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ABSTRACT 

There is an established equivalence between relational database Functional Dependencies (FDs) and a 
fragment of switching algebra that is built typically of Horn clauses. This equivalence pertains to both 
concepts and procedures of the FD relational database domain and the switching algebraic domain. 
This study is an exposition of the use of switching-algebraic tools in solving problems typically 
encountered in the analysis and design of relational databases. The switching-algebraic tools utilized 
include purely-algebraic techniques, purely-visual techniques employing the Karnaugh map and 
intermediary techniques employing the variable-entered Karnaugh map. The problems handled 
include; (a) the derivation of the closure of a Dependency Set (DS), (b) the derivation of the closure of 
a set of attributes, (c) the determination of all candidate keys and (d) the derivation of irredundant 
dependency sets equivalent to a given DS and consequently the determination of the minimal cover of 
such a set. A relatively large example illustrates the switching-algebraic approach and demonstrates its 
pedagogical and computational merits over the traditional approach. 

 
Keywords: Switching Algebra, Relational Databases, Rules of Inference, Algebraic and Map Methods, 

Closure of a Set, Variable-Entered Karnaugh Map, Functional Dependency, Minimal Cover, 
Candidate Keys 

1. INTRODUCTION 

It has been known for decades that there is an 
equivalence between relational database Functional 
Dependencies (FDs) and a fragment of propositional 
logic (Delobel and Casey, 1973; Fagin, 1977;      
Sagiv et al., 1981; Fagin, 1982; Russomano and 
Bonnell, 1999; Zhang, 2009a; 2009b; 2010; YiShun and 
ChunHua 2012). Typically, that fragment covers what 
is known as Horn clauses in switching theory (two-
valued Boolean algebra). Table 1 identifies related 
concepts and procedures in the domains of relational 
databases and propositional logic or switching theory. 
The traditional approach for the analysis and design of 

relational databases is based on the heuristic 
application of rules of inference. We demonstrate 
herein that such analysis and design can be facilitated, 
made more efficient, rendered algorithmic in nature, 
extended to problems of larger sizes and equipped 
with insightful visualization through the utilization of 
well established and readily-available tools of 
switching algebra. 

2. MATERIALS AND METHODS 

This study utilizes switching-algebraic tools in 
solving problems typically encountered in the analysis 
and design of relational databases. 
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Table 1. Related concepts and procedures in the domains of relational databases and propositional logic (switching theory) 
 Relational databases Propositional logic (Switching theory) 
Concepts Functional Dependency (FD) Horn clause (A subset of switching functions) 
 Closure of a set Complete Sum (CS), Blake Canonical Form (BCF) 
 Irredundant Dependency Set (IDS) Irredundant Disjunctive Form (IDF) 
 Minimal cover Minimal sum 
Procedures Application of armstrong’s rules of inference Iterative-consensus procedure 
 Heuristic procedure for closure derivation  Algorithmic derivation for the complete sum 

 
The switching algebraic tools utilized include purely-
algebraic techniques (Muroga, 1979; Brown, 1990; Gregg, 
1998), purely-visual techniques employing the Karnaugh 
map (Muroga, 1979; Brown, 1990; Gregg, 1998; Rushdi, 
1997) and intermediary or mixed techniques employing 
the Variable-Entered Karnaugh Map (VEKM) (Muroga, 
1979;  Rushdi,  1985;  1987;  1997;  2001a;  2001b; 
Rushdi  and  Al-Yahya, 2000; 2001a; 2001b; 2002; 
Rushdi and Albarakati, 2012; 2014; Rushdi and Amashah, 
2011). The problems handled include; (a) the derivation of 
the closure of a Dependency Set (DS), (b) the derivation 
of the closure of a set of attributes, (c) the determination of 
all candidate keys and (d) the derivation of all irredundant 
dependency sets equivalent to a given DS and 
consequently the determination of the minimal cover of 
such a set. A single relatively large example is used to 
apply the switching-algebraic approach to each of these 
problems and to demonstrate its pedagogical and 
computational merits over the traditional approach. 

