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ABSTRACT 

The Markov-Bernoulli geometric distribution is obtained when a generalization, as a Markov process, of 
the independent Bernoulli sequence of random variables is introduced by considering the success 
probability changes with respect to the Markov chain. The resulting model is called the Markov- 
Bernoulli model and it has a wide variety of application fields. In this study, some characterizations are 
given concerning the Markov-Bernoulli geometric distribution as the distribution of the summation index 
of independent randomly truncated non-negative integer valued random variables. The achieved results 
generalize the corresponding characterizations concerning the usual geometric distribution. 
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1. INTRODUCTION 

The Markov-Bernoulli Geometric (MBG) distribution 
has been obtained by Anis and Gharib (1982) in a study 
of Markov-Bernoulli sequence of random variables (rv’s) 
introduced by Edwards (1960), who generalized the 
(usual) independent Bernoulli sequence of rv’s by 
considering the success probability changes with respect 
to a Markov chain. The resulting model is called the 
Markov-Bernoulli Model (MBM) or the Markov 
modulated Bernoulli process (Ozekici, 1997). Many 
researchers have been studied the MBM from the various 
aspects of probability, statistics and their applications, in 
particular the classical problems related to the usual 
Bernoulli model (Anis and Gharib, 1982; Gharib and 
Yehia, 1987; Inal, 1987; Yehia and Gharib, 1993; 
Ozekici, 1997; Ozekici and Soyer, 2003; Arvidsson and 
Francke, 2007; Omey et al., 2008; Maillart et al., 2008; 
Pacheco et al., 2009; Cekanavicius and Vellaisamy, 
2010; Minkova and Omey, 2011). Further, due to the 
fact that the MBM operates in a random environment 
depicted by a Markov chain so that the probability of 
success at each trial depends on the state of the 
environment, this model represents an interesting 

application of stochastic processes and thus used by 
numerous authors in, stochastic modeling (Switzer, 
1967; 1969; Pedler, 1980; Satheesh et al., 2002; 
Özekici and Soyer, 2003; Xekalaki and Panaretos, 
2004; Arvidsson and Francke, 2007; Nan et al., 2008; 
Pacheco et al., 2009; Doubleday and Esunge, 2011; 
Pires and Diniz, 2012). 

Let X1, X2,… be a sequence of Markov-Bernoulli 
rv’s with the following matrix of transition 
probabilities Equation (1.1): 

 

( ) ( )
( )( ) ( )

1

0 1

1 1 10
,

1 1 11

+

 − − −
 − − + − 

i

i

X

p p
X

p p

ρ ρ
ρ ρ ρ

 (1.1) 

 
and initial distribution: 

 
( ) ( )1 11  1 – 0P X p P X= = = =  

 
where, 0 ≤ p ≤ 1 and 0 ≤ ρ ≤ 1. 



Mohamed Gharib et al. / Journal of Mathematics and Statistics 10 (2): 186-191, 2014 

 
187 Science Publications

 
JMSS 

The sequence {Xi} with the transition matrix (1.1) and 
the above initial distribution is called the MBM. If Ei, i = 
0, 1 are the states of the Markov system given by (1.1), 
then the parameter ρ which is usually called the 
persistence indicator of E0, is the correlation coefficient 
between Xi and Xi+1, i = 1, 2,… (Anis and Gharib, 1982). 

If N is the number of transitions for the system 
defined by (1.1) to be in E1 for the first time then N has 
the MBG distribution given by Equation (1.2):  
 

( ) ( ) 1

1 0

1 1k k

, k
P N k p

t t , k ,

α
α −

− =
= = = − ≥

 (1.2) 

 
where:  
α = 1-p and t = ρ + (l − ρ) α = α +(l − α) ρ. 

The MBG distribution (1.2) will be denoted by   
MBG(α, ρ) and we shall write N∼MBG(α, ρ). Let PU(s) =           
E(sU) be the probability generating function (pgf) of an 
integer valued random variable U, |s|≤1. 

The pgf of N is given, using (1.2), by Equation (1.3): 
 

( ) ( )( )
( )0

1 1

1N k
k

k s
P s p s

ts

α ρ∞

=

− −
= =

−∑ . (1.3) 

 
Few authors have treated the characterization 

problem of the MBG distribution (Yehia and Gharib, 
1993; Minkova and Omey, 2011). 

In this study some new characterizations are given for 
the MBG distribution by considering it as the 
distribution of the summation index of a random sum 
of randomly truncated non-negative integer valued 
rv’s. The scheme of geometric random sum of 
randomly truncated rv’s is important in reliability 
theory, especially in the problem of optimal total 
processing time with checkpoints (Dimitrov et al., 
1991). The achieved results generalize those given in 
(Khalil et al., 1991). 

