Journal of Mathematics and Statistics 10 (2): 247-254, 2014

ISSN: 1549-3644

© 2014 Science Publications

doi:10.3844/jmssp.2014.247.254 Published Onlin€2)@014 (http://www.thescipub.com/jmss.toc)

ESTIMATING LOSS SEVERITY DISTRIBUTION:
CONVOLUTION APPROACH

Ro J. Pak
Department of Applied Statistics, Dankook UniversiKorea

Received 2014-04-21; Revised 2014-04-24; Accepted-P5102
ABSTRACT

Financial loss can be classified into two typeshsas expected loss and unexpected loss. A current
definition seeks to separate two losses from d kog¢a. In this article, however, we redefine atdbss as

the sum of expected and unexpended losses; therist@bution of loss can be considered as the
convolution of the distributions of both expectetl ainexpended losses. We propose to use a coromoluti
of normal and exponential distribution for modediia loss distribution. Subsequently, we compare its
performance with other commonly used loss distiiimg. The examples of property insurance claim data
are analyzed to show the applicability of this nak@xponential convolution model. Overall, we clatmt

the proposed model provides further useful inforomatvith regard to losses compared to existing rwode
We are able to provide new statistical quantitibgctv are very critical and useful.

Keywords: Convolution, Heavy-Tailed Distribution, Loss, ValaeRisk (VaR)

1. INTRODUCTION and an unexpected loss severity distribution. Unlike
existing models, the new model provides the expecte
Operatinal risk is one of the most important risks values and the VaR’s for both expected and uneggect
for commercial banks; hence, it is essential tove#e  |osses. Even when a future loss is anticipated nthe
the economic capital for operational risk. Openadlo  model provides the conditional expected values rgiae
risk is defined as ‘the risk arising from inadecgiat  |oss as well as the conditional VaR have givensa for
failed internal processes, people and systemsam fr  poth expected and unexpected losses. In section Ba
external event' (BCBS, 2001; 2004a). The Basel yg priefly review the definition of loss and intuk the
report (BCBS' 2001;_ 2004@ suggests threg memOd§1ormal-exponential convolution model (norm-exp).
for calculating operational risk capital charges:The Further, in section 4, two examples are investitjdoe

basic _indicator _z_;\_pproach, (i) the standardized verifying the usefulness of the normal-exponential
approach and (iii) the Advanced Measurement . : S .
convolution model in estimating loss severity.

Approach (AMA). In particular, the Loss Distributio

Approach (LDA) is the major part of the AMA. Here,
estimating a loss severity distribution is onetloé 2. REDEFINITION OF L OSSES

key processes. The parametric models in particular, The Basel report (BCBS, 2001a; 2004b) classifies

such as the qunprmgl, the ~ Weibull . and financial losses due to operational factors int@ th
generalized Pareto distributions, are used to estma following two types:

particular severity distribution. Sometimes, mixur
models combining the parametric models are usede Expected losses: These are considered as the

(Carvalho and Marinho, 2007). ‘normal’ losses that occur frequently, as part of

In this article, a new type of loss severity distition everyday business, with low severity. Examples
is suggested and the suggested distribution isdbase include losses due to accidentally miscalculated
the convolution of an expected loss severity distion foreign exchange transactions
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» Unexpected losses: These are the unusual losses Figure 1 shows the distinction between expected and
that occur rarely and have a high severity. unexpected losses from the loss distribution paiht
Examples include losses resulting from a major vView. The demarcation is purely arbitrary, howewag
fraud activity expected value of loss (E[L]) is often used as atpo

separating the expected loss and unexpected loss. |

The current Basel Il regulatory text does not pievi ~ Order to quantify both expected and unexpecteceyss

a description/definition of the Expected Loss (EL). IS essential to find a loss dlstrlb_utlon whose tail
Consequently, discussion has often fluctuated hmtwe €Presents the unexpected losses (Meai., 2005).

three different interpretations of EL (FSA, 2005): by gr!;k;asgt?oﬁéqlgtlgg \?vzﬂvr\]/gll?lg I(i)liek?tzsr\'gesd el(:iigtltfﬁd

* A business/management style definition in which (total) loss as a sum of the expected loss and
unexpected loss, loss = expected loss + unexpected

EL is related to a future amount of expense/loss T ) ;
. . - P . loss, such that the distribution of loss is a cdation
that is predicted on the basis of past experience,

o for credit card fraud: past experience of of the distributions of the expected loss and
| 9 I et 'f Ft | P hich unexpected loss. The existing definition says thas
10SSES allows a projection of Tuture 1osses, which;q really a numerical summation of expected and
is budgeted/priced for. The events giving rise to

unexpected losses, while we propose that lossisra
these future losses have not yet occurred of random variables in probabilistic sense.

* A mathematical style definition in which EL is The general consensus is that heavy-tailed
equated to the mean (50th percentile) of a lossgjstributions fit historically observed losses lett
distribution than light-tailed distributions; the typical probltic

* A financial accounting style definition in which  models that have proposed to describe the sevefity
EL, which describes losses expected from |osses are the Lognormal, Gamma and Weibull
identified events, for which a reserve has beendistribution. We propose to let the expected loss
established. A common example of this is where adistribution and the unexpected loss distributiom b
large legal cost is anticipated, but the exactthe truncated normal distribution and the exporanti
amount of the legal settlement is not yet known  distribution, respectivelyHig. 2).

Probability of losses
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Fig. 1. Loss distribution
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Fig. 2. Expected and unexpected losses

3. NORMAL-EXPONENTIAL where, a = s-to” and b =o, respectively.
CONVOLUTION The (conditional) expected value of the expectss lo

given the loss becomes:

If we let X and Y represent the expected loss and E(X|S= 5)=
unexpected loss, respectively, then S represestdois
which is X+Y.2 Let X be normally distributed with e W+ 00 _b[q)(a)_q{mﬂ/{q)(a}q{%?_1}
and variance*, but truncated at 0 and Y be exponentially b b b b

distributed with mean &/ Then, S = X+Y has a density: .
And the (conditional) expected value of the

1 unexpected loss given the loss then becomes:
fo(s;a,1,0)=a exp(foﬁc2 —a (s ﬂ
2 E(Y|S=s)= s E(X|S s

H p-s
{q’[om")‘q’[o*“"ﬂ' VaR(X|S), VaR(Y|S), which can be obtained by
taking the percentile of the corresponding condiio
loss distributions at the desired confidence.

All of the mathematical expressions in this section
can be obtained by closely following Bolstad (2Q04)

where®(} is a cumulative normal distribution. ThgDf
is called as the norm-exp density (Bolstad, 2004).

Parameter (?ontrols the horizontal position, patans while Bolstad (2004) provided the expressions only
controls the width near peak and parameteontrols the for Y. We add some mathematical derivations about

length of the tail Eig. 3). The conditional density of X ¢ norm-exp at the end of this article.
given Sand Y given Sare:

4. DATA ANALYSIS

frs(x18)=

1¢(x+ a- sj 714)( v eﬁ Example 1

b b fus(y1s)= b’ b The Danish data on large fire insurance losseschwhi
q;(é) + q,(ﬂ‘j -1 q,(,a + q)(ij_ 1 were collected by a Danish reinsurance company fram

b b b b 3, 1980 to Dec. 31, 1990, are considered as anpeam
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Fig. 3. Various norm-exp densities

This dataset contains 2,167 individual losses itioni E[Y|S] and VaR[Y|S] are denominating E[X|S] and
Danish Krones. The dataset is accompanied withRhe VaR[X|S] afters is beyond 1.7, that is, if the (total)
package fitdistr and it analyzed with R packagebaih loss is larger than 1.7, the loss is taken accalinte
fitdistr and limma. primarily by the unexpected loss.

To confirm the model adequacy, some tests have
been conducted and statistics are listedable 1. The Example 2
critical value of K-S test at the 5% significanvéé can We deal with the Korean property insurance claim
be calculated by 36y1/n (Barrett and Donald, 2003), dataset as an example, which consists of the monthl
which is 0.0292 for this dataset. All of the modele total claims (losses) from March 2002 to Janual§2id
considered does not provide perfect goodness of fit Korea. The claim is monthly collected by the Insuwe
Among the four models, the Lognormal fits the dzeat; Statistics Information Service in Korea. The reeaord
norm-exp, Gamma and Weibull followed in order in data have been adjusted in 100 billion Korean ws$ (
terms of the log likelihood and Akaike Information $ 1= 1000 Korean won). The Weibull density is best
Criterion (AIC). fitted for the given dataset from all criteridable 3).