3. RESULTS 

3.1. The Derivation of the Closure of a 
Dependency Set (DS) 

Starting with a set of functional dependencies Ai → 
Ci,1≤i≤n, that constitutes a set S, we view these 
dependencies as propositional implications that we denote 
by the same symbols (Ai→ Ci, 1≤ i ≤), taking liberty to 
allow a little abuse of notation. According to the Modern 
Syllogistic Method (MSM) (Blake, 1938; Brown, 1990; 
Rushdi and Al-Shehri, 2002; Rushdi and Ba-Rukab, 2007; 
2008a; 2008b; 2009; Rushdi and Baz, 2007), these 
implications reduce to the switching Equation 1: 
 

i iA C 0, 1 i n= ≤ ≤  (1) 

 
Which subsequently reduce to the single Equation 2: 

 
n

li 1 ig V A C 0== =  (2) 

 
Which can be used to produce the equivalent result 

Equation 3 and 4: 

CS(g) 0=  (3) 
 
where, CS(g) stands for the complete sum of the function 
g. We derive CS (g) via any appropriate algorithm such 
as Tison algorithm (Tison, 1967; Cutler et al., 1979; 
Brown, 1990; Rushdi and Al-Yahya, 2001; Rushdi and 
Albarakati, 2014), or the algorithm of VEKM folding 
(Rushdi and Al-Yahya, 2001). Each of the prime 
implicants (prime consequents) in CS(g) is interpreted as 
an equation of the form (1) and hence converted to a 
propositional implication or equivalently to a functional 
dependency that is a member of S+. 

Example 1 

Consider the set of FD’s described by (Dates, 2004): 
 

AB C, C A,BC D,

S ACD B,BE C,CE

FA,CF BD,D EF

→ → → 
 = → → → 
 → → 

 (4) 

 
We want to derive the closure S+ of the set S. We first 

transform the set S from the relational domain to the 
Boolean domain as Equation 5: 
 
g ABC VCAVBCDV

ACDBVBECVCEFVCEA

VCFBVCFDVDEVDF

=

 (5) 

 
Now, we derive CS(g) via the improved Tison 

algorithm (Rushdi and Al-Yahya, 2001) as detailed in Fig. 
1. The final complete sum (after six iterations of consensi 
generation with respect to each biform variable, followed by 
absorptions of subsuming products) is Equation 6: 
 

( )CS g ABC V ABDVABE VABFVBCDVBCE

VBCFVBDAVBDCVBEAVBEAVBECVBED

VBEFVDEVDFVCAVCDBVCEBVCFBVCED

VCEFVCFDVCFE 0

=

=

 (6) 

 
Note that CS(g) consists of 23 prime implicants, each 

of which has a single complemented literal.  



A.M.A. Rushdi and O.M. Ba-Rukab / Journal of Mathematics and Statistics 10 (2): 231-243, 2014 

 
233 Science Publications

 
JMSS 

 
 
Fig. 1. Derivation of CS(g) via the improved Tison algorithm with a single passage through the biform variables A, B, C, D, E and F, 

respectively 
 
Now, we make an inverse transform from the Boolean 
domain to the relational domain. The closure of the set S 
in (4) has 23 FDs and is given by Equation 7: 

 
AB C,AB D,AB E,AB F,

BC D,BC E,BC F,BD A,

BD C,BE A,BE C,BE A,
S

BE C,BE A,BE C,BE D,BE F,

D E,D F,C A,CD B,CE B,

CF B,CE D,CE F,CF D,CF E

+

→ → → → 
 → → → → 
 → → → → = → → → → → 
 → → → → →
 

→ → → → →  

 (7) 

