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ABSTRACT 

This study introduces a new two-parameter mixed Poisson distribution, namely Poisson-Weighted 
Exponential (P-WE), which is obtained by mixing Poisson distribution with a new class of weighted 
exponential distribution. The new P-WE distribution provides a more flexible alternative for modelling 
over dispersed count data compared to Poisson distribution. The estimation procedures of P-WE distribution 
via method of moments and maximum likelihood are provided. This study also introduces P-WE regression 
model which can be fitted to over dispersed count data with covariates. The P-WE distribution and P-WE 
regression model are fitted to two sets of count data. 

 
Keywords: Mixed Poisson, Weighted Exponential, Poisson-Weighted Exponential, Count Data, 

Regression Model 

1. INTRODUCTION 

Mixed distribution can be considered as one of 
important approaches for obtaining a new distribution 
for count data in statistics and probability studies. In 
particular, mixed Poisson and mixed negative 
binomial distributions provide a more flexible 
alternative for modelling over dispersed count data 
compared to Poisson distribution. Examples of mixed 
Poisson and mixed negative binomial distributions are 
negative binomial which is a mixture of Poisson and 
gamma (Klugman et al., 2008; Lawless, 1997), 
negative binomial-Pareto (Klugman et al., 2008; 
Meng et al., 1999), Poisson-inverse Gaussian 
(Klugman et al., 2008; Tremblay, 1992), Poisson-
Lindley (Sankaran, 1970; Ghitany et al., 2008), 
negative binomial-inverse Gaussian (Gomez-Deniz et al., 
2008), negative binomial-beta (Wang, 2011) and 
negative binomial-lindley (Hossein and Ismail, 2010; 
Lord and Geedipally, 2011).Several applications of 
mixed Poisson distributions for fitting real data are 
discussed in Karlis and Xekalaki (2005). 

This study introduces a new two-parameter mixed 
Poisson distribution, namely Poisson-Weighted 
Exponential (P-WE), which can be considered as an 
alternative for modelling over dispersed count data. The 
contents of this study are as follows. In section 2, we 
study the basic properties of the new P-WE distribution. 
Section 3 illustrates the estimation of parameters via 
method of moments and maximum like lihoodprocedure, 
section 4 introduces the new P-WE regression model 
which is applicable to over dispersed count data with 
covariates. The application of P-WE distribution and P-
WE regression model on two sets of count data are 
provided in section 5. Finally, several conclusions are 
presented in section 6. 

2. MATERIALS AND METHODS 

2.1. P-WE Distribution 

A new class of two-parameter Weighted Exponential 
(WE) distribution was recently introduced by Gupta and 
Kundu (2009) and the p.d.f. is: 
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where, is the shape parameter and   the scale parameter 
new WE distribution, which was obtained froman idea 
suggested by Azzalini (1985) who introduced a shape 
parameter for several symmetric distributions, was 
proposed by Gupta and Kundu (2009) who introduced a 
shape parameter to exponential distribution which 
belongs to non-symmetric distributions. In several cases, 
the new WE distribution provides better fit than weibull, 
gamma or generalized exponential distributions. The 
new WE distribution can also be represented as a sum of 
two independent exponential distributions. 

Assume that the conditional random variable X|λ is 
Poisson distributed with p.m.f.,: 
 

xe
Pr(X x | ) ,      x 0,1

x!

−λλ= λ = =  

 
And the random variableΛis distributed as WE with 

p.d.f.: 
 

1
u( ) e (1 e ),      0,   , 0−βλ −αβλα +λ = β − λ > α β >

α
 

 
The p.m.f. of P-WE distribution is Equation (1): 
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The m.g.f. of P-WE distribution is Equation (2): 
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Which is equivalent to the sum of two geometric 

distributions, each with probability
1

β
β +

and
1

αβ + β
αβ + β +

. 