2. RANDOM SUM OF TRUNCATED 
RANDOM VARIABLES 

 Consider a sequence {Xn, n≥1} of independent 
identically distributed (iid) non-negative integer valued 
rv’s with probability mass function (pmf) 0 ≤ pk = P(X1 = 
k); k = 0, 1, 2, … . 

Let {Yn, n≥1} be another sequence of iid non-
negative integer valued random variables, independent of 
{ Xn}, with pmf qk= P(Y1 = k); k = 0, 1, 2,…, 

0

1k
k

q
∞

=

=∑ . 
{ Yn} is called the truncating process. 

Put p = P(X1≥Y) and assume 0< p <1. Let  
N = inf {k ≥1: Xk<Yk}. Clearly, 

P(N-1= k) = pk (1-p), k = 0,1,2,…, i.e., N-1 has a 
geometric distribution with parameter p. 

Remark 1 

If the sequence {Xn, n≥1} follows the MBM (1.1), 
where the event {(Xi ≥ Yi)} indicates the state E0 and 
the event {(Xi<Yi)} indicates the state E1, with the 
initial distribution: 
 

( ) ( )1 1 1 1and 1P X Y p P X Y p≥ = < = −  

 
Then the rv N (the smallest number of transitions 

for the system to be in state E1 for the first time) 
wouldhave the MBG distribution defined by (1.2) 
(Anis and Gharib, 1982) Equation (2.1): 

Define: 
 

1

0
k N

N

k

Z Y X
−

=
= +∑  (2.1) 

 
where, for convenience Y0 = 0. The rv Z is the random 
sum of truncated rv’s (Khalil et al., 1991). 

It is known that the pgf PZ(s) of Z is given by 
(Khalil et al., 1991) Equation (2.2 to 2.5): 
 

( ) ( ) ( )1 11ZP s P s / Q s=  −   , (2.2) 

 
where: 
 

( ) ( )1
1 1 1

0 1

X
k

k

k

k

P s E S I X Y p s qγ
γ=

∞ ∞

= +
 = < =  ∑ ∑  , (2.3) 

 

( ) ( )1
1 1 1 0

Y
kk

k

k
Q s E S I X Y q s pγγ=

∞ ∞

=
 = ≥ =  ∑ ∑  , (2.4) 

 
and I(A) is the indicator function of the set A. 

Corollary 1 
 

( )
( )

( )
0 1

0 1
1

k

k

k k

k k

kp q
E Z

kq p

γ

γ

γ

γ

∞ ∞

= = +
∞ ∞

= = +

=
−

∑ ∑

∑ ∑
  (2.5) 

 
The result is immediate since E(Z) = P′z (1). 

Corollary 2 

If the truncating process {Yn} is such that Yn~MBG(α, 
ρ), for α∈(0,1) and ρ∈[0, 1]. Then the pgf of Z is given by 
Equation (2.6 and 2.7): 
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( ) ( ) ( )
( ) ( ){ }

( )
( )
( ) ( )
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1

1
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1 1 1
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1 (1 )

1 1 1 1
1 (1 )

X
Z

X

X

X

ts P ts
P s

t P ts s

P ts

t
s P ts

ts

α
α

α
α

−
=
 − − − 

=
  −  −  − − − −    − −     

  (2.6) 

 
and: 
 

( ) ( ) ( )
( ) ( )

1

1

1
1 ,

1

X

X

Z

P t
E Z P

t P t

 − ′= =
 − 

 (2.7) 

 
where, t = ρ+(1−ρ)α. 

Proof 

Since Yn~MBG(α, ρ), then: 
 

( ) ( ) 1

1 0

1 1 2n k k

, k
P Y k q

t t , k , , .

α
α −

− =
= = = − = …

 

 
Hence, using (2.3), we have Equation 2.8 and 2.9: 

 

( )

( )
1

1

0

0 1

1 1 1

,

k

k X

k

k k

k

k k

P s p s q

p q p s q P ts

γ

γ γ

γ

γ γ
α

∞

∞

∞

= = +

∞ ∞

= = = +

=

= + =

∑ ∑

∑ ∑ ∑
 (2.8) 

 
 and, using (2.4), we have: 
 

( )

( ) ( ) ( )

( )
( ) ( ) ( ){ }

1

1 0
0 1

1

1 1

1 1

1
1 1

1

k

X

k

k k

k

k

Q s q p q s p

t s p ts

s P ts .
ts

γ γ
γ γ

γ

γ
γ

α α

α
ρ α ρ

∞ ∞ ∞

= = =

∞
−

= =

= +

= − + −

−
 = − + − −

∑ ∑ ∑

∑ ∑  (2.9) 

 
Substituting the expressions of P1(s) and Q1(s) given 

respectively by (2.8) and (2.9) into (2.2), we get (2.6).  
E(Z) is obtained readily from (2.5) or (2.6). 