3.2. The Derivation of the Closure of a Set of 
Attributes 

Given a set Z of attributes of relational variable 
(relvar) R and a set S of FDs that hold for R, the closure 
Z+ of Z under S is the set of all attributes A of R such 
that the FD {Z→A} is a member of S+ (i.e., such that the 
FD {Z → A) is implied by the FDs in S). Thanks to 
reflexivity or self-determination {A→A}, this definition 
agrees with the requirement that Z is a subset of Z+. If we 
express the given set of FDs as a single equation (g = 0) 
and then convert its LHS g into the complete-sum form 
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CS(g), as we did earlier, then we can deduce the closure 
Z+ of as follows. Initially, any attribute in Z is added to 
Z+. Subsequently, a single pass is made through the set 
of prime implicants Pi whose disjunction constitutes 
CS(g). If the uncomplemented variables in Pi represent a 
subset of Z, then the attribute represented by the single 
complemented variable in Pi is added to Z+ (if it is not 
already there). If the closure Z+ of a set of attributes Z 
equals the total set of attributes of R, then Z constitutes a 
superkey. If such a set Z is irreducible, then this 
superkey is a candidate key. 

Example 1 (Revisited) 

Consider the relational variable (relvar) R with 
attributes A, B, C, D, E and F and the dependency set 
described by (4). Equation (6) can be utilized to deduce 
the closure of any subset of the set of attributes Z = {A, 
B, C, D, E, F}. We can ascertain that {C}+ is given by 
Equation 8: 
 

{ } { }C A,C Z
+ = ≠  (8) 

 
Thanks to the property of self-determination {C→C} 

and the existence of prime implicant CA  in (6), which is 
equivalent to the dependency {C→A} Similarly 
Equation 9: 
 

{ } { }D D,E,F Z
+ = ≠  (9) 

 
Since the existence of prime implicantsDE andDF  in 

(6) is equivalent to the dependencies {D→E, D→F}. 
Together with {D→D}, these dependencies result in (9). 
Likewise, the closure {B, C}+ equals {B, C, D, E, F} 
thanks to the appearance of prime implicants BCD, BCE  

and BCF  in (6). The result that Equation 10: 
 

{ } { }C,D A,B,C,D, E, F Z
+ = =  (10) 

 
Can be accounted for similarly by noting that {C, D} + is 

a superset for the union of {C}+ and {D}+ in (8) and (9) and 
including the effect of the prime implicant CDB{CD B}→  

in (6). This means that CD is an irreducible superkey (i.e., a 
candidate key) for the FD's in (4). 

3.3. The Determination of All Candidate Keys 

Since a natural (albeit typically redundant) superkey 
is the conjunction of all attributes Xi, we might 

supplement the set of FD’s by an extra dependency of the 
form Equation 11: 
 

( )n
i 1 iX K=∧ →  (11) 

 
where, K is an additional attribute that stands for “Key”. 
Now, the function g in (5) is replaced by a function f 
given by Equation 12: 
 

( )n
i 1 if g v X K== ∧   (12) 

 
The prime implicants in CS(f) that contain the literal 

K , i.e., that are of the form j J j( X )K∈∧  correspond to the 

implication Equation 13: 
 

( )j J JX K∈∧ →  (13) 

 
And hence the set J of attributes are superkeys. In 

fact, they are candidate keys since they are irredundant, 
because they correspond to prime implicants. Therefore, 
one can obtain all the candidate keys by obtaining the 
complete sum of the function f defined by (12). A 
candidate key corresponds to the uncomplemented 
literals in any prime implicant that contains the 
complemented literal K . This scheme agrees with the 
procedure in Zhang (2009a). 

Now, since K is a mono-form variable, it plays no 
role in the consensus generation used in complete-sum 
derivation. Hence, we can dispense with it altogether 
and rewrite (12) with K deleted, i.e., in the form 
Equation 14: 
 

( )n
i 1 if g V X== ∧  (14) 

 
In this new scheme, the final result for CS (f) is 

Equation 15: 
 

( ) ( ) ( )J j J jCS f CS g V V X∈= ∧  (15) 

 
where, the prime implicants (∧j∈J X j) of solely 
uncomplemented  literals are the candidate keys. This 
scheme agrees with the procedure in (Russomano and 
Bonnell, 1999). It could be enhanced if CS (g) is 
already available, for then we redefine f in (14) by the 
equivalent formula: 
 

n
i 1 if CS(g)V( X )== ∧  (16) 
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Equation (16) suggests a method employing Tison 
algorithm incrementally (Kean and Tsiknis, 1990) for 
deriving the complete sum. In fact, we can restrict our 
attention to the consensi generated between terms 
without complemented literals (initially the single term 

( )n
i 1 iX )=∧ and various terms of CS(g) w.r.t. bi-form 

variables traversed one by one. The final set of these 
consensi is the set of all candidate keys, i.e., 

( )J j J jV X∈∧ . 

