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ABSTRACT

The Markov-Bernoulli geometric distribution is obitad when a generalization, as a Markov process, of
the independent Bernoulli sequence of random vhasalis introduced by considering the success
probability changes with respect to the Markov ohaifhe resulting model is called the Markov-
Bernoulli model and it has a wide variety of apgtion fields. In this study, some characterizatians
given concerning the Markov-Bernoulli geometrictdizution as the distribution of the summation irde
of independent randomly truncated non-negativegertevalued random variables. The achieved results
generalize the corresponding characterizationsermireg the usual geometric distribution.
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1. INTRODUCTION application of stochastic processes and thus used b
numerous authors in, stochastic modeling (Switzer,
The Markov-Bernoulli Geometric (MBG) distribution 1967; 1969; Pedler, 1980; Sathees#t al, 2002;
has been obtained by Anis and Gharib (1982) irudyst Ozekici and Soyer, 2003; Xekalaki and Panaretos,
of Markov-Bernoulli sequence of random variablags)r ~ 2004; Arvidsson and Francke, 2007; Netnal, 2008;
introduced by Edwards (1960), who generalized thePachecoet al, 2009; Doubleday and Esunge, 2011,
(usual) independent Bernoulli sequence of rv's by Pires and Diniz, 2012).
considering the success probability changes wisheet Let X, X,,... be a sequence of Markov-Bernoulli
to a Markov chain. The resulting model is calle@ th rv’s with the following matrix of transition
Markov-Bernoulli Model (MBM) or the Markov Pprobabilities Equation (1.1):
modulated Bernoulli process (Ozekici, 1997). Many
researchers have been studied the MBM from thewari X.
aspects of probability, statistics and their atlans, in 0 . 1 (1.1)
particular the classical problems related to theals '
Bernoulli model (Anis and Gharib, 1982; Gharib and , 0 1-(1-p)p (1-p)p
Yehia, 1987; Inal, 1987; Yehia and Gharib, 1993; ""1|(1-p)(1-p) p+(1-p)p|
Ozekici, 1997; Ozekici and Soyer, 2003; Arvidssod a
Francke, 2007; Omest al, 2008; Maillartet al,, 2008;

Pachecoet al, 2009; Cekanavicius and Vellaisamy,  and initial distribution:
2010; Minkova and Omey, 2011). Further, due to the
fact that the MBM operates in a random environment P(X,=1)= p= 1-P(X =0

depicted by a Markov chain so that the probabitity

success at each trial depends on the state of the

environment, this model represents an interestingwhere, <p<1and(x p<1.

Corresponding Author: Mahmoud M. Ramadan, Department of Marketing Admiatgin, Community College, Taif University
Saudi Arabia

///// Sdence Publications 186 IMSE




Mohamed Gharitet al. / Journal of Mathematics and Statistics 10 (88-191, 2014

The sequenceX} with the transition matrix (1.1) and
the above initial distribution is called the MBM.H;, i =
0, 1 are the states of the Markov system givenlhi)(
then the parametelp which is usually called the
persistence indicator df,, is the correlation coefficient
betweenX; andX;.;, i =1, 2,... (Anis and Gharib, 1982).

If N is the number of transitions for the system
defined by (1.1) to be i&; for the first time themN has
the MBG distribution given by Equation (1.2):

B k=0

P(N=K)=p=] "
(N=K = p= a(l-t)t k=1,

(1.2)

where:
o=1-pandt=p +(I-p)a=a+(-a)p.

The MBG distribution (1.2) will be denoted by
MBG(a, p) and we shall writd\CMBG(a, p). LetPy(s) =
E(s”) be the probability generating function (pgf) of a
integer valued random variablg [si<1.

The pgf ofN is given, using (1.2), by Equation (1.3):

PN(S):i n s :7(1_6’)(1_'05) .

i (1.3)

k=0

P(N-1= k) = p* (1), k = 0,1,2,..., i.e.N-1 has a
geometric distribution with parameter

Remark 1

If the sequenceX,, n>1} follows the MBM (1.1),
where the event §; > Y))} indicates the stat&, and

the event {¥<Y;)} indicates the statée;, with the
initial distribution:

P(X,2Y)= pand { X< Y)=1- |

Then the rv N (the smallest number of transitions
for the system to be in statg, for the first time)
wouldhave the MBG distribution defined by (1.2)
(Anis and Gharib, 1982) Equation (2.1):

Define:

Z:Ni\(k + X (2.2)
k=0

where, for convenienc¥, = 0. The rvZ is the random
sum of truncated rv’'s (Khalgét al, 1991).
It is known that the pgP,(s) of Z is given by

Few authors have treated the characterization(Kha|i| et al, 1991) Equation (2.2 to 2.5):

problem of the MBG distribution (Yehia and Gharib,
1993; Minkova and Omey, 2011).

In this study some new characterizations are gigen
the MBG distribution by considering it as the

distribution of the summation index of a random sum Where:

of randomly truncated non-negative integer valued
rv's. The scheme of geometric random sum of

randomly truncated rv's is important in reliability
theory, especially in the problem of optimal total
processing time with checkpoints (Dimitrost al.,
1991). The achieved results generalize those ginen
(Khalil et al.,, 1991).

2. RANDOM SUM OF TRUNCATED
RANDOM VARIABLES

Consider a sequenceX{ n>1} of independent
identically distributed (iid) non-negative integealued
rv’s with probability mass function (pmf) Op, = P(X; =
k;k=0,1,2, ....

Let {Y, n>1} be another sequence of iid non-
negative integer valued random variables, ingepsnafe
{Xa}, with pmf g= P(Y1=K); k=10, 1, 2,...,> g, =1.
{Y.} is called the truncating process. k=0

Putp = P(X:>Y) and assume Og:<1. Let

N = inf {k>1: X,<Y,}. Clearly,
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R(s)=R(9 [1- 3], (2.2)
RI=E{ S (%< Y=} 53 23)
Q(s)= E[S‘1 (%= \{)]=Z:=O g %Z;:k P (2.4)
andl(A) is the indicator function of the sat
Corollary 1

E(Z) — (2k=0kg<2y:k+lq/) (25)

(1_ z(::okokz::ku py)

The result is immediate sin€€Z) = Pz (1).

Corollary 2

If the truncating processyf} is such thatY,~MBG(«,

p), for al1(0,1) andpJ[0, 1]. Then the pgf o is given by
Equation (2.6 and 2.7):
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(1-19) R, (19

PZ(S):[l—{l—(l—t)le(ts)} s]

_ aP, (19 (2.6)
[ bepen ]
and:
1. (Y)] 2.7)

1-1)R ()]

wheret = p+(1-p)a.
Pr oof
SinceY,~MBG(q, p), then:

k=0
k=1.2....

P(Y,=K= q:{;(_li)tk—l ’

Hence, using (2.3), we have Equation 2.8 and 2.9:

R(9=2 RED

(2.8)

= poiqy*'égé( i g=a R (13,

y=1 y=k+1

and, using (2.4), we have:

=(-a)+a(1-1)sY p Y (19 (2.9)

Substituting the expressions Bf(s) and Q.(s) given
respectively by (2.8) and (2.9) into (2.2), we (&6).
E(2) is obtained readily from (2.5) or (2.6).

3. CHARACTERIZATIONS OF THE MBG
DISTRIBUTION

Consider the random sum given by (2.1).

Theorem 1

Let Y,
parameters (0, 1) andel][0, 1] and letX; satisfyP(X;
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have a MBG distribution with some

= 0)<1. TherZ has the same distribution s (Zi X,) if
and only ifX; has a MBG distribution.

Pr oof

Assume that,[MBG(S, p,), for someJ(0, 1) and
/0[O0, 1}i.e.;:

[1-8. k=0
pk—{,@(l—/,)/,k‘l, k=12,...

where, ¢ = pi+(1-p) . Then the pgf o, is given by
Equation (3.1 and 3.2):

p, (9=07Al-As) ﬁ)_(lg;)”l ). (3.)

Substituting, (3.1) into (2.6), we obtain:

P, (9)-= (1-B)(1-ts)(1- pts)
T =g 1+t rts— (1- 9(1- B) (- pytg
_ (1- B)(1-ts)(1- pts) (3.2)
t’[ B+ pt(1-B)]- 4 B+ p{1-B) + t]+1
_(1-B)(1-ps)
(1-Ds) '

where,p, = pit andD = 8+ p, (1-5).