Therefore, P-WE distribution can be represented, X = 

Y +Z, where Y ~ Ge
1

 β
 β + 

 and Z ~ Ge
1

 αβ + β
 αβ + β + 

 

Since the P-WE distribution is a convolution of 
two geometric distributions, it is a special case of a 

general family of distributions examined by Kemp 
(1979) involving convolutions of binomial and 
pseudo-binomial variables. Several models from this 
family of distributions, such as Non-central Negative 
Binomial (NNB), Generalized Non-central Negative 
Binomial (GNNB) and Binomial-Binomial (BB) 
distributions, were discussed in more details in Kemp 
(1979) and Ong (1995). 

The mean and variance are easier to be obtained by 
using MX (t). The mean and variance respectively are 
Equation (3 and 4): 
 

1 1
E(X) 1

1
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 (3) 

 
And: 
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Since α>0, this condition implies that 

2
2 2

2

2 2
 

4 4

α + α +σ = µ + µ
α + α +

 or σ2 = µ(1+aµ), where 0.5<α<1 

is the dispersion index. 
The coefficient of variation is 
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1 2 CV< < ∞ . The skewness is given by 
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Figure 1 and 2 show the coefficient of variation 

and skewness of P-WE distribution as functions of z = 
g (x = α, y = β). Figure 3-6 show several examples of 
p.m.f. of P-WE distribution, indicating that the 
distribution can be considered as an alternative for 
over dispersed count data. 

2.2. Parameter Estimation: Method of Moment 
Estimators 

Assume that x1,x2,…,xn are sample data of size n 
distributed as P-WE with p.m.f. (1). The Method of 
Moment (MM) estimators of α and β can be obtained by 
equating the sample and theoretical moments 

n

1 i
i 1

1
m x

n =

= ∑ and 
n

2
2 i

i 1

1
m (x x)

n =
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Fig. 1. Graph of coefficient of variation 
 

 
 

Fig. 2. Graph of skewness 
 

 
 
Fig. 3. P.m.f. for P-WE (α = 10, β = 2)  
 

 
 
Fig. 4. P.m.f. for P-WE (α = 15, β = 2) 

 
 
Fig. 5. P.m.f. for P-WE (α = 2, β = 10)

  
 

 
 
Fig. 6. P.m.f. for P-WE (α = 15, β = 2) 
 

The closed forms for the MM estimators can be 
obtained and they are Equation (5 and 6): 
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And: 

 
2

2 1 1m m am= +  (6) 

 
Condition 0α >ɶ in (4) requires 2

2 1 1m m am= + , where 

0.5<α<1. Therefore, the MM estimator βɶ  can be 

calculated from (5) if and only if 2
2 1 1m m am= + , where 

0.5<α<1. 

2.3. Parameter Estimation: Maximum 
Likelihood Estimators 

The log-likelihood of P-WE distribution is:  

 

n
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By taking the partial derivatives with respect to α and 

β and equating them to zero, we obtain: 
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where, the Maximum Likelihood (ML) estimators can 
be solved numerically using MM estimators as initial 
values. 

2.4. P-WE Regression Model 

The new P-WE regression model can be derived 
using different parameterization of P-WE distribution. 

Let α = ν-1 and
i

1 v

v

+β =
µ

. The p.m.f. of P-WE 

distribution can be reparameterized as Equation (7):  
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With mean E(Yi) = µi and variance 

2
2

i i i2

1 v
Var(Y )

(1 v)

+= µ + µ
+

, where ν>1and µi>0. 

The  covariates can be incorporated via a log link 
function, T

i i i iE(Y ) e exp(x β)= µ = , where ei denotes the 
exposure, xi the vector of covariates and β the vector of 
regression parameters. Hence, the log likelihood of P-
WE regression model is: 
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i
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∑
 

 
The ML estimators of β and ν can be obtained by 

maximizing the log likelihood. 
The new P-WE regression model can be compared 

with other regression models for count data with 
covariates such as Poisson, Negative Binomial (NB) 
and Generalized Poisson (GP). In actuarial literature as 
well as insurance practice, Poisson regression model 
has been widely used for modeling claim count data. As 
examples, (Nasr-Esfahani et al., 1990; Renshaw et al., 
1994) respectively fitted Poisson regression model to 
two different sets of U.K. motor claim count data.  