To implement the aforementioned method, let us use 
Gk to denote terms in Gk containing variable number k 
complemented and Uk to denote the disjunction of 
uncomplemented implicants of f at step k. At each step 
of the incremental Tison algorithm, Uk is updated via 
Equation 17: 
 

( )( ),k 1 k k kU ABS U VConsensi U G+ =  (17) 

 
Here, ABS (F) is an absorptive formula for the sum-

of-products formula F which is a formula obtained from 
F by successive deletion or absorption of terms 
subsuming other terms in F (Brown, 1990; Rushdi and 
Al-Yahya, 2001). The expression Uk can be interpreted 
as a disjunction of superkeys. Its initial value is ( )n

i 1 iX=∧  

and its final value is the disjunction of all prime 
implicants of CS(f) with solely un-complemented 
literals, which are the candidate keys. 

Example 1 (Revisited) 

We want to determine all candidate keys for the set 
of FD's given in (4). We construct a function f (A, B, 
C, D, E, F) which equals the function g in (5), (or its 
complete sum in (6)) disjunctioned with a term (A B 
C D E F) that equals the conjunction or ANDing of all 
pertinent variables, all un-complemented. Table 2 
shows an implementation of the incremental Tison 
algorithm via (17). The disjunction of the prime 
implicants of CS(f) with un-complemented literals is 
Equation 18:  
 
CDVCEVCFVABVBCVBDV BE  (18) 

 
This result means that there are seven candidate 

keys for the given set of FDs, namely, CD, CE CF, 
AB, BC BD and BE. It is straightforward to verify 
that each of these keys is indeed a candidate key by 
inspecting CS(g) in (6). For example, BC is a 
superkey due to the existence of prime 

implicantsAC,BCD,BCEandBCF . Further, it is a 
candidate key since it is irreducible. 

3.4. The Derivation of Irredundant Dependency 
Sets Equivalent to a Given DS 

An Irredundant Disjunctive Form (IDF) for a 
switching function g is a disjunction of prime 
implicants such that removal of any of the prime 
implicants makes the remaining formula not express the 
original g (Muroga, 1979). This means that an IDF for 
g is a minimal sub-formula of CS(g) that covers g 
(Rushdi and Al-Yahya, 2002). The corresponding entity 
in the relational domain, namely, the Irredundant 
Dependency Set (IDS), is defined similarly (see, e.g., 
(Dates, 2004), with an additional requirement that a 
functional dependency of multiple consequents be 
decomposed into several FDs of single consequents. 
For example, the FD A → BCD must be replaced by 
the FDs A → B, A→ C and A → D, that map into the 
terms or productsAB, AC and AD , which can fit into a 

disjunctive form. An Irredundant disjunctive form (and 
correspondingly, an irredundant dependency set) is not 
necessarily unique. 

There are many algebraic, tabular or mapping 
methods for obtaining all the IDFs of a switching 
function (Muroga, 1979). Most of these methods are 
algorithms that use the complete sum as a starting 
point when it is available, or more generally act in a 
2-step fashion by finding the complete sum first 
before proceeding to derive the IDFs. There are other 
heuristic methods for obtaining the IDFs directly, such 
as those employing the conventional Karnaugh map 
(Muroga, 1979; Brown, 1990; Gregg, 1998; Rushdi, 
1997) or the Variable-Entered Karnaugh Map 
(VEKM) (Muroga, 1979; Rushdi, 1985; 1987; 1997; 
2001a; 2001b; Rushdi and Al-Yahya, 2000; 2001a; 
2001b; 2002; Rushdi and Albarakati, 2012; 2014; 
Rushdi and Amashah, 2011). These heuristic methods 
are not guaranteed to find all the IDFs, but they 
typically find most of them, including the best or 
minimal among them. We now apply a VEKM 
minimization procedure to our running example. 