It follows from (3.2), that the nZ has a MBG
distribution with parametey8! (0, 1) ando,[J[0, 1]-

Conversely, assume tha®,(s) = Px,(s) where
Y:0MBG(a, o). Hence, we have to show tHat,(s) is
the pgf of MBG distribution. Replacing; (s) by Px,(s)
in (2.6), yields in: (&ts) Py, (ts[1-s{1-(1-t)Px,(ts)}] =
Px,(5). Or: (I-ts)Px,(ts) = (1-5)Px,(S)+s(1-1)Px,(s)Px-
J(ts).

Dividing both sides of this equation by—&(1-ts)
Px,(S) Px,(ts), we get:

1 N s(1-9 _ 1
(1-ts)R (19 (1-9(1- % (- B R(F

Now, using partial fractions for the middle terndan
using some manipulations, we can write EquatioB)(3.

R, M(t9-1 B™(§-:

T3

= (3.3)
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L
Or, H(ts) = H(s), where, H (s)szl(lfs‘s))l
Puttings = 1, we get:
P, (s)-1
H(t)=H (1):“ms»1¢:E(Xl)=Csay

(1-5)

Therefore, the solution of (3.3) is given by:
R, (9)=[1+ c(1- 9]"

ChoosingC = A(1-p{1-[a+(1-a)pl p,}and
recalling thato + (1-a)p =t, we finally get:

_(1-8)(1-p3)

P (S)-w ,

where, ¢ = o +(1-p)B.

Which is the pgf of the MBQ@, p,) distribution.
HenceX,[MBG(8, p,).
This completes the proof of Theorem 1.

Remark 2

It follows from Theorem 1 that wheXy, has the MBG
distribution then the random sui and the summands
have distributions of the same type and in thie dhe
summands are callédsum stable (Satheeshal, 2002).
This result is valid, also, as a consequence ofatiethat
geometric random sums are stable in the same sense.

Another characterization for the MBG distributioanc
be obtained in terms of the expected valueg ahdX;.

Theorem 2

Let Y; have a MBG distribution with parameters
al1(0,1) andp][0,1] and consideA ={(a, p): ad (0, 1),
A0 [0, 1]}. ThenX; has a MBG§, p,) distribution if and

only if O(a,QUA, E(Z) =4 (1-p)(1-p,)], wherep, = p; t

Conversely, suppose th&(Z) = A[(1-H(1-p,)] for
someg, o,) DA.
Then from (2.7), we have:

B _ 1- le(t)

(1-B)(1-p2) (3-1)R (1)

Solving this equation with respectfg,(s), one has:

(1)= (1-B)(1-pt)

& (1-1t)

X1

,O(a.B)0A.

Which is the pgf of the MBGS( p,) distribution.
HenceX,[(MBG(p, p,).

This completes the proof of Theorem 2.

The following theorem expresses the relation
between the distribution of Z and the distributiminthe
truncating process¥}.

Theorem 3
Let X; have a MBGgp,) distribution for some
parametergd](0,1) andp;,[J[0,1] and letY; satisfy q,
d
=P(Y, = 0) < 1. Then Z= X if and only ifY; follows a
MBG distribution.
Pr oof

SinceX,[MBG(S, p,), for some(0, 1) ande[0, 1],
then:

_[1-5, k=0
P pa- o)t k=12...,

where, ¢ = p+(1-0)0.
Proceeding as in Corollary 2, one has:

R(9=2 ¢ g

k=0 y=k+1

andt=p+ (1-0 SR NI CD I Y (E R )
Proof (-7 e
If X,CMBG(B, p,) for some G, o) UA, then it follows :/5(1— (s) (== ts0(1-a) - A(1-p) B(* )
from Theorem 1 thaZ[MBG(&, p,), wherep, = p, t and
t=p+ (1-p)a. Consequently=(2) = A[(1-H(1-p,)]. and:
% Science Publications 189 IJMSS
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i i understanding the missing link between the
Ql(s)zk;pKéy; R mathematical structure of Markov-Bernoulli geometri
Be 1 (3.5) distribution and the actual behavior of some reatlev
:q°+?kzlqk(£s) =;[B R.(£3+ go,,( £P)] random phenomena.

Substituting (3.4) and (3.5) into (2.2), we obtain: 5. REFERENCES
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