The VaR of loss, VaR(S), based on the norm-exp isThe norm-exp density is also suitable for the gidein
about 7.575, which is slightly larger than 6.536thg based on the K-S test.
lognormal distribution but smaller than the VaR¥ b Figure 5a and b Claims seem to follow norm-exp
Gamma and WeibullTlable 2). In Fig. 4, we plot a  (0.2294, 0.4888, 0.3081). Weibull and gamma fit the
histogram of losses and estimated densities for thedata well as a whole, but lognormal and norm-ekthé
total, expected and unexpected losses. The deafity peak better than Weibull and gamma. The densithef
expected losses is primarily located near 1.0 hat t expected claim is estimated as N(0.4888, 0.308d) an
density of unexpected losses has a long tail. Tume s that of the unexpected claim is estimated as ERR@1).
of VaR(X) and VaR(Y) (= 0.945+6.770) is also We haveE[X] = 0.4888, E[Y] = 4.3592 and E[S] =
slightly larger than VaR(S) (= 7.575) that is, V&RK 0.4888+4.3592 = 4.8480.
VaR(X) + VaR(Y), as expected by the nature of VaR.  Figure 50 We have VaR[X] = 0.9955, VaR[Y¥
VaR(S) is accounted mainly by VaR(Y(VaR by 13.0550, VaR[S] = 13.5890 (VaR[S] < VaR[X] +
unexpected loss). We can observe that E[X|S] andVaR[Y]). The VaR based on norm-exp is the second
VaR[X|S] are being bounded whenis over 1.0 and largest among the four VaR'S&ble 1).
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Table 1. Goodness-of-fit statistics

Distribution Parameters -2Log likelihood AlC K-S
Gamma shape = 1.2579 Rate = 0.4107 5243.027 1®188.0 0.201
Weibull shape = 0.9475 scale = 2.9524 5270.471 2032 0.255
Lognormal meanlog = 0.6718 sdlog = 0.7323 4433.891 8869.782 0.127
Norm-exp rate = 2.2599 mean = 0.8024 sd = 0.0873 41894 9285.788 0.227
A-D: Anderson-Darling statistic, CVM: Cramér-Von $&is statistic, K-S: Kolmogorov-Smirnov statistic
Table 2. VaR (95%-quantile)
Distribution VaR
Gamma 8.469
Weibull 9.398
Lognormal 6.536
Norm-exp 7.575
normal (expected loss) 0.945
Exp (unexpected loss) 6.770
Table 3. Goodness-of-fit test statistics avdR (95%)
Distribution Parameters -2Loglikelihood A-D CVM K-S VaR
Lognormal mean = 1.2863 210.8466 2.3113 0.3499 00.13 15.97
s.d. =0.9028 (0.00) (0.00) (0.12)
Gamma shape = 1.8610 210.0977 1.0330 0.1485 0.0997 11.76
Rate = 0.3839 (0.00) (0.00) (0.39)
Weibull shape = 1.5720 198.7650 0.7184 0.0948 @085 10.79
Scale = 5.3696 (0.0058) (0.13) (0.60)
Norm-exp rate = 0.2294 411.6592 2.4926 0.4264 31l 13.58
mean = 0.4888 s.d. = 0.3081 (0.00) (0.00) (0.25)
A-D: Anderson-Darling statistic, CVM: Cramér-Von $4is statistic, K-S: Kolmogorov-Smirnov statistic.
p-values are in parentheses.
L1 iﬁgﬁggiq()expected) > - iaRmS]
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Fig. 4. Loss, expected and unexpected losses; E[X|S], MSR[E[Y|S] and VaR[Y|S]
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Fig. 5. Related plots for the Korean property insuranagidata (a) fitted densities (b) normal and egmtial: VaR’s (c)
Expected and unexpected cla (d) E[X|S], E[Y|S], 48] and VaR][Y|S]

Figure 5c Claims decrease in the summer and a loss is as usual, as expected. When a claim is
increase in the winter. The same pattern is refleatery  petween 1.0225 and 1.5750, the unexpected loss tend
year. E[X|S] and VaR([X|S] are bounded by 0.5432 andtg pe over the expected loss; however, it is stiller
1.0247, respectively. the expected boundary. Yet, when a claim is larger

Figure 5d As claim increases, E[Y|S] and 5, 15750, losses are taken accounted primayily b
VaR[Y|S] are increasing while E[X|S] and VaR[X|S] e unexpected losses.

are bounded by 0.5432 and 1.0247, respectivelq. If
claim is less than 1.0180, E[Y|S] < E[X]|S]; if aith

is less than 1.0225, VaR[Y|S] < VaR[X]|S]. Beyond a
claim of 1.0180 or 1.0225, the inequalities are .
reversed. Furthermore, when a claim is larger thanSOmehOW boundedHg. 4c). Approximately 1.0 (100

1.5750, both E[X|S] and VaR[X|S] become less thanbillion Korean doIIars),. where E[YlS} E[X|S] and
E[Y|S] and VaR[Y|S]. When a claim is lower than YaRLYIS] > VaR[X|S], is the turning point where we

1.0180 or 1.0225, the expected loss dominates theshould begin to seriously worry about unexpected
unexpected loss. More specifically, it can be shmt  l0ssesKig. 4b, d).

