed variables but not the response variable. Finally, 
ID is a situation wherein dropouts are related to the 
outcome. Both the observed responses and dropout 
mechanism are modeled in ID. If the dropout mechanism 
is RD or CRD, the mechanism is called ignorable and if 
it is ID the dropout mechanism is called nongnorable. 
Studies generally accept only one of these mechanisms 
in analyzing data with dropouts. 

Two most common methods applied to handle 
dropouts under ignorable mechanism are imputation 
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methods and maximum likelihood method. In 
imputation methods, dropouts are replaced by values 
drawn from a specified distribution based on the 
observed values. A comprehensive detailed texts are 
provided by (Allison, 2001; Schafer and Graham, 2002; 
Durrant, 2005; Donders et al., 2006; Baraldi and Enders, 
2010; Collins et al., 2001; Wei and Shih, 2001; Brick et al., 
2004; Carpenter and Kenward, 2013). On the other hand, 
linear mixed effect model is a fascinating model for 
coping with dropouts (missing values) in longitudinal 
studies which applies maximum likelihood to estimate 
parameters (Chakraborty and Gu, 2009; Atif et al., 2014). 

Different models have been recommended for 
handling non-ignorable dropouts, wherein a joint model 
of dropout indicator and the outcome variable is 
assumed. In addition, it was shown that biased estimates 
can be obtained if the non-ignorability assumption is 
not considered in the parameter estimation procedure 
(Wu and Bailey, 1989; Diggle and Kenward, 1994). In 
selection models, a dropout indicator is applied as: 
 

1, non response
R

0, response

−
= 


 

 
In the selection model, the joint distribution of the 

outcome and dropout indicators can be factorized as 
follows Equation 1: 
 

( ) ( ) ( )f R,Y | X, , f Y | X, f R | X,Y,γ ϕ = γ ϕ  (1)  

 
Where: 
R = The dropout or missingness indicator, 
Y = The response variable and  
X = The covariate matrix. Another model is pattern-

mixture model in which the factorization is as 
follows Equation 2: 

 
( ) ( ) ( )f R,Y | X, , f Y | R,X, f R | X,γ ϕ = γ ϕ  (2) 

 
Where: 
γ = The parameter of the response variable and 
ϕ = The parameter of the dropout indicator 
 

The cause of dropouts in the selection model is 
assumed to be a latent variable, R* ; thus, the response 
is observed and not observed if R*>0 and R*≤, 
respectively. In most studies, one of the dropout 
mechanisms is accepted and the appropriate method is 
chosen to analyze the data. 

Heckman (1976) introduced a selection model to 
manage non-ignorability. However, this model has 
several limitations. First, this model assumes that the 
response variable has a normal distribution and a 
departure from this assumption will create substantial 
problems. Second, this model is sensitive to 
misspecification. Crouchley and Ganjali (2002) 
introduced a Generalized Heckman selection model and 
showed that the models proposed by (Wu and Carroll, 
1988; Follmann and Wu, 1995; Diggle and Kenward, 
1994; Ridder, 1990) can be written by this model. 

In this study, we introduce a dropout mechanism 
indicator instead of a dropout indicator to account for 
both dropout at random and dropout not at random 
(nonignorable) mechanisms in a dataset when doubts 
exist with regard to the real dropout mechanism in a 
longitudinal study with two time points. To consider 
all different reasons of leaving a study in the data 
analysis, researchers should use a model based on a 
mixture dropout mechanism. Simulation studies are 
conducted under different conditions to assess the 
proposed model and the methadone data study is 
applied to illustrate the new model. 

The paper is organized as follows. Section 2 explains 
the Heckman model and the Generalized Heckman 
Model (GHM) and introduces the new model with a 
mixture dropout mechanism. Section 3 presents the 
simulation studies and the results of three methods under 
three different dropout mechanisms in the methadone 
data. Section 4 provides the discussion and conclusion is 
given in section 5. 

