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ABSTRACT

This study introduces a new two-parameter mixeds$woi distribution, namely Poisson-Weighted

Exponential (P-WE), which is obtained by mixing &mn distribution with a new class of weighted

exponential distribution. The new P-WE distributiprovides a more flexible alternative for modelling

over dispersed count data compared to Poissoribdiitm. The estimation procedures of P-WE disttiitiu

via method of moments and maximum likelihood am@vjated. This study also introduces P-WE regression
model which can be fitted to over dispersed cowata dvith covariates. The P-WE distribution and P-WE
regression model are fitted to two sets of coutd.da

Keywords: Mixed Poisson, Weighted Exponential, Poisson-WeaidghtExponential, Count Data,
Regression Model

1. INTRODUCTION This study introduces a new two-parameter mixed

Poisson  distribution, namely  Poisson-Weighted

Mixed distribution can be considered as one of Exponential (P-WE), which can be considered as an
important approaches for obtaining a new distrilti  alternative for modelling over dispersed count datae
for count data in statistics and probability stedién  contents of this study are as follows. In sectionw@
particular, mixed Poisson and mixed negative study the basic properties of the new P-WE distidiou
binomial distributions provide a more flexible section 3 illustrates the estimation of parametees

alternative for modelling over dispersed count datamethod of moments and maximum like lihnoodprocedure,

compared to Poisson distribution. Examples of mixed gaction 4 introduces the new P-WE regression model

Poisson and mixed negative binomial distributