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ABSTRACT

The problem addressed is that of sequentially edtitg the square of the parameter of the Rayleigh
distribution, subject to a weighted squared losgsptost of sampling. We propose a sequential
procedure and provide a second-order asymptotiamrsipn for the incurred regret. It is seen that the
asymptotic regret is negative for a range of valfethe parameter.

Keywords: Anscombe’s Theorem, Excess Over the Stopping Bayndddlder's Inequality, Regret,
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1. INTRODUCTION L@ =3 % 2o~ S g

Let Xi,,...,X, denote independent observations to
be taken sequentially up to a predetermined stage n  For 8>0. It follows that the maximum likelihood

from the Rayleigh distribution with p.d.f: estimator oB is:
x2 ~ 1 & —
X o2 . 6 = |—> X2=,Y
f(0=1g® " x>0 Va2 X =
0 if not,

_ n
Where,Yn:}ZYi with Y, = X?/2,i=1,..., n and where
where,0 is an unknown positive number. It is desired to L

estimate®?, subject to the loss function considered by
(Chow and Yu, 1981; Martinsek, 1988) that is Equtlo

the random variable¥s,..., Y, are independent with
common distribution the Exponential distributionttwi
meanpy = 87 and standard deviatiam, = 6°.

. . . . . —N2_v
L (w6 ?)=a%% w, - 677+ 1, ) The risk mcurrc_ad by estimatingf with W, =#2=Y,
under the loss (1) is:
where, a is a known positive number, determinedhiey - _ 298
oo : i = 5-4 - -2
cost of estimation relative to the cost of a single R(n)= a0" (Y, -9 T +n="—"—+n
observation, £>1 is a given number and ,wis an
appropriate point estimate o (defined below). In For any fixed value o#>0, this risk is minimized with

praCtice, one mlght be interested in eStimating therespect to n by Choosing n as the greatest intmr
population varianceo® = %(4m)8” or the population than or equal ton =ag?=as!; in which case, the
second moment, = 26°. Since both of these parameters : !
are linear functions d#?, it suffices to estimaté®.

For observed values>0,..., x;>0, of Xy,, ..., X,, the . o
log-likelihood function is: R =R.(n,) =2n, = 2a0] (2

minimum risk is Equation 2:
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Since  depends on the unknown value@fthere is progressive censoring. Mousa al. (2005; Prakash,
no fixed-sample-size procedure that attains thémuim 2013) focused on Bayesian prediction and Bayesian
risk R in practice. Therefore, we propose to use the€stimation for Rayleigh models.

sequential procedurgT,Y.) which stops the sampling 2 ASYMPTOTIC EXPANSION FOR THE

process after observiny,,...,Yr and estimate®’ by REGRET OF THE SEQUENTIAL
W, =Y, , where Equation 3: PROCEDURE
n BI2 ; ; ; ; ; .
T=inf {nz m: n>a[1Z(Yi _Yn)zj } 3) Rewrite the stopping time T in (3) as Equation 7:
i=1
-1/2 n
t=infin=m:n| = ;whereV, =3 (Y -Y)* (7
with m, being a positive integer. Note that the " {n> i n( nj >a} WErEYe .Z;‘( WO
standard deviation based ¥y..., Y, is used in (2) as the
estimator of6? instead ofw,=Y,, since®® is also the And let U, = t(V/t)“%a denote the excess over the
standard deviation of;. stopping boundary. Chang and Hsiung (1979) showed
If m, in (3) is such thatVa <m, = o(a) asa— « for that the excess Jtonverges in distribution to a random
somed>0, then Equation 4: variable U as a .
Lemmal
71 = B . 1)_ B 1
ElY:] =14 _gai F+ O(;J =6~ 29772 +0(£J (4)

Let T be as in (3). The% - o’ =0% wp.l as a

As a 00, by Martinsek (1988), since the skewness . Moreover:
of Y; is equal to 2. This shows that is biased for

large values of a. Thus, consider the biased-dedec E[T] =a+v -1.375+0(1)

estimator Equation 5:
As a— o0, wherev = E[U] is the asymptotic mean of

g =y + awfl_w 5) the excess over the boundary.
Pr oof
For n>1, where 8>1. The regret of the sequential  The first assertion follows from Lemma 1 of Chovean
procedure(T,d;) is defined as Equation 6: Robbins (1985). For the second assertion:
ra(T’axr):E[La(Tva;)]_Rc\ (6) E[T] :a+v_0_5_%E|i((Yl_luy)2_U\{Z)Zi|+0(l)

Y
where, R, is as in (2). In this study we provide a second-

order asymptotic expansion, asas, for r,(T.6;) and
show that this regret is asymptotically negativewi =a+v-137%0 (1)

choos®< 6 < §/(48-4)/(3.256+1) .