2. MATERIAL AND METHODS 

Heckman (1976) proposed a joint model for outcome 
and missingness indicators wherein the missingness 
indicator is constructed based on a latent variable R*. 
This variable is continuous, thus the response observable 
and unobservable is determined when R* is positive and 
negative, respectively. As a special case of missingness, 
the dropout indicator is expressed as follows: 
 

*

*

1, R 0
R

0, R 0

 ≥= 
<

 

 
The Heckman (1976) model is identified as follows 

Equation 3 and 4: 
 

*
i i i iR W u′= γ +  (3) 

 

i i iY X ′= β + ε  (4)  
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where, Wi and Xi are different covariates, (ui, εi)∼N(0, 

Σ), 
2 2
Y RY

2 2
RY R

 σ σ
Σ =  σ σ 

 and 2
R 1.σ =  

Crouchley and Ganjali (2002) proposed the 
Generalized Heckman model for longitudinal data. This 
model for a bivariate normal vector is expressed as 
follows Equation 5 to 7: 
 

i1 i1 i1Y X u′= β +   (5) 
 

i2 i2 i2Y X u′= β +  (6) 
 

*
i i3R W u′= γ +  (7) 

 The variance-covariance matrix is unstructured and 
given as: 
 

2
1 12 1 2 13 1

2
GHM 12 1 2 2 23 2

13 1 23 2 1

 σ ρ σ σ ρ σ
 

Σ ρ σ σ σ ρ σ 
 ρ σ ρ σ 

=
 

 
The log-likelihood function for this model is 

defined as: 
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

r n
* *

1 2 1
i 1 i r 1

r
*

1 1 2 1 2
i 1

r
*

1 1 2 1 2
i 1

L f Y ,Y ,R f Y ,R

f Y f Y | Y P R 0 | Y ,Y

f Y f Y | Y P R 0 | Y ,Y

= = +

=

=

= ∏ ∏

= >∏

= >∏

 

 
Likewise Y1,Y2|Y1,R

* |y1,R
* |y1,y2, have normal 

distributions with the following parameters: 
 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

*

*

23 12 13
2 22

1 12

2 2 2 2 2
Y 1 2 12Y |Y

2 2
13R |Y

2 2
2 13 23 12 13 23

2R |Y ,Y
12

' * 13
1 1 R* 1 1Y1

' 12 2
2 1 2 1 1

1

* 13 12 23
γ1 2 1 12

1 12

1 2 1

1

1 2

ρ
µ = X β, µ R | Y =µ + Y - µ ,

σ

ρ σ
µ Y | Y = X β + Y - µ ,

σ

ρ - ρ ρ
µ R | Y ,Y = W + Y -µ

σ 1-ρ

ρ -ρ ρ
+ Y - µ ,
σ 1-ρ

, 1 ,

1 and

2
1

1

′

σ = σ σ = σ − ρ

σ = − ρ

ρ + ρ − ρ ρ ρσ = −
− ρ

 

In most studies, there is no strong proof to test 
dropout mechanism. If the dropout reasons do not relate 
to the response values but are associated with the other 
variables in the study, the ignorable dropout occurs. 
However, in non-ignorable dropout mechanism, the 
causes of leaving the study are related to the response 
values dropped. Hence, it is of special importance to find 
the reasons of withdrawing from the study. Nevertheless, 
the researcher cannot prove that the dropout mechanism 
is non-ignorable unless he or she knows the real causes 
of dropouts. On the other hand, in some studies, these 
reasons may vary from one subject to the other. For 
instance, in a clinical trial, patients do not return to the 
study because of the side effects of the medicine or they 
moved out of the area. In this case, considering a single 
dropout mechanism may lead to invalid results. 

In this study, a longitudinal study with two time 
points is considered in which both variables follow a 
bivariate normal distribution and the second variable has 
dropouts. Then, a variety of reasons issue is handled by a 
two-stage approach based on determining two distinct 
groups of dropouts: Dropout at random and non-
ignorable. In the first group, a stochastic regression 
model is applied to impute the dropout at random part 
then the remaining data is assumed to be under non-
ignorable mechanism. In other words, dropouts in each 
part need to be coped with by its own appropriate 
method. Two groups are specified based on the standard 
deviation of the R* distribution. This can be seen in 
Figure 1. To specify two groups, two different classes 
need to be taken into account: Subjects with observed 
values and subjects with dropouts displayed in Fig. 2. 

According to the non-ignorable dropout, the 
probability of dropout is related to the dropped values. 
Suppose that the response variable is depression score 
for patients under a new treatment. During the study, the 
researcher noticed that patients with high depression 
score do not return to the study after a certain time. 
These patients have greater potential to be different from 
other patients. This is true in other situations in general. 
Therefore, if the researcher can find this group, the non-
ignorable part can be determined. In theory, since a 
latent variable generates dropouts, it may help us to find 
this group addressed here. 

