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ABSTRACT 

Financial loss can be classified into two types such as expected loss and unexpected loss. A current 
definition seeks to separate two losses from a total loss. In this article, however, we redefine a total loss as 
the sum of expected and unexpended losses; then the distribution of loss can be considered as the 
convolution of the distributions of both expected and unexpended losses. We propose to use a convolution 
of normal and exponential distribution for modelling a loss distribution. Subsequently, we compare its 
performance with other commonly used loss distributions. The examples of property insurance claim data 
are analyzed to show the applicability of this normal-exponential convolution model. Overall, we claim that 
the proposed model provides further useful information with regard to losses compared to existing models. 
We are able to provide new statistical quantities which are very critical and useful. 
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1. INTRODUCTION 

Operatinal risk is one of the most important risks 
for commercial banks; hence, it is essential to estimate 
the economic capital for operational risk. Operational 
risk is defined as ‘the risk arising from inadequate or 
failed internal processes, people and systems or from 
external event’ (BCBS, 2001; 2004a). The Basel 
report (BCBS, 2001; 2004b) suggests three methods 
for calculating operational risk capital charges: (i) The 
basic indicator approach, (ii) the standardized 
approach and (iii) the Advanced Measurement 
Approach (AMA). In particular, the Loss Distribution 
Approach (LDA) is the major part of the AMA. Here, 
estimating a  loss severity distribution is one of the 
key processes. The parametric models in particular, 
such  as  the  lognormal,  the  Weibull  and 
generalized Pareto distributions, are used to estimate a 
particular severity distribution. Sometimes, mixture 
models combining the parametric models are used 
(Carvalho and Marinho, 2007). 

In this article, a new type of loss severity distribution 
is suggested and the suggested distribution is based on 
the convolution of an expected loss severity distribution 

and an unexpected loss severity distribution. Unlike the 
existing models, the new model provides the expected 
values and the VaR’s for both expected and unexpected 
losses. Even when a future loss is anticipated, the new 
model provides the conditional expected values given a 
loss as well as the conditional VaR have given a loss for 
both expected and unexpected losses. In section 2 and 3, 
we briefly review the definition of loss and introduce the 
normal-exponential convolution model (norm-exp). 
Further, in section 4, two examples are investigated for 
verifying the usefulness of the normal-exponential 
convolution model in estimating loss severity. 

2. REDEFINITION OF LOSSES 

The Basel report (BCBS, 2001a; 2004b) classifies 
financial losses due to operational factors into the 
following two types: 

• Expected losses: These are considered as the 
‘normal’ losses that occur frequently, as part of 
everyday business, with low severity. Examples 
include losses due to accidentally miscalculated 
foreign exchange transactions 
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• Unexpected losses: These are the unusual losses 
that occur rarely and have a high severity. 
Examples include losses resulting from a major 
fraud activity 

 
The current Basel II regulatory text does not provide 

a description/definition of the Expected Loss (EL). 
Consequently, discussion has often fluctuated between 
three different interpretations of EL (FSA, 2005): 
 
• A business/management style definition in which 

EL is related to a future amount of expense/loss 
that is predicted on the basis of past experience, 
e.g., for credit card fraud; past experience of 
losses allows a projection of future losses, which 
is budgeted/priced for. The events giving rise to 
these future losses have not yet occurred 

• A mathematical style definition in which EL is 
equated to the mean (50th percentile) of a loss 
distribution 

• A financial accounting style definition in which 
EL, which describes losses expected from 
identified events, for which a reserve has been 
established. A common example of this is where a 
large legal cost is anticipated, but the exact 
amount of the legal settlement is not yet known 

Figure 1 shows the distinction between expected and 
unexpected losses from the loss distribution point of 
view. The demarcation is purely arbitrary; however, the 
expected value of loss (E[L]) is often used as a point 
separating the expected loss and unexpected loss. In 
order to quantify both expected and unexpected losses, it 
is essential to find a loss distribution whose tail 
represents the unexpected losses (Neil et al., 2005). 

Unlike the existing definition of losses identified 
by a separation (Fig. 1), we would like to redefine the 
(total) loss as a sum of the expected loss and 
unexpected loss, loss = expected loss + unexpected 
loss, such that the distribution of loss is a convolution 
of the distributions of the expected loss and 
unexpected loss. The existing definition says that loss 
is really a numerical summation of expected and 
unexpected losses, while we propose that loss is a sum 
of random variables in probabilistic sense. 

The general consensus is that heavy-tailed 
distributions fit historically observed losses better 
than light-tailed distributions; the typical probabilistic 
models that have proposed to describe the severity of 
losses are the Lognormal, Gamma and Weibull 
distribution. We propose to let the expected loss 
distribution and the unexpected loss distribution be 
the truncated normal distribution and the exponential 
distribution, respectively (Fig. 2). 