3. CHARACTERIZATIONS OF THE MBG 
DISTRIBUTION 

Consider the random sum given by (2.1). 

Theorem 1 

Let Y1, have a MBG distribution with some 
parameters α∈(0, 1) and ρ∈[0, 1] and let X1 satisfy P(X1 

= 0)<1. Then Z has the same distribution as X1 1( )
d

Z X= if 
and only if X1 has a MBG distribution. 

Proof 

Assume that X1∼MBG(β, ρ1), for some β∈(0, 1) and 

ρ1∈[0, 1],i.e.,: 
 

( ) 1

1 0

1 1 2k k

, k
p

, k , ,...,

β
β −

− =
= − = ℓ ℓ

 

 
where, ℓ = ρ1+(1−ρ1)β. Then the pgf of X1 is given by 
Equation (3.1 and 3.2): 
 

( ) ( )( )
( )1

11 1

1X

s
P s

s

β ρ− −
=

− ℓ
.  (3.1) 

 
Substituting, (3.1) into (2.6), we obtain: 

 

( ) ( )( )( )
( )( )( )

( )( )( )
( ) ( )

( )( )
( )

1

1

1
2

1 1

2

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1

1

Z

ts ts
P s

s t ts t ts

ts ts

ts t s t t

s
,

Ds

β ρ
β ρ

β ρ
β ρ β β ρ β

β ρ

− − −
=

−  + − − − − −  

− − −
=

 + −  −  + − +  +   

− −
=

−

ℓ ℓ

 (3.2) 

 
where, ρ2 = ρ1t and D = β + ρ2 (1−β). 

It follows from (3.2), that the rv Z has a MBG 
distribution with parameters β∈ (0, 1) and ρ

2∈[0, 1]. 

Conversely, assume that PZ(s) = PX1(s) where      

Y1∼ MBG(α, ρ). Hence, we have to show that PX1(s) is 
the pgf of MBG distribution. Replacing PZ (s) by PX1(s) 

in (2.6), yields in: (1−ts) PX1(ts[1−s{1−(1−t)PX1(ts)}] = 

PX1(s). Or: (1−ts)PX1(ts) = (1−s)PX1(s)+s(1−t)PX1(s)PX-

1(ts). 

Dividing both sides of this equation by (1−s)(1−ts) 
PX1(s) PX1(ts), we get: 
 

( ) ( )
( )

( )( ) ( ) ( )
1 1

11 1

1 1 1 1X X

s t

ts P ts s ts s P s

−
+ =

− − − −
. 

 
Now, using partial fractions for the middle term and 

using some manipulations, we can write Equation (3.3): 
 

( )
( )

( )
( )

1 1

1 1
X XP ts 1 P s 1

1 ts 1 s

− −− −
=

− −
  (3.3) 
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Or, H(ts) = H(s), where, ( ) ( )
( )
1

1 1

1
XP s

H s
s

− −
=

−
 . 

 
Putting s = 1, we get: 
 

( ) ( ) ( )
( ) ( )1

1

11

1
1 say

1
X

s

P s
H t H lim E X C,

s

−

→

−
= = = =

−
 

 
Therefore, the solution of (3.3) is given by: 
 

( ) ( )
1

1
1 1XP s C s

−
=  + −   . 

 
Choosing C = β/(1−β){1−[α+(1−α)ρ]ρ1}and 

 recalling that α + (1−α)ρ = t, we finally get: 
 

( ) ( )( )
( )1

11 1

1X

s
P s

s

β ρ− −
=

− ℓ
, 

 
where, ℓ  = ρ1+(1−ρ1)β. 

Which is the pgf of the MBG(β, ρ1) distribution. 

Hence X1∼MBG(β, ρ1).                                                 
This completes the proof of Theorem 1. 

Remark 2 

It follows from Theorem 1 that when X1 has the MBG 
distribution then the random sum Z and the summands 
have distributions of the same type and in this case the 
summands are called N-sum stable (Satheesh et al., 2002). 
This result is valid, also, as a consequence of the fact that 
geometric random sums are stable in the same sense. 

Another characterization for the MBG distribution can 
be obtained in terms of the expected values of  Z and X1. 

Theorem 2 

Let Y1 have a MBG distribution with parameters 
α∈(0,1) and ρ∈[0,1] and consider A ={(α, ρ): α∈ (0, 1), 
ρ∈ [0, 1]}. Then X1 has a MBG(β, ρ1) distribution if and 

only if ∀(α,ρ)∈A, E(Z) =β/ (1−β)(1−ρ2)], where ρ2 = ρ1 t 

and t = ρ + (1 −ρ)α. 

Proof 

If X1∼MBG(β, ρ1) for some (β, ρ1) ∈A, then it follows 

from Theorem 1 that Z∼MBG(â, ρ2), where ρ2 = ρ1 t and      

t = ρ + (1 −ρ)α. Consequently, E(Z) = β/[(1−β)(1−ρ2)]. 

Conversely, suppose that: E(Z) = β/[(1−β)(1−ρ2)] for 

some(β, ρ1) ∈A. 
Then from (2.7), we have: 

 

( )( )
( )

( ) ( )
1

12

1

1 1 1
X

X

P t

t P t

β
β ρ

−
=

− − −
. 

 

Solving this equation with respect to PX1(s), one has: 

 

( ) ( )( )
( ) ( )

1

11 1

1X

t
P t , , A.

t

β ρ
α β

− −
= ∀ ∈

− ℓ
 

 

Which is the pgf of the MBG (β, ρ1) distribution. 

Hence X1∼MBG(β, ρ1). 
This completes the proof of Theorem 2. 

The following theorem expresses the relation 
between the distribution of Z and the distribution of the 
truncating process {Yn}.  

Theorem 3 

Let X1 have a MBG(β,ρ1) distribution for some 

parameters β∈(0,1) and ρ1∈[0,1] and  let  Y1  satisfy  q0 

= P(Y1 = 0) < 1. Then  1

d

Z X= if and only if Y1 follows a 

MBG distribution. 

Proof 

     Since X1∼MBG(β, ρ1), for some β∈(0, 1) and ρ∈[0, 1], 
then: 
 

( ) 1

1 0

1 1 2k k

, k
p

k , ,...,

β
β −

− =
=  − = ℓ ℓ

 

 
where, ℓ  = ρ1+(1−ρ1)β. 

Proceeding as in Corollary 2, one has: 
 

( )

( )( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1

1

0

1 0 1 0 1

0 1

1
1

2 1

1 1 1

1
[ 1 1 ],

1

k

Y

k

k k

k

k

P s p s q

q s q s

q s q P s
s

γ

γ

γ

γ

γ
β β

β
ρ ρ β ρ

∞ ∞

= = +

−∞
−

= =

=

= − − + −

−
= − − − − −

−

∑ ∑

∑ ∑ℓ ℓ

ℓ ℓ ℓ
ℓ ℓ

  (3.4) 

 
and: 
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( )

( ) ( ) ( )
1 1

1 k

0 k Y 0 Y

k

k 0 k

k

k 1

Q s p s p

1
q q s P s q 1

γ

∞ ∞

= γ =

∞

=

=

β
 = + = β + ρ − β 

∑ ∑

∑ ℓ ℓ
ℓ ℓ

  (3.5) 

 
Substituting (3.4) and (3.5) into (2.2), we obtain: 

 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )
( )( ) ( )( )

1

1

1

1

1 0 1 0 1

1 0

1 1 1 0 1 0 1

1 0

1 11

1 1

1 1 11

1 1 1 1

Y
Z

Y

Y

Y

q q s P s
P s

s q P s

q q s P s

s q P s

ρ ρ β ρβ
ρ β β

ρ ρ β ρ ρ β ρβ
ρ β β

 − − − − −−
=  

− − − −  

 + − − − − − −−
 =

− − − + −  

ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ

 (3.6) 

 

Now assume that 1

d

Z X= , then PZ (s) = PX1(s). 

Consequently, equating (3.1) and (3.6) and then 
solving for ( )

1YP sℓ , we get: 
 

( ) ( )
( )1

0 1 01

1Y

q q s
P s

s

β ρ β
β

+  − −  =
−

ℓ  

 
From which we finally have: 

 

( )
( ) ( ){ }

( )1

1

0 0 1 0
1

1

1 1 1

1
Y

q q q s
P s

s

ρ ρ β− −

−

 − − − =
− ℓ

.  

 
Which is the pgf of a MBG(γ, ρ2) distribution with,   

γ = 1−q0 and ρ2 = (ρ q0) [1−ρ1β−1(1 − q0)]. 
Hence Y1∼MBG(γ, ρ2). 
The “only if” part of the proof follows directly by 

applying Theorem 1. 
This completes the proof of Theorem 3. 

Remark 3 

The results of (Khalil et al., 1991) follow as special 
cases from our corresponding results when the MBM 
(1.1) reduces to the independence case by putting the 
correlation parameter ρ = 0. 

4. CONCLUSION 

In this study three characterizations for the Markov-
Bernoulli geometric distribution are proved. These 
results extend the corresponding characterizations of 
the geometric distribution. Further, the achieved results 
have a direct relevance to the stability problem of 
random sums of random variables. Moreover, the given 
characterization theorems will be useful, in 

understanding the missing link between the 
mathematical structure of Markov-Bernoulli geometric 
distribution and the actual behavior of some real world 
random phenomena. 
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