Suppose that the dropout latent variable is denoted by 
R* and its negative values generate the dropouts. In order 
to improve the dropout indicator, it is assumed that more 
discrepancy in the left part of the distribution of R* leads 
to larger variance in the response variable. It means that, 
in this part, the values of the response variable are 
strongly different from the other part. 
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Fig. 1. R* model distribution 
 

 
 

Fig. 2. Two groups: Complete observed values and dropouts in the second variable 
 

Hence, in our model, the new indicator is defined as 
follows: 
 

*
R i

*
R*i iR

*
R * iR

0, 0 y is observed

R 1, 0 y is missing at random

2, y is missing notat random

 >

= − σ < <


< −σ

 

 
In fact, it is supposed that values of the R* with less 

distance from zero, the threshold value or mean of the 
distribution of the error term in R* model, leads to 
response values which are more similar to complete 
observed values. The distance is determined based on the 

standard deviation of the R* distribution. This can be 
seen in Fig. 1. 

Therefore, the likelihood function of the data can be 
written as follows: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

*
1 2 1 1 2

observed

*
*1 2 1 1 2Rmissing

*
*1 1Rmissing

L( , | R,Y) f Y f Y | Y P R 0 | Y ,Y

f Y f Y | Y P R 0 | Y ,Y ,ignorable

f Y P R | Y ,nonignorable

θ ϕ = >∏

× −σ < <∏

× < −σ∏

 

 
The likelihood function in terms of the new indicator 

variable is as given: 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 2 1 1 2
observed

1 2 1 1 2
missing

1 1
missing

L( , | R,Y) f Y f Y | Y P R 0 | Y ,Y

f Y f Y | Y P R 1 | Y ,Y , ignorable

f Y P R 2 | Y ,nonignorable

θ ϕ = =∏

× =∏

× =∏

 

 
where, θ is the parameter of the response variable and ϕ 
is that of the dropout indicator. 

As in most of the selection models, it is assumed that 
the distribution of the latent variable is normal, it needs 
to specify a selection model with this assumption in the 
new model. In this study, imputing the dropouts in the 
dropout at random part is performed by a regression 
model. However, we know that using this method leads 
to underestimation of the standard error of the estimator 
which is applied as the initial value in the iterative 
method to obtain maximum lilkelihood. Nevertheless, 
our goal is to show that even in this simple case of 
imputing, the final results of estimation of the parameters 
are plausible. To show how this mixture dropout 
mechanism is applied, the generalized Heckman model is 
used as the selection model for a bivariate normal 
distribution with dropouts in the second variable. Based 
on this model and the new indicator, the probabilities in 
the likelihood function based on normal distribution of 
the dropout indicator are calculated as follows: 

Observed part of data, returning to the equation: 
 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

*
* *1 2 3 1 2 3 1 2R R

*R
*3 1 2 1 2R

*R

13 12 23 23 12 13
1 1 2 22 2

1 12 1 12

2 2
13 23 12 13 23

2
12

13 12 23
1 12

1 12

P R 0 | Y ,Y P u 0 | Y ,Y P u | Y ,Y

Y ,Y Y ,Y

Y Y
1 1

P Z
2

1
1

Y
1

P u P| Z |

> = µ + > = ≥ −µ

µ
µ

σ

ρ − ρ ρ ρ − ρ ρ
− µ + − µ

σ − ρ σ − ρ
= ≤

ρ + ρ − ρ ρ ρ
−

− ρ

ρ − ρ ρ ρ
− µ +

σ − ρ
= Φ

 
 
 
 

 
 
 
 
  
 

= ≤ = ≤

( ) ( )23 12 13
2 22

1 12

2 2
13 23 23 12 13

2
12

Y
1

2
1

1

− ρ ρ
− µ

σ − ρ

ρ + ρ − ρ − ρ ρ
−

− ρ

 
 
 
 
  
 

 

 
Dropout at random part: 

 

( ) ( )
( )
( )

*
*1 2 1 2R

* * 3 1 2R R

* * *3 1 2R R R

P R 1| Y ,Y P R 0 | Y ,Y

P u 0 | Y ,Y

P u | Y ,Y

= = −σ < <

= −σ < µ + <

= −σ − µ < < −µ

 

( ) ( )* * *3 1 2 1 2R R R

* * *R R R
1 2 1 2

* *R R

* *R R

* *R R

P u | Y ,Y P u | Y ,Y3

P Z | Y ,Y P Z | Y ,Y

1

= < −µ − < −σ − µ

µ σ + µ
= > − >

σ σ

µ µ
= Φ + − Φ

σ σ

   
   
   
   

   
   
   
   

 

 
Or, we can write: 