Example 1 (Revisited) 

For comparison purposes, we present herein the 
traditional heuristic for obtaining the IDSs that are 
equivalent to the DS in (4). The first step is to rewrite the 
given set in (4) such that every FD has a singleton 
consequent or right side. We denote the resulting set as set I. 
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Table 2. Derivation of CS (f) in (16) via the incremental tison method 

 Gi Ui Consensi (Ui, Gi) 

A BDA BEA CA∨ ∨  ABCDEF BCDEF∨BCDEF∨BCDEF 
B CDB CEB CFB∨ ∨  BCDEF CDEF∨CDEF∨CDEF 
C ABC BDC BEC∨ ∨  CDEF ABDEF∨BDEF∨BDEF 
D ABD BCD BED CED CFD∨ ∨ ∨ ∨  CDEF∨BDEF ABCEF∨ABEF∨BCEF∨BCEF∨  
   BCEF∨BEF∨CEF∨BCEF 
   ∨CEF∨BCEF 
E ABE BCE DE CFE∨ ∨ ∨  CEF∨BEF ABCF∨ABF∨BCF∨BCF∨ 
   CDF∨BDF∨CF∨BCF 
F ABF BCF BEF DF CEF∨ ∨ ∨ ∨  BEF∨ABF∨BDF∨CF ABE∨AB∨ABD∨ABC 
   ∨BCE∨ABC∨BCD∨BC∨ 
   ∨BE∨ABE∨BDE∨BCE∨ 
   BDE∨ABD∨BD∨CD 
   ∨BCE∨ABCE∨BCDE∨CE 
  AB∨BC∨BE∨BD∨CD∨CE∨CF 
 

1.AB C

2. C A

3.BC D

4.ACD B

5. BE C

Set I6. CE A

7. CE F

8. CF B

9. CF D

10. D E

11. D F

→ 
→ 
→


→ 
→
→ 
→

→
→ 
→


→ 

 

 
Henceforth, we keep the number of each Functional 

Dependency (FD) as assigned to it in set I. Now, FD2 
implies FD6, so we can drop FD6. Functional Dependency 
FD8 implies {CF→BC} (by augmentation), which with 
FD3 implies {CF →D} (by transitivity), so we can drop 
FD9. Functional Dependency 8 implies {ACF→AB} (by 
augmentation) and FD11 implies {ACD→ACF} (by 
augmentation) and so {ACD→B} (by decomposition), so 
we can drop FD4. No further reductions are possible and so 
we are left with an irreducible set, that we call set II: 
 

1.AB C

2.C A

3. BC D

5. BE C
Set II

7. CE F

8.CF B

10. D E

11.D F

→ 
→ 
→
→ 
→ 
→


→ 
→ 

 

Alternatively, starting from the original set (set I), FD2 
implies {CD→ACD} (by composition), which with FD4 
implies {CD→B} (by transitivity), so we can replace FD4 
by {CD→B}, which we call FD12. Functional 
dependency 2 implies FD6, so we can drop FD6 (as 
before). Functional dependencies 2 and 9 imply {CF → 
AD} (by composition), which implies {CF→ACD} (by 
augmentation), which with (the original) FD4 implies FD8 
{CF → B} (by transitivity), so we can drop FD8. No 
further reductions are possible and so we are left with an 
irreducible set, that we call set III. Set III is similar to set 
II with FD8 in set II replaced by FD9 and FD12 in set III. 

Alternatively, starting again from set II, FD1 implies 
{AB →BC} (by augmentation), which with FD3 implies 
{AB →D} (by transitivity). Now if we add {AB→D} to 
set II it ceases to be irredundant anymore. Functional 
dependency 2 implies {BC→AB} (by augmentation), 
which with the new FD {AB→D} implies {BC→D} (by 
transitivity), so we can drop FD3 {BC→D} and we 
obtain a new IDF (set IV) in which we denote the new 
FD {AB→D} as FD3a since it replaces FD3: 