 

 
 

Fig. 1. Loss distribution 
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Fig. 2. Expected and unexpected losses 
 

3. NORMAL-EXPONENTIAL 
CONVOLUTION 

If we let X and Y represent the expected loss and 
unexpected loss, respectively, then S represents the loss 
which is X+Y. Let X be normally distributed with mean µ 
and variance σ2, but truncated at 0 and Y be exponentially 
distributed with mean 1/α. Then, S = X+Y has a density: 
 

2 2
S

1
f (s; , , ) exp (s )

2

s
,

 α µ σ = α α σ − α − µ 
 

 µ µ −   Φ + ασ − Φ + ασ    σ σ    

 

 
where Φ(⋅) is a cumulative normal distribution. The fs(⋅) 
is called as the norm-exp density (Bolstad, 2004). 
Parameter µ controls the horizontal position, parameter σ 
controls the width near peak and parameter α controls the 
length of the tail (Fig. 3). The conditional density of X 
given S and Y given S are: 
 

X|S

Y|S

f (x | s)

1 x a s 1 y a
b b b b

,f (y | s)
a s a a s a

1 1
b b b b

=

+ − −   ϕ ϕ   
   =

− −       Φ + Φ − Φ + Φ −       
       

 

where, a = s-µ-ασ2 and b = σ, respectively. 
The (conditional) expected value of the expected loss 

given the loss becomes: 
 

2

E(X | S s)

a s a a s a
b 1

b b b b

= =

   − −       µ + ασ − ϕ − ϕ Φ + Φ −          
          

 

 
And the (conditional) expected value of the 

unexpected loss given the loss then becomes: 
 

E(Y | S s) s E(X | S s).= = − =  
 

VaR(X|S), VaR(Y|S), which can be obtained by 
taking the percentile of the corresponding conditional 
loss distributions at the desired confidence. 

All of the mathematical expressions in this section 
can be obtained by closely following Bolstad (2004), 
while Bolstad (2004) provided the expressions only 
for Y. We add some mathematical derivations about 
the norm-exp at the end of this article. 

4. DATA ANALYSIS 

Example 1  

The Danish data on large fire insurance losses, which 
were collected by a Danish reinsurance company from Jan. 
3, 1980 to Dec. 31, 1990, are considered as an example.  
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Fig. 3. Various norm-exp densities 
 
This dataset contains 2,167 individual losses in million 
Danish Krones. The dataset is accompanied with the R 
package fitdistr and it analyzed with R packages of both 
fitdistr and limma.  

To confirm the model adequacy, some tests have 
been conducted and statistics are listed in Table 1. The 
critical value of K-S test at the 5% significant level can 
be calculated by n/136.1  (Barrett and Donald, 2003), 
which is 0.0292 for this dataset. All of the models we 
considered does not provide perfect goodness of fit. 
Among the four models, the Lognormal fits the data best; 
norm-exp, Gamma and Weibull followed in order in 
terms of the log likelihood and Akaike Information 
Criterion (AIC). 

The VaR of loss, VaR(S), based on the norm-exp is 
about 7.575, which is slightly larger than 6.536 by the 
lognormal distribution but smaller than the VaR’s by 
Gamma and Weibull (Table 2). In Fig. 4, we plot a 
histogram of losses and estimated densities for the 
total, expected and unexpected losses. The density of 
expected losses is primarily located near 1.0 but the 
density of unexpected losses has a long tail. The sum 
of VaR(X) and VaR(Y) (= 0.945+6.770) is also 
slightly larger than VaR(S) (= 7.575) that is, VaR(S) < 
VaR(X) + VaR(Y), as expected by the nature of VaR. 
VaR(S) is accounted mainly by VaR(Y) (VaR by 
unexpected loss). We can observe that E[X|S] and 
VaR[X|S] are being bounded when s is over 1.0 and 

E[Y|S] and VaR[Y|S] are denominating E[X|S] and 
VaR[X|S] after s is beyond 1.7, that is, if the (total) 
loss is larger than 1.7, the loss is taken accounted 
primarily by the unexpected loss.  

Example 2 

 We deal with the Korean property insurance claim 
dataset as an example, which consists of the monthly 
total claims (losses) from March 2002 to January 2009 in 
Korea. The claim is monthly collected by the Insurance 
Statistics Information Service in Korea. The recorded 
data have been adjusted in 100 billion Korean won (U.S 
$ 1 ≒ 1000 Korean won). The Weibull density is best 
fitted for the given dataset from all criteria (Table 3). 
The norm-exp density is also suitable for the given data 
based on the K-S test. 