 
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

13 12 23 23 12 13
1 1 2 22 2

1 12 1 12

2 2
13 23 12 13 23

2
12

13 12 23 23 12 13
2 22 2

1 12 1 12

2 2
13 23 12 13 23

2
12

Y Y
1 1

1
2

1
1

Y Y1 11 1

2
1

1

P R 1| Y ,Y

ρ − ρ ρ ρ − ρ ρ
− µ + − µ

σ − ρ σ − ρ
= Φ +

ρ + ρ − ρ ρ ρ
−

− ρ

ρ − ρ ρ ρ − ρ ρ
− µ + − µ

σ − ρ σ − ρ
−Φ

ρ + ρ − ρ ρ ρ
−

− ρ

=

 
 
 
 
  
 

 
 
 
 
  
 

 

 
Non-ignorable part: 

 

( ) ( ) ( )
( )

( )

*
* * *1 3 12R R R

*R
* *3 1 1R R

*R

13
1 1

*R 1
1 2

* 13R

P R 2 P R | Y P u | Y

P u | Y P Z 1 | Y

Y

1 1 | Y 1 1
1

= = < −σ = µ + < −σ

 µ
 = < −σ − µ = > +
 σ
 

ρ − µ  µ σ  = − Φ + == − Φ +
 σ  − ρ   

 

 

 
Now to obtain the likelihood function, let n be the 

sample size, r is the number of subjects with complete 

observed values, 
n r

2

−
is the ignorable part size and 

non-ignorable size too. Therefore the likelihood 
function is as follows: 
 

( ) ( )

( )
( )

2
r 1

2 2i 1 1 1 12

2

i2 Y |Y *2 1 R
1 22 2

*1 12 R

y1 1i1L , | Y,R exp
2 11

y
exp | Y ,Y

2 1

=

− µ
θ ϕ ∝ − ×∏

σ σ σ − ρ

 
 
 
 
 

 − µ  µ   − Φ   σσ − ρ    
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( ) ( )
( )

( )

2
2n r

2 i2 Y |Yi1 1 2 1
2 2 22

i r 1 1 1 1 121 12

* *R R
1 2 1 2

* *R R

n
il 1 *R

12
n r 11i 1

2

1 1 |Y
R

1 | Y ,Y | Y ,Y

2
y

2

yy1 1
exp exp

2 2 11

1
exp

+

= +

+= +

  µ  −Φ +
  σ

  

µ µ
×Φ + − Φ

σ σ

− µ
× − ×

σ

   − µ− µ   − × −  σ σ σ − ρσ − ρ     

   
   
   
   

 
 
 σ  
 

∏

∏

 

 
Taking the logarithm of this equation to get log-

likelihood function, we have: 

 

( ) ( )
( )

( )

( )

( )
( )

2
1 2 1 1 12

2

2 i2r Yi1 1 2 1
2 2 2i 1 1 1 12

* 2R
1 2 1 1 12

*R

2
n r 2 i22 Yi1 1 2 1

2 2 2i r 1 1 1 12

* *R R
1 2

*R R

ln L , | Y ,Y r ln 1

yy |Y1

2 1

n r
ln | Y ,Y ( ) ln 1

2

yy |Y1

2 1

ln 1 | Y ,Y

=

+

= +

θ ϕ = − σ + σ − ρ

 − µ − µ  − + +∑
σ σ − ρ

 µ −
 Φ − σ + σ − ρ
 σ
 

 − µ − µ  − +∑
σ σ − ρ

 µ µ
 + Φ + − Φ
 σ σ 

( ) ( )

1 2
*

n *i1 1 R
1 12n r

*i 1 1 R2

n r
| Y ,Y ( )

2

2
y1

ln ln 1 1 | Y
2 += +

   −   −
  
  

  µ− µ
  σ − + − Φ +∑

  σ σ  

 

 
As the main goal is the estimation of mean of Y2, the 

derivatives are taken only with respect to µ2 and 2
2σ , 

respectively, as follows: 

 

( ) ( )

*R
n r1 2

i2 i2r 2Y * Y2 1 R 2 1
2 2 2 2i 1 i r 1

1 12 1 12*R
1 2

*R

* *R R
1 2 1 2

* *R R

* *R R
1 2 1 2

* *R R

| Y ,Yy y|Y |Y

1 1
| Y ,Y

1 | Y ,Y | Y ,Y

1 | Y ,Y | Y ,Y

+

= = +

 µ
 ϕ   − µ − µ     σ     + +∑ ∑
 σ − ρ σ − ρµ
 Φ
 σ 

   µ µ
   ϕ + − ϕ
   σ σ   +
   µ µ
   Φ + − Φ
   σ σ
   

0=

 