 
1.AB C

2. C A

3.BC D

5.BE C

Set III7.CE F

9.CF D

10. D E

11.D F

12.CD B

→ 
→ 
→


→ 
→ 
→

→
→ 
→ 
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1.AB C

2.C A

3a.AB D

5.BE C
Set IV

7.CE F

8.CF B

10.D F

11.D F

→ 
→ 
→
→ 
→ 
→


→ 
→ 

 

 
Alternatively, we can go back to the first IDS (Set II) 

where FD2 and FD5 imply {BE→A} (by transitivity). We 
add {BE→A} to the IDF so that it ceases to be irredundant. 
Now {BE→A} implies {BE→AB} (by augmentation), 
which with FD1 implies {BE→C} (by transitivity), so we 
drop FD5, label its replacement {BE→C} as FD5a and we 
end up with an IDS, that we call set V. 

Alternatively, FD7 in set II implies {CE→CF} (by 
augmentation), which with FD8 implies {CE→B} (by 
transitivity). When we add {CE→B} to the original IDS 
it is no longer irredundant. But now {CE→B} implies 
{CE→BC} (by augmentation) which with FD3 implies 
{CE→BC} which by transitivity with FD11 implies 
{CE→F}, so we can drop FD7 and denote its 
replacement {CE→B} as FD7a and hence obtain an IDS, 
that we call set VI: 
 

1.AB C

2.C A

3.BC D

5a.BE A
Set V

7.CE F

8.CF B

10.D E

11.D F

→ 
→ 
→
→ 
→ 
→


→ 
→ 

 

 

1.AB C

2.C A

3.BC D

5 BE C
Set VI

7a.CE B

8. CF B

10.D E

11.D F

→ 
→ 
→
→ 
→ 
→


→ 
→ 

 

 
So far, we have identified 5 irredundant sets (Sets II 

to Set VI). However, the total number of irredundant sets 

is at least 16. As Fig. 2 indicates, FDs 1, 2, 10 and 11 are 
included in every identified irredundant set. These are 
supplemented by (a) Either FD3 or FD3a, (b) Either FD5 
or FD5a, (c) Either FD7 or FD7a and (d) FD8 or a 
combination of FD9 and FD12. Referring to the original 
set (Set I), we note that both FD4 {ACD→B} and FD6 
{CE→A} have disappeared entirely being non-prime 
implicants (since they subsume the prime implicants 
CDB(CD B)→ and AC(C A)→ , respectively). 

The result obtained in Fig. 2  can be restated to express 
the corresponding irredundant disjunctive forms as: 
 

{ } { } { }
{ }

1 2 3 3a 5 5a 7 7 a

8 9 12 10 11,

IDF P VP VP P VP P vp p

VP P VP VP VP

=
 (19) 

 
Out of the 23 prime implicants of g that appear in CS(g) 

in (6), only 12 are needed in the IDFs in (19), namely: 
 

1 2 3 3

5 5 7 7

8 9 12 10

11

P ABC,P CA,P BCD,P ABD

P BEC,P BEA,P CEF,P CEB,

P CFB,P CFD,P CDB,P

DEandP DF

α

α α

= = = =

= = = =

= = = =

=

 

 
The notation P3 {P3α}with curly brackets means that 

either prime implicant P3 or prime implicant P3α is 
included in the IDF. Since Equation (19) has 4 such binary 
alternatives, it represents 24 = 16 IDFs. Out of these, there 
are 8 minimal covers (the ones employing P8 rather than 
its alternative (P9 V P12). However, due to the non-
algorithmic nature of the current heuristic, we are not fully 
sure that we have exhausted all IDFs and hence all 
minimal covers. 

The result of (19) is now recovered via VEKM 
minimization in the switching domain. We use Boole-
Shannon expansion (Brown, 1990; Rushdi and Al-Yahya, 
2001) to obtain the VEKM representation of the function 
g in (5) as shown in Fig. 3. An almost minimal s-o-p 
expression for the function g is given (Rushdi, 1987; 
Rushdi and Al-Yahya, 2000; 2001) by Equation 20: 
 

r r rg V P Co(P )=  (20) 
 
where, Pr is a prime implicant of one or more of the 
subfunctions of the function g, i.e., it is a product that 
appears in at least one VEKM cell. Each Pr is ANDed 
with its minimal s-o-p contribution to g, namely Co 
(Pr). This contribution can be represented by a CKM 
directly deducible from the original VEKM according 
to heuristic rules stated in (Rushdi, 1987; Rushdi and 
Al-Yahya, 2000; 2001b).  
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Fig. 2. The functional dependencies included in various identified irredundant sets 
 