Starr and Woodroofe (1969) considered the case i
which X, Xy, ... are i.i.d. Normal random variables and
showed that the regret of their procedur®©{4). Then,
Woodroofe (1977) showed that the regret is 0.51) d(
mz>4. Martinsek (1983) extended Woodroofe's result to  Let ¢, be defined by (5) and let T be defined by (3)
the nonparametric case. Tahir (1989) proposed sscla \yith ma being such thak/a<m, = o(a)asa— « for some
of bias-reduction estimators of the mean of the-one 30. Then, E[8] = & +o(1/a; as a. w
parameter exponential family and provided an ' ’ '
asymptotic second-order lower bound for the regret. p,oof
Kim and Han (2009) considered estimation of thdesca
parameter of the Rayleigh distribution under gehera  Fora>0 Equation 8:

—a+y- 0.5—533 k- 1}o (1)

As a—o, by Chang and Hsiung (1979), using the fact
"that the kurtosis o¥; is « = o E[(Y, -1, )] = 6.

Proposition 1
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) B T\ 4V )
aE[6 - €] =aHY, - ¢ +BEKJ } (8) (Tl-l/ﬁ_,/?—l}(Yr = 1)
a ot
1 T (12)
— _ ug-2f 1 _ B vV _
The proposition follows by taking the limit as.a ‘(/g l]T* (a UYJa(YT 2
in (8 and wusing (4) and the fact that
BT/ - 0,” as a-o if B>1, by the first where, T is a random variable such that

assertion of Lemma 1 and (2.2) of Martinsek (1983). ‘1:_05‘ s‘T / a_gg‘ . Next, rewrite T in (3) as T = inf{m

Letr,(T¢;) be asin (6). Then Equation 9: m.: n(Vy/n)®? >a}, where, \fis as in (7) and let:
r(T.6) = E[@0y" (Y, - i,)*+T - 2a07] v\
u; =T[?T) -a

o o= 1 o
+207""%a’ WE[TH//J (YT _ﬂv)}

s zﬂ_zE_a“’ﬂ_ ©) Denote the excess over the stopping boundary.
Fo | T2 | Expanding h(y) = ¥ aty=02, substituting y = /T
B ave and multiplying by T yields:

=r,(TY;)+ Zﬁajﬂ-zE{Tl_W a(YT —,uv)}

22 ] T(VT j‘ﬂ/z :l_ B
+/320'5’E_2E 1_2_72/1; T UYB 20’5+2

- - +2) (V, - TaR)?

. ‘T0v2)+'§(/§uz+z) \ - v)

Lemma 2

Let T be defined by (3) with gnbeing such that

‘ for a>0, where Ay is a random variable betwe®WT
dNa<ma = o(a) asa- o for somed>0 and with3>1.

and o2 . Furthermore, write:

Then:
2 20-5) S Vo= X0 T )
. Wa(YT =) |= =g gz + (D) = T
oy gy
To obtain:
AS o — .
LT B
PI‘OOf Ua:?f—a—WW—Tgf)
First, observe that Equation 10: . B Ty B(B+2) (V. ~To2)
arve 20—5+2 T Y 8/1T/z/2+2 T
E|:Tl—1/ﬂa(Yr _ﬂv)}
.
A g (10) For a>0, wherew, =>"(Y, - ). It follows easily that
=E|||= -——lal¥; - +——aE[Y; - =1
H(TJ 0’5‘1] (% ﬂv)} ol % =44 Equation 13:
Fora>0. Moreover Equation 11: I_Jg =‘L€(U: -&)+ B (W, -Ta?) (13)
a a 2a0,
v -uj=-F_
oY — 4] = ol o) (11) Fora>0, where:
—_ /o1 _ B _ +2 _TO.2 2
As a— o, by (4). Next, expangy(y) = y**" aty= s/, g = ZUI;ZT(YT _ﬂY)2+/;(A€’2*2) A ] )
substitutey = T/a and multiply by a(¥; - ) to obtain Y T
Equation 12: Substituting (13) in (12) yields Equation 14:
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a1 g - As a- o, by Anscombe’s theorem and the fact that
TV gpt (= 44) T. ®c! wp.l as a« where Z is a random variable
having the Standard Normal distribution. Thus Eiguat7:

[1 1]0”“” U, - )% - 1)
s (14)  Ell(a)]=40y* +0(1)
(1 ] B 12w, ~To2)%, - 1) ' a7

- 7-'-*1 -2 _Ta_Z —/j

B )20} oo As a— o, by (16) and (2.3) and (2.4) of Martinsek
(1 5 1-3 (1983). Taking expectation in (14) and using (183 a
‘( 1] @)+ =5 12(2) (17) yields Equation 18:

= i : 1) < 2(1:
Say. LetS, = Y;+...+Y,, i=1. Then Equation 15: EK?“’B _0’3'1j a(Y —Hy)} (QBE) + o)
1p-2 Y (18)

El 1,(a) ] = E{T'T(ua -&)(S —uYT)}

a-o. The lemma follows by taking the limit, as
] a- oo, in (10) and using (11) and (18).

-I-up 2 (S — 44, T)

/3
= U. -
,—aaY [( G) ot
Let the regret of the biased-corrected procequyg) be
V JE[(U —&) \/ {TW ( ][S*Jﬁ ” 15 asin (6). Then:

S%JZJY”E[U:] +200E[&] W(T.6)=3255 + 5~

As 066.
E| T2 4( J S —u T 50 S
T Jac? Pr oof

First Equation 19:

Theorem 1. Let T be defined by (3) with, ieing
such thatd/a <m, = 0(@) asa- « for somed>0 andp>1.

BE-D o)
96

as a o, by Hoélder's inequality, the fact

T\ — 2 B2/ _ 2
thatT, anf(‘T* -of|<[T1a-al| -~ Ow.p.1 since (T Yr) ZEEAOY (Y 1) + T

—2a0® = 5.2B%+B+ o(l)
Tla-od?, S-T  converges in distribution to a ! (19)

asy . As a-w if 81, by Martinsek (1988). Next, take the
Standard Normal random variable by Anscombe’s 81@or  |imit, as a- o, in (9) and use (19), Lemma 2 and the fact
the facts thatE[U?] - E[U%] < o and E[¢Z]= O(1) a- that:

and (2.3), (2.8) and (2.9) of Martinsek (1983). To o226
i

evaluateE[l,(a)], observe that Equation 16: s zw} 021 +0(1)
Y

1,(a) = 2aaY TUB- o W, —Tay)(S - i4T) . ) .
ac? as a- o if 6>1, by the first assertion of Lemma 1 and

2 (2.2) of Martinsek (1983), to complete the proof.
W, - oZT S.r ,u
=2 L’ Tlll? 2 Y

[ac: [ac: 3. NEGATIVE ASYMPTOTIC REGRET

zT Theorem 1 shows that the biased-corrected procedure
—pgp Bqup-o| We ZOVT (16) . :
(T.;) has a lower asymptotic regret than the procedure

2 (T.Y.). Also, the asymptotic regret of the procedure
—20‘?TT“‘2 Z[Sr T J (T..4) is negative if Equation 20:

Jag?
07 M cfsyripyien _, 20_1 zp(zz)z 0<h<s 4ﬁ_4 0
20t pgt W7 = 4G B7 2 3253+1 7

“Jaot

(20)
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Table 1. Asymptotic regret for various choices@#$l and 06<6; (see (20))

b o q Asymptotic regret
1.5 0.836 0.2 -46866.1880000
1.5 0.836 0.3 -4106.4138000
1.5 0.836 0.4 -723.6093800
1.5 0.836 0.5 -183.1875000
1.5 0.836 0.7 -16.6870790
2.0 0.901 0.2 -124985.0000000
2.0 0.901 0.3 -10958.9370000
2.0 0.901 0.4 -1938.1250000
2.0 0.901 0.5 -497.0000000
2.0 0.901 0.8 -15.5175780
2.0 0.901 0.9 -0.0534114
5.0 0.988 0.3 -109653.12.00000
5.0 0.988 0.4 -19445.0000000
5.0 0.988 0.6 -1628.4276000
5.0 0.988 0.7 -593.7387800
5.0 0.988 0.9 -64.2841140
10 1.012 0.2 -5624665.0000000
10 1.012 0.4 -87555.6250000
10 1.012 0.7 -2724.9495000
10 1.012 0.8 -1038.2910000
10 1.012 0.9 -342.4035100
10 1.012 1.0 -25.0000000
15 1.020 0.2 -13124254.0000000
15 1.020 0.3 -1151517.1000000
15 1.020 0.5 -53013.7500000
15 1.020 0.7 -6393.6322000
15 1.020 0.9 -834.3582000
15 1.020 1.0 -93.7500000

This means that for the values®fn the interval (O,
8s) with B>1, the sequential procedur@,y;) performs 5. REFERENCES
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