( )

( )

*R
1 2 n r

i2r 2Y *2 1 R12 12
2 2i 1 i r 11 11 12

*R
1 2

*R

* *R R2
1 2 1 2

i2 Y * *2 1 R R
2 2

1 12
*R

1 2

*R

| Y ,Y
y |Y

1
| Y ,Y

1 | Y ,Y | Y ,Y
y |Y

1
1 | Y ,Y

+

= = +

 µ ϕ   σ− µ   ρ ρ   × + +∑ ∑
σ σ σ − ρ µ

 Φ
 σ 
 

   µ µ
   ϕ + − ϕ     σ σ− µ     

     × +
 σ − ρ µ
 Φ +
 σ
 

*R
1 2

*R

0

| Y ,Y

=
 µ
 − Φ
 σ  
 

 

 
The two equations do not have closed forms to yield 

estimates of µ2 and σ2 directly. Hence, these equations 
need to be estimated by numerically solving the 
nonlinear system of equations. One of the most 
convenient nonlinear optimization methods to achieve 
this computation and maximize the log-likelihood 
function is the Newton-Raphson algorithm. The 
properties of the estimates such as bias and efficiency 
can be evaluated by investigating the behavior of the 
proposed likelihood function. Simulation studies are 
used for this model. 

In practical situations, determining the two groups, 
dropout at random and non-ignorable, can be 
performed through an observed variable highly 
positively correlated to the response variable such that 
subjects who dropped out are classified into two 
different groups based on this variable. Since it is 
based on this correlation, it is expected that the 
distributional behaviors of the response variable and 
this covariate to be similar. In order to find these two 
groups, group 1 and 2, K-means cluster analysis is 
used. After classifying all dropouts, there are three 
distinct groups: Subjects with observed response 
variable, subjects who dropped out placed in group 1 
and subjects who dropped out placed in group 2. To 
find the non-ignorable part, each of the group 1 and 2 
are statistically compared to the first group through 
Kolmogorov-Smirnov test. The group with more 
similarity, which is determined by the larger p-value, 
is considered as dropout at random part and the other 
one as the non-ignorable group. 

In this study, suggested methods are performed in 
terms of dropout rate and correlation coefficient in three 
different sample sizes in a bivariate normal distribution. 

For simplicity, we consider a bivariate normal 
distribution as follows: 
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µ Σ µ = Σ =  ρ 

∼  

 
where, ρ is the correlation coefficient. 

Diggle and Kenward (1994) simulated 1000 data 
sets to evaluate their selection model. Crouchley and 
Ganjali (2002) introduced the GHM and investigated 
this model by simulating 100 sets of data with 1000 
cases. In the selection model with augmented Gibbs 
sampling under non-ignorable dropouts suggested by 
(Yang and Li, 2011), 100 sets of data were generated 
in the simulation study. Austin and Escobar (2005) 
conducted a Bayesian modeling of missing data and 
generated 100 data sets of 1000 subjects. In the 
current study, we determine the number of simulations 
to investigate the properties of our methods. 

The next step consists of the generation of dropouts. 
Different methods to create missing data in simulation 
studies have been proposed. Van Buuren (2007) 
generated different missing values under different 
mechanisms. They deleted observations in a completely 
random method to produce CRD and deleted larger 
values in both tails of the distribution of independent 
variables to produce RD. Allison (2000) introduced a 
simple method to create non-ignorable dropout wherein 
negative values of outcomes are deleted. Malfert et al. 
(2008) applied a logit model by using outcome and 
independent variables to create RD and CRD 
mechanisms. Yang and Li (2011) created non-ignorable 
dropouts in their selection model by applying the 
following logistic regression model: 
 

12 i1 i2 0 1 i1 2 i2logit(P(R 1) | y y ) y y, ,= φ = φ + φ + φ  
 

If φ2 = 0 and φ1 = 0, the dropout mechanism will be 
non-ignorable and the MAR mechanism will be 
generated, respectively. Diggle and Kenward (1994) 
used this model to produce RD and ID mechanisms.  

Austin and Escobar (2005) applied logistic regression 
to generate non-ignorable missing data. In their study, the 
probability of missingness was estimated by using a logit 
model. In the current study, the method should consist of 
ignorable and non-ignorable dropout mechanisms. 
According to the definition of RD and ID mechanisms, the 
dropout probability is strongly related to outcome values 
under ID and to other variables under RD. Hence, dropout 
probabilities in the second time point are computed for all 
subjects by a logit function. The different values of the 
parameters of this model are examined to obtain a data set 
with 30 and 50% missingness. 