 
 

Fig. 3. One VEKM representation of the function g in (2) 
 

 
 

Fig. 4. Contribution of entered product 1 adds 1 2P ABC,P CA= =  
 

 
 

Fig. 5. Contribution of entered products 10 11DE DFaddsP DEand P DF∨ = =  
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Fig. 6. Contribution of entered product 3 3DaddsP BCDor P ABDα= =  

 

 
 

Fig. 7. Contribution of entered product 7 7aEFaddsP CEF if P=  is not added 

 

 

 

Fig. 8. Contribution of entered product E adds5 5aP BECor P BEA= = and might add7P CEF=  in place of P7a 
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Fig. 9. Contribution of entered product F might add8 12 9P CFBif P andP=  are not jointly added 

 

 
 

Fig. 10. Contribution of entered product D adds12P CDB= to join P9 in replacing P8 

 

 
 

Fig. 11. Contribution of productDFadds 9P CFD=  to join P12 in replacing P8 

 
Note that Co (Pr) is a function of the map variables of the 
VEKM only while Pr itself is a function of the entered 
variables of the VEKM only. 

Figures 4-11 detail how the various contributions of 
the entered products in Fig. 3 are obtained and how the 
formula in (19) is recovered via the VEKM heuristics. 
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4. DISCUSSION 

This study presented switching-algebraic analysis of 
four important and related problems of relational 
databases, namely, (a) the problem of deriving the 
closure of a set of functional dependencies, (b) the 
problem of deriving the closure for a set of attributes, (c) 
the problem of deriving all candidate keys and (d) the 
problem of deriving irredundant dependency sets 
equivalent to a set of functional dependencies and the 
determination of the minimal cover of such a set. Three 
of these four problems were shown to require the 
derivation of the complete sum (blake canonical form) of 
certain switching functions obtained via an appropriate 
transformation of the relational functional dependencies. 
These three problems were solved by two updated 
versions of Tison algorithm. The fourth problem could 
have been solved also by the derivation of a complete 
sum and the construction of a presence function (Petrick 
function) (Muroga, 1979; Rushdi and Al-Yahya, 2002), 
but it was solved herein via a heuristic utilizing the 
Variable-Entered Karnaugh Map (VEKM). All four 
problems were presented in ample detail and their 
methods of solution were demonstrated via the same 
relatively large example. 

5. CONCLUSION 

This study is a serious attempt to transform relational 
database concepts to the switching-algebraic domain and 
hence to utilize switching-algebraic procedures and 
concepts in relational databases.  This attempt stresses 
the pedagogical advantages gained when one departs 
from the traditional database approach and utilizes 
pictorial tools of switching theory and digital design, 
such as the Variable-Entered Karnaugh Map (VEKM). 
The traditional database approach, adopted by almost all 
textbooks on database design is based on the heuristic 
application of axioms and lemmas for the manipulation 
of functional dependencies. This study replaces the 
traditional heuristics in the relational domain by more 
powerful and insightful heuristics and algorithms in the 
switching domain.  

An interesting topic for further research stems from the 
fact that the function dealt with in deriving the closure for 
dependency sets is a disjunction of terms derived from 
particular Horn clauses. Each of these terms is a product 
(ANDing) of a single complemented literal with some 
other un-complemented literals. This feature should be 
studied with the hope of simplifying the algorithm that 
extracts all the prime implicants. A pertinent question in 
this respect is whether a linear representation of a 

switching function (e.g., Rushdi and Ghaleb, 2013; Rushdi 
and Alsogati, 2013) could provide anyadvantage over the 
current sum-of-products representation. 

Another promising direction of potentially fruitful 
research is to utilize the switching-domain tools of this 
study in the implementation of the coneptual database 
designing model advocated by Hegazi (2014). 
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