The norm-exp fits the data well, especially in the
peak areaKig. 4a). Claims are mainly affected by
unexpected claims while expected claims are
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5. DISCUSSION Barrett, G.F. andS.G. Donald, 2003. Consistent tests
for stochastic dominance. Economet. Society,
Most of quantities in the above examples are not 71: 71-104DOI: 10.1111/1468-0262.00390
available under the current definition of expectad Carvalho, A.X. and A.S. Marinho, 2007. Mixture
unexpected losses. We are able to provide new models in operational risk. Development of
statistical quantities which, we believe, are very ObjectRisk.

critical and useful. We can provide more concratd a Cooray, K. and M. Ananda, 2005. Modeling actuarial

losses on condition of (total) loss. Many repreatwe Scandinavian Actuarial J., 2005: 321-3320I:
researches (Resnick, 1997; McNedt aI., 2010; 10.1080/03461230510009763

Cooray and Ananada, 2005) supplied lot of importantp\jeneil. AJ. R. Frey and P. Embrechts, 2010.
results on estimating losses, but did not give much ' | ’

information about what happened on expected and
unexpected losses when a loss changed or whersa los
was conditioned on. By the proposed method, we can
visualize how expected and unexpected losses behavES
as a loss moves.

Quantitative  Risk  Management:  Concepts,
Techniques and Tools. 1st Edn., Princeton
University Press, Princeton, ISBN-10:
140083757X, pp608.

A, 2005. Treatment of expected losses in capital
calculations. Draft by FSA AMA Quantitative

6. CONCL USION Expert Group. Financial Services Authority.
' Neil, N., N. Fenton and M. Tailor, 2005. Using
In this study, we redefine loss as a sum of exmkcte Bayesian networks to model expected and
and unexpected losses. The loss follows a distidbut unexpected operational losses. Risk Anal., 25:

which is referred to as the normal-exponential 963-972. PMID: 16268944
distribution (norm-exp). Once data is fitted welf b Resnick, S., 1997Discussion of the Danish data on
the norm-exp, we can obtain useful information with large fire insurance lossedstin Bulletin, 27:

regard to the expected and unexpected loss urti&e t 139-151.DOI: 10.2143/AST.27.1.563211
other existing distributions. In this article, wenlp

consider the exponential distribution for unexpdcte Appendix

loss, but there are certainly the other distringiovith The following proof closely follows Bolstad (2004)
a long tail like Lognormal and Gamma, etc. for oy cent that densities of X and Y have been switched

modeling unexpected loss. Convoluting those . . .
distributions would be a good topic for future ressh. and so the ordgr .Of |ntegrgt|ons also is chang_edXL
be normally distributed with mean p and variarée
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The marginal distribution of S is:

f(a.n0.9)=[[aexpta (- x))éd)(%} dx

= J'_(:;:)Ica exp(a (s—o w-p ) ( w) dw,
wherew (xp )
=aexpla (s-p))

(s-wio 1 -w?
expow)—— exp — | dw,
I—p/c p( 21T F[ 2 j

2.2
=aexpFa (s—p)) ex;EG 20 j X
s-wio 1 (w-o00)?
——exp —— |dw
J.—u/c \/E-[ 2 }

202}
X

2
J-(s—u)/o—ao l - _iz dW
-p/o-ao \/E[ 2 !

wherez wao
2.2

:otexp(mz0 —a(s—p)jx
{¢(u+00j—¢(u_s+aoﬂ
o o

The conditional density of X on Sand the
corresponding expectation are:

=aexpla(s—u)) ex;Ea
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fys(X,S)
fs(s)

aexpa (s- x))écp(%j

aexp[;azcz—a(s—p)){¢(ﬁ+ao)—<b(“;3+acﬂ
L exp(—i (x—-p-ag? )Zj
V2mo’ 20°
¢(E+aoj—¢(u—_s+aoj

o o

! exp(—iz(x—p—aoz)zJ
\2mo? 20
¢(ﬂ—aoj+¢(ﬂ+ao)—l

o o

1 (x+a-s
_ B"’( b j
L5

b b

And:

fys(X18)=

, Wherea= s-pu-o00? ,Fo

1

E(X|S= s)=

X —
wherez=
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