In the next step, a stochastic regression imputation 
method is used to impute the ignorable part. The overall 
dropout mechanism is then considered as non-ignorable 
and two models, namely, the mixture and Heckman 
model, fitted to the obtained data to estimate the mean of 
Y2. These models are programmed by R and Splus. 

According to the fascinating statistical properties of 
the new procedure, it is applied to a methadone data. The 
harmful consequences of drug abuse have been well 
recognized in recent decades. A number of studies have 
focused on addressing this problem. One of the most 
common approaches in investigating this issue is the 
implementation of clinical treatment wherein a medicine 
such as methadone is given to drug addicts during a certain 
time. Medical investigations have shown that methadone 
treatment is an appropriate treatment to reduce drug use and 
prevent various diseases such as HIV transmission 
(Hubbard et al., 1989). A longitudinal study was convened 
in 1999 by the Institute of Medicine to investigate several 
changes  in  treatment practices. Roy and Lin (2002) 
applied multivariate longitudinal outcomes under non-
ignorable dropouts in a methadone study. 

One of the most important aspects of a methadone 
study is the use of adequate dose levels. Therefore, a 
longitudinal study is necessary to evaluate the response 
to different methadone dose levels, attain a stable dose 
and ensure treatment efficacy. An appropriate estimate of 
a stable methadone dose level as the final dose is 
obtained based on the dose levels at previous times. 
However, several patients did not continue with the 
treatment after some time because of different reasons. 
So achieving the final dose becomes problematic. Given 
that we were not able to determine these reasons, the best 
option is to try different methods. 

 In this study, a study of an Iranian clinic where drug 
addicts are treated is considered. Different addicts 
received methadone at different doses according to their 
history of drug use. After some time, the dose was 
changed to achieve a specified stable dose. This dosage 
was continued until full treatment was completed. In this 
study, the two last doses are recognized as the most 
important doses in the treatment to find the final dose 
level. In the methadone study, a random sample of 161 
methadone treatment units was taken from this clinic in 
2012. The patients completed the first two time points of 
the treatment. However, 59 subjects did not return to the 
study for the final time points (the time point before time 
of stable dose) to receive the final dose level of 
methadone. Given that we were not aware of the reasons 
for the withdrawal of these subjects from the study, all 
methods are tested to determine the best estimate of the 
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mean of the final dose of methadone. The methods are 
tested because determining the average dose level 
wherein a patient achieved stability is necessary for 
effective treatment. In addition the new model and two 
other models that consider all three dropout mechanisms 
in the data are tested to compare the models precisely. 
The results show that a lesser MSE value allows the 
model to capture the behavior of dropout mechanisms 
better. The performances of these models are obtained 
using R and Splus programs. 

3. RESULTS 

The results of the new model with a mixture dropout 
mechanism and GHM are shown in Table 1-3. Four 
measures are obtained from these studies: The mean 
estimate of the second variable Y2, absolute bias, 
Relative Bias (RB) and mean square error. 

The absolute biases in estimating the mean estimate 
of Y2 for large sample sizes (n = 100) by the new model 
and under two different values of dropout rate and 
correlation coefficients are shown in Table 1. The biases 
with 50% dropouts (i.e., 0.0942 and 0.0943) are more 
than biases with 25% dropouts (i.e., 0.0828 and 0.0831). 
Furthermore, RB is computed for all situations in both 
methods. Previous simulation studies show that RB values 
<5%, between 5 and 10 and >10% are indicative of minor 
bias, moderate bias and significant bias, respectively. RBs 
in all situations are less than 5% for the new model. 

The new model with a mixture dropout mechanism, 
in addition to stronger assumption, is insensitive to 
dropout rates and correlation coefficients in large 
samples. This fact is also true for mean square errors. 

When the sample size is large, the bias does not change 
significantly in different conditions. For small and moderate 
sample sizes, few biases are observed for high correlation 
cases compared with low correlation cases. The same 
results can be obtained for Mean Square Errors (MSEs). 

In this study, the two last dose levels are 
considered such that the first one is considered the 
variable with a high correlation with the second dose 
level. Therefore, cluster analysis is performed on this 
variable. The methadone dose at this time point in the 
non-ignorable group significantly differs with the 
methadone dose in dropout at random and observed 
groups (p-value = 7.179479e-12<0.05). By contrast, 
the second methadone dose in the dropout at random 
part is similar to the second methadone dose in the 
observed subjects (p-value = 0.17>0.05). 