Figure 5a and b Claims seem to follow norm-exp 
(0.2294, 0.4888, 0.3081). Weibull and gamma fit the 
data well as a whole, but lognormal and norm-exp fit the 
peak better than Weibull and gamma. The density of the 
expected claim is estimated as N(0.4888, 0.3081) and 
that of the unexpected claim is estimated as Exp(0.2294). 
We have E[X] = 0.4888, E[Y] = 4.3592 and E[S] = 
0.4888+4.3592 = 4.8480. 

Figure 5b We have VaR[X] = 0.9955, VaR[Y] = 
13.0550, VaR[S] = 13.5890 (VaR[S] < VaR[X] + 
VaR[Y]). The VaR based on norm-exp is the second 
largest among the four VaR’s (Table 1). 
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Table 1. Goodness-of-fit statistics 

Distribution Parameters -2Log likelihood AIC K-S 

Gamma shape = 1.2579 Rate = 0.4107 5243.027 10488.054 0.201 
Weibull shape = 0.9475 scale = 2.9524 5270.471 10542.942 0.255 
Lognormal meanlog = 0.6718 sdlog = 0.7323 4433.891 8869.782 0.127 
Norm-exp rate = 2.2599 mean = 0.8024 sd = 0.0873 4641.394 9285.788 0.227 
A-D: Anderson-Darling statistic, CVM: Cramér-Von Mises statistic, K-S: Kolmogorov-Smirnov statistic 

 
Table 2. VaR (95%-quantile) 

Distribution VaR 

Gamma 8.469 
Weibull 9.398 
Lognormal 6.536 
Norm-exp 7.575 
normal (expected loss) 0.945 
Exp (unexpected loss) 6.770 

 
Table 3. Goodness-of-fit test statistics and VaR (95%) 

Distribution Parameters -2Loglikelihood A-D CVM K-S VaR 

Lognormal mean = 1.2863 210.8466 2.3113 0.3499 0.1300 15.97 
 s. d. = 0.9028  (0.00) (0.00) (0.12) 
Gamma shape = 1.8610 210.0977 1.0330 0.1485 0.0997 11.76 
  Rate = 0.3839  (0.00) (0.00) (0.39) 
Weibull shape = 1.5720 198.7650 0.7184 0.0948 0.0850 10.79 
 Scale = 5.3696  (0.0058) (0.13) (0.60) 
Norm-exp rate = 0.2294  411.6592 2.4926 0.4264 0.1135 13.58 
 mean = 0.4888 s.d. = 0.3081  (0.00) (0.00) (0.25) 
A-D: Anderson–Darling statistic, CVM: Cramér-Von Mises statistic, K-S: Kolmogorov-Smirnov statistic.  
p-values are in parentheses. 

 

 
 

Fig. 4. Loss, expected and unexpected losses; E[X|S], VaR[E|S], E[Y|S] and VaR[Y|S] 
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 (a) (b) 
 

  
 (c) (d) 

 
Fig. 5. Related plots for the Korean property insurance claim data (a)  fitted densities (b) normal and exponential: VaR’s (c) 

Expected and unexpected cla (d) E[X|S], E[Y|S], VaR[X|S] and VaR[Y|S] 

 
Figure 5c Claims decrease in the summer and 

increase in the winter. The same pattern is repeated every 
year. E[X|S] and VaR[X|S] are bounded by 0.5432 and 
1.0247, respectively. 

Figure 5d As claim increases, E[Y|S] and 
VaR[Y|S] are increasing while E[X|S] and VaR[X|S] 
are bounded by 0.5432 and 1.0247, respectively. If a 
claim is less than 1.0180, E[Y|S] < E[X|S]; if a claim 
is less than 1.0225, VaR[Y|S] < VaR[X|S]. Beyond a 
claim of 1.0180 or 1.0225, the inequalities are 
reversed. Furthermore, when a claim is larger than 
1.5750, both E[X|S] and VaR[X|S] become less than 
E[Y|S] and VaR[Y|S]. When a claim is lower than 
1.0180 or 1.0225, the expected loss dominates the 
unexpected loss. More specifically, it can be said that 

a loss is as usual, as expected. When a claim is 
between 1.0225 and 1.5750, the unexpected loss tends 
to be over the expected loss; however, it is still under 
the expected boundary. Yet, when a claim is larger 
than 1.5750, losses are taken accounted primarily by 
the unexpected losses. 