For handling over dispersion, several regression 
models such as NB and GP have been suggested. Several 
parameterizations have been performed for NB 
regression models and the two well known models, 
referred asNB-1 and NB-2 in Greene (2008), have been 
developed and applied (Cameron and Trivedi, 1986; 
Lawless, 1987; Ismail and Jemain, 2007; Zulkifli et al., 
2013). Several parameterizations have also been 
performed for GP regression models and the two well 
known models, referred as GP-1 and GP-2 in Yang et al. 
(2009), have been developed and applied (Consul, 1989; 
Ismail and Jemain, 2007; Ismail and Zamani, 2013).  
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3. RESULTS 

Example 1 

An insurance count data from Belgium in year 1993 
is considered (Denuit, 1997) for fitting Poisson, NB and 
P-WE distributions, using both ML and MM estimation 
procedures. It should be noted that the MM estimators of 
P-WE distribution can be calculated using closed formulas 
(5 and 6) as long as 2 2

2 1 1m  m am= + , where 0.5<α<1. 
Based on the sample data, m1 = 0.1057 and m2 = 0.1149, 
so that a = 0.8211. The chi-square and log likelihood are 
considered as comparison criteria. Table 1 provides the 
observed values, fitted values, estimated parameters, chi-
square and log likelihood. 

The results show that the PWE-MLE provides the 
largest log likelihood and the smallest chi-square. Even 
though the NB distribution is a strong competitor, the P-
WE distribution provides better performances because the 
log likelihood of PWE-MLE is larger than NB-MLE and 
the chi-square of PWE-MM is smaller than NB-MM.  

Example 2 

The US National Medical Expenditure Survey 
1987/88 (NMES) data from Deb and Trivedi (1997) is 
considered. The NMES data was used to model the 
demand for medical care, captured by the number of 

physician office visit and the number of hospital 
outpatient visit. For an illustration purpose, we use 
only the first 2000 data for fitting the regression 
models. Our response variable is number of physician 
visit (OFP) and the covariates are the number of 
Hospital Stays (HOSP), self-perceived health status 
(POORHLTH and EXCLHLTH), number of chronic 
conditions (NUMCHRON), gender (MALE), number 
of years of education (SCHOOL) and private 
insurance indicator (PRIVINS). Table 2 shows the 
mean and standard deviation of the selected variables, 
whereas Table 3 shows the parameter estimates, 
standard errors and t-ratios for the fitted models.  

The results show that the regression parameters for 
all models have similar estimates. As expected, NB-2, 
GP-2 and P-WE regression models provide similar 
inferences for the regression parameters where the 
absolute value of t-ratios are smaller than Poisson 
regression model. Comparison between the standard 
errors of regression parameters of NB-2, GP-2 and P-
WE regression models indicate that the standard errors 
of NB-2 and P-WE models are equal or smaller than 
GP-2 model, with the exception of regression variable 
EXCLHLTH. Based on the log likelihood, AIC and 
BIC, the P-WE regression model is the best model for 
fitting the US NMES count data. 

 
Table 1. Observed and fitted values (example 1) 

No. of accidents Frequency Poisson NB-ML NB-MM PWE-MLE
 

PWE-MM
 

0 57178 56949.52 57185.53 57197.08 57180.20 57195.95 
1 5617 6019.80 5583.45 5563.16 5592.08 5566.27 
2 446  318.16 485.86 492.69 482.14 490.05 
3 50 } = 11.51 } = 43.87 } = 46.37 } = 44.27 } = 46.37

 4 8      
Parameters  ˆ 0 .1057λ =  r̂ 1.2780=  r 1 .2179=ɶ  ˆ 5 .77 36α =  8.0683α =ɶ  
  - p̂ 0 .9236=  p 0 .9201=ɶ  

ˆ 10 .8518β =  10 .5035β =ɶ  
Chi-square  267.011 8.02 8.23 7.08 7.34 
Log likelihood  -22150.54 -22064.31 - -22063.76 - 

 
Table 2. Descriptive summary (example 2) 

Variable Measurement Mean Stddev 
OFP  Number of physician visit 6.046 7.561 
HOSP  Number of hospital stays  0.297 0.716 
POORHLTH  Self-perceived health status; poor = 1, else = 0  0.130 0.336 
EXCLHLTH Self-perceived health status; excellent=1, else = 0 0.071 0.257 
NUMCHRON  Number of chronic conditions  1.533 1.337 
MALE  Gender; male = 1, else = 0 0.408 0.491 
SCHOOL  Number of years of education 10.355 3.640 
PRIVINS  Private insurance indicator, yes = 1, no = 0 0.794 0.405 
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Table 3. Poisson, NB-2, GP-2 and P-WE regression models (example 2) 

Parameter Poisson   NB-2   GP-2   P-WE 

 ------------------------------------- -------------------------------- ------------------------------- --------------------- 

 est. s.e. t-ratio est. s.e. t-ratio est. s.e. t-ratio est. s.e. t-ratio 

Intercept 0.99  0.04  27.51  0.88 0.09 10.17 0.82 0.09 09.12 0.86 0.09 9.91 

HOSP  0.19  0.01  20.39  0.24 0.03 7.14 0.28 0.04 06.22 0.24 0.03 7.20 
POORHLTH  0.21 0.03 8.28 0.31 0.07 4.32 0.39 0.09 04.53 0.30 0.07 4.21 
EXCLHLTH -0.21 0.04 -4.84 -0.18 0.10 -1.92 -0.17 0.09 -1.80 -0.19 0.10 -1.96 

NUMCHRON  0.16 0.01 24.48 0.19 0.02 10.04 0.20 0.02 09.54 0.20 0.02 10.44 
MALE  -0.10 0.02 -5.31 -0.12 0.05 -2.52 -0.13 0.05 -2.54 -0.12 0.05 -2.59 
SCHOOL  0.03 0.00 12.19 0.04 0.01 5.29 0.04 0.01 05.29 0.04 0.01 5.37 

PRIVINS  0.15 0.02 5.85 0.14 0.06 2.28 0.15 0.07 02.27 0.16 0.06 2.65 
Dispersion  - - - a =  0.04 25.03 a = 0.01 30.08 v = 5.36 3.05 
    0.90   0.28    16.37 

Log likelihood  -8813.74   5607.195   -5614.72   5604.688 
AIC -17611.48   11196.39   -11211.44   -11191.38 
BIC -17566.67   11145.98   11161.03   11140.97 

 
4. CONCLUSION 

This study has introduced a new two-parameter 
mixed Poisson distribution, namely Poisson-Weighted 
Exponential (P-WE), which is obtained by mixing 
Poisson distribution with a new class of weighted 
exponential distribution. The P-WE distribution is 
suitable for over dispersed count data with variance 

2 2aσ = µ + µ , 0.5<α<1. 
Besides the univariate version, the regression model of 

P-WE distribution with mean E (Yi) = µI and variance 
2

2
i i i2

1 v
Var(Y )

(1 v)

+= µ + µ
+

, ν>1, µi>0, has been derived. 

For numerical illustrations, P-WE distribution was 
fitted using MM and ML estimation procedures to an 
insurance count data and the results were compared to 
MM and ML estimators of Poisson and NB distributions. 
Based on chi-square and log likelihood, the P-WE MLE 
provide the largest log likelihood and the smallest chi-
square. Considering the straight forward manner of 
obtaining the MM estimators using closed formulas, the 
P-WE distribution can be considered as an alternative for 
fitting over dispered count data. 

The P-WE regression model was fitted to the US 
NMES data. The regression model was compared to 
Poisson, NB-2 and GP-2 regression models and based 
on the log likelihood, AIC and BIC, the P-WE 
regression is the best model for fitting this data. 
Therefore, the P-WE regression model can also be 
considered as an alternative for fitting over dispersed 
count data with covariates. 
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