To investigate the application of the proposed 
method, we analyze methadone data such that these two 
doses of methadone are supposed to follow a bivariate 
normal distribution. The first dose is completely given 
to participants but several patients do not return to 
receive the second one. The main goal is to estimate the 
average methadone dose for the second time where 
patients achieved a stable dose. In addition to the two 
existing methods, the GHM and Diggle and Kenward 
model are used for these data under three different 
dropout mechanisms. 

The MSE of the parameters are computed by using 
the bootstrap method. The results are shown in Table 4. 

Table 4 shows that the mean estimates obtained by 
the GHM and Diggle and Kenward model are close to 
each other under the ID mechanism. The GHM is 
sensitive to the dropout mechanism: The estimates of the 
mean are 100.38, 75.08 and 88.80 mg under ID, RD and 
CRD, respectively. This sensitivity is not observed in the 
results obtained from the Diggle and Kenward model. 
However, the mean of the second dose obtained by using 
the new model is 78.82 mg, which differs from the other 
estimates. A comparison of the MSE of the estimates 
indicates that the new model had an estimate with less 
MSE. The conclusion that can be drawn from these results 
is that the new model obtains a superior estimate when the 
reasons why participants leave a study are unknown.  

 
Table 1. Mean estimate, absolute bias, RB and MSE of Y2 obtained from the new model and GHM for large samples 
  Variables included: (n, m, ρ)a 

 Evaluation ----------------------------------------------------------------------------------------------------- 
 measures (100, 50%, 0.9) (100, 50%, 0.5) (100, 25%, 0.9) (100, 25%, 0.5) 
The new model Mean estimate 15.9965 15.9966 16.0206 16.0209 
 Bias 0.0942 0.0943 0.0828 0.0831 
 RB -0.0203 -0.0212 0.1291 0.1311 
 MSE 0.0141 0.0141 0.0108 0.0109 
GHM Mean estimate 15.0537 15.1297 15.6183 15.6468 
 Bias 0.9462 0.8702 0.3820 0.3533 
 RB -5.9139 -5.4391 -2.3855 -2.2071 
 MSE 0.9150 0.7766 0.1614 0.1398 
a) n is the sample size,  m is the missing rate, ρ is the correlation coefficient between Y1 and Y2 
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Table 2. Mean estimate, absolute bias, RB and MSE of Y2 obtained from the new model and GHM for medium samples 
  Variables included: (n, m, ρ)a 

 Evaluation ----------------------------------------------------------------------------------------------------- 

 measures (50, 50%, 0.9) (50, 50%, 0.5) (50, 25%, 0.9) (50, 25%, 0.5) 
The new model Mean estimate 16.03240 15.97030 16.0136 16.0429 
 Bias 0.14020 0.17020 0.0928 0.1293 
 RB 0.20250 -0.18510 0.0854 0.2681 
 MSE 0.03208 0.04636 0.0139 0.0248 
GHM Mean estimate 15.01300 15.15820 15.7523 15.6181 
 Bias 0.98690 0.84180 0.4263 0.3818 
 RB -6.16830 -5.26150 -3.5874 -2.3864 
 MSE 1.00210 0.74360 0.2307 0.1708 
a) n is the sample size,  m is the missing rate, ρ is the correlation coefficient between Y1 and Y2 
 
Table 3. Mean estimate, absolute bias, RB and MSE of Y2 obtained from the new model and GHM for small samples 

  Variables included: (n, m, ρ)a 
 Evaluation ---------------------------------------------------------------------------------------------------- 
 measures (25, 50%, 0.9) (25, 50%, 0.5) (25, 25%, 0.9) (25, 25%, 0.5) 
The new model Mean estimate 16.05140 15.9507 16.0231 16.058100 
 Bias 0.18250 0.2371 0.1108 0.142300 
 RB 0.89210 -0.5320 0.2261 0.423600 
 MSE 0.04710 0.0523 0.0173 0.036700 
GHM Mean estimate 15.01460 15.1712 15.7192 15.580200 
 Bias 0.99760 0.8523 0.4469 0.419100 
 RB -7.22513 -7.8215 -5.2106 -4.895203 
 MSE 1.03140 0.7516 0.2831 0.201800 
a) n is the sample size,  m is the missing rate, ρ is the correlation coefficient between Y1 and Y2 
 
Table 4. The mean estimate of the last dose of Methadone and its mean square error in the mixture-mechanism models and the 

Generalized Heckman model and Diggle and Kenward model under three different dropout mechanisms 
  ID  RD  CRD 
 The new model ----------------------------------------- ------------------------------------------ ------------------------------------------ 
Mechanism Generalized Generalized Diggle and  Generalized Diggle and Generalized Diggle and 
method Heckman model Heckman model Kenward model Heckman model Kenward model Heckman model Kenward model 

2µ̂  78.82 100.38 93.17 75.08 100.04 88.80 100.04 

MSE 7.270142e-30 1.352076e-28 1.92963e-27 6.009227e-29 5.998372e-28 1.446231e-27 9.406882e-28 

 
4. DISCUSSION 

We compared the proposed procedure with 
generalized Heckman model to handle dropouts in a 
longitudinal data analysis with two time points. These 
methods were assessed in twelve different settings based 
on sample size, dropout rate and correlation coefficient 
between variables at two time points. Computing bias, 
relative bias and Mean Square Error (MSE) are applied 
to assess the model performance. In all twelve situations, 
the results of simulation studies indicate superiority of 
the proposed method to the existing one. All absolute 
biases in the new approach are considerably smaller than 
those of generalized Heckman model. Furthermore, 
relative biases in all settings are indicative of minor bias 
in the proposed method compared to moderate and 

significant bias in the other method. Mean square errors 
also confirmed the preference of the new method. 

In most longitudinal studies with dropouts, only 
one dropout mechanism is assumed, either dropout at 
Random (RD) mechanism or dropout not at random 
(ID) mechanism. Imputation methods and selection 
models are two widely used methods to handle 
dropouts at random. Carpenter and Kenward (2013) 
discussed a variety of imputation methods. 
Furthermore, this approach was addressed by (Allison, 
2001; Schafer and Graham, 2002; Durrant, 2005; 
Donders et al., 2006; Baraldi and Enders, 2010). On 
the other hand, linear mixed model is one of the 
advanced methods to deal with dropouts in 
longitudinal studies (Molenberghs and Kenward, 
2007; Chakraborty and Gu, 2009; Atif et al., 2014). 
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On the contrary, in longitudinal studies such as 
clinical trials with dropouts, it is assumed subjects 
withdraw from the study because of side effects. 
Therefore, nonignorable dropout mechanism is 
introduced. Different selection models were proposed to 
handle nonignorable dropouts by (Diggle and Kenward, 
1994; Heckman, 1976; Little, 1995; Follmann and Wu, 
1995; Crouchley and Ganjali, 2002; Yang and Li, 2011). 
In addition this issue was addressed in detail in advanced 
statistical books (Molenberghs and Kenward, 2007; 
Daniels and Hogan, 2008; Fitzmaurice et al., 2008; 
Enders, 2010). 

However, in practice, the subjects may withdraw 
from the study for different kinds of reasons, related to 
the response variable and unrelated. In this situation, 
assuming only one dropout mechanism may lead to 
biased estimation and invalid inference. In all selection 
models, nonignorable dropouts are generated by negative 
values of a latent variable on which the dropout indicator 
is constructed. In the proposed method the dropout 
indicator was improved bydividing the negative values 
of the latent variable into two groups, dropouts at 
random and nonignorable. 

In addition to applicability of the proposed method, it 
is free from restrictive and untestable dropout 
mechanism. The dropout indicator in this method carries 
all information about the reasons of loss to follow-up in a 
longitudinal study. 

5. CONCLUSION 

Dropouts in longitudinal studies are common when 
repeated measurements are recorded for the same 
subjects during experiments. In this study, the subjects 
withdrew from the study for different reasons such as 
treatment side effects, movement to a new location and 
disinterest. In the non-ignorable dropout mechanism, 
we assume that the dropping out of subjects is caused 
by the measurement at the dropout time. However, 
some of the subjects may have undergone the study for 
this reason. Therefore, considering that non-ignorability 
is not appropriate a method that accounts for all kinds 
of reasons is needed. 

In this study, along with introducing a mixture dropout 
mechanism we improved the generalized Heckman model. 
The findings showed that when in doubt with the dropout 
mechanism, applying the improved generalized Heckman 
model is appropriate even with a simple imputation 
method for handling the dropout at random part. All 
situations showed that the new model has high preference 
rather than the existing model. 

There are a few limitations in this research. The new 
model applied a stochastic regression imputation to 
handle dropouts at random. In addition, it is constructed 
for a bivariate normal distribution. 

In future studies, we can use other methods for 
imputation or apply covariates in the imputation model. 
Furthermore, the model can be extended for a multivariate 
normal distribution or even other distributions. 
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