The norm-exp fits the data well, especially in the 
peak area (Fig. 4a). Claims are mainly affected by 
unexpected claims while expected claims are 
somehow bounded (Fig. 4c). Approximately 1.0 (100 
billion Korean dollars), where E[Y|S] > E[X|S] and 
VaR[Y|S] > VaR[X|S], is the turning point where we 
should begin to seriously worry about unexpected 
losses (Fig. 4b, d). 
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5. DISCUSSION 

Most of quantities in the above examples are not 
available under the current definition of expected and 
unexpected losses. We are able to provide new 
statistical quantities which, we believe, are very 
critical and useful. We can provide more concrete and 
probabilistic relation between expected and unexpected 
losses on condition of (total) loss. Many representative 
researches (Resnick, 1997; McNeil et al., 2010; 
Cooray and Ananada, 2005) supplied lot of important 
results on estimating losses, but did not give much 
information about what happened on expected and 
unexpected losses when a loss changed or when a loss 
was conditioned on. By the proposed method, we can 
visualize how expected and unexpected losses behave 
as a loss moves. 

6. CONCLUSION 

In this study, we redefine loss as a sum of expected 
and unexpected losses. The loss follows a distribution, 
which is referred to as the normal-exponential 
distribution (norm-exp). Once data is fitted well by 
the norm-exp, we can obtain useful information with 
regard to the expected and unexpected loss unlike the 
other existing distributions. In this article, we only 
consider the exponential distribution for unexpected 
loss, but there are certainly the other distributions with 
a long tail like Lognormal and Gamma, etc. for 
modeling unexpected loss. Convoluting those 
distributions would be a good topic for future research. 
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Appendix 

The following proof closely follows Bolstad (2004) 
except that densities of X and Y have been switched 
and so the order of integrations also is changed. Let X 
be normally distributed with mean µ and variance σ

2 
but truncated at 0 and let Y be exponentially 
distributed with mean 1/α. The joint density of X and 
Y is just product of densities: 

 

X,Yf ( , x; , , y)

1 x
exp( y) ,where 0 x,y

α µ σ

− µ = α −α ϕ < σ σ 

 

 
The total loss S is defined as S=X+Y and then the 

joint distribution of X and S is with the absolute value of 
the Jacobian |J| = 1: 

 

X,Sf ( ,x; , ,s)

1 x
exp( (s x)) ,where 0 x s.

α µ σ

− µ = α −α − ϕ < < σ σ 
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The marginal distribution of S is: 
 

( )

s

S 0

(s ) /

/

2(s ) /

/

2 2

1 x
f ( , , ,s) exp( (s x)) dx

exp( (s w )) w dw,

                    wherew (x ) /

exp( (s ))

1 w
exp( w) exp dw,

22

exp( (s ))exp
2

1
exp

2

−µ σ

−µ σ

−µ σ

−µ σ

− µ α µ σ = α −α − ϕ σ σ 

= α −α − σ − µ ϕ

= − µ σ
= α −α − µ

 −ασ  
π  

 α σ= α −α − µ × 
 

−
π

∫

∫

∫

2
(s ) /

/

2 2

2(s ) /

/

2 2

(w )
dw

2

exp( (s ))exp
2

1 z
exp dw,

22

                   where z w

exp (s )
2

s

−µ σ

−µ σ

−µ σ−ασ

−µ σ−ασ

 − ασ
 
 

 α σ= α −α − µ × 
 

 
− 

π  

= − ασ

 α σ= α − α − µ × 
 

 µ µ −   Φ + ασ − Φ + ασ    σ σ    

∫

∫

 

 
The conditional density of X on S and the 

corresponding expectation are: 
 

X,S
X|S

S

2 2

2 2
22

2 2
22

f (x,s)
f (x | s)

f (s)

1 x
exp( (s x))

1 s
exp (s )

2

1 1
exp (x )

22
s

1 1
exp (x )

22
s

=

− µ α −α − ϕ σ σ =
 µ µ −     α α σ − α − µ Φ + ασ − Φ + ασ      σ σ      

 − − µ − ασ σ πσ=
µ µ −   Φ + ασ − Φ + ασ   σ σ   

 − − µ − ασ σ πσ=
− µΦ −
σ

2

1

1 x a s
b b

, wherea s ,b
a s a

1
b b

µ   ασ + Φ + ασ −   σ   

+ − ϕ 
 = = − µ − ασ = σ

−   Φ + Φ −   
   

 

 
And: 
 

s

0

s a

b
a

b

1 x x a
E(X | S s) dx

a s a b b1
b b

1
(bz a) (z)dz,

a s a
1

b b

a s a
x a b b

wherez a b
a s ab 1
b b

−

−

− = = ϕ −     Φ + Φ −   
   

= + ϕ
−   Φ + Φ −   

   

−   ϕ − ϕ   −    = = +
−   Φ + Φ −   

   

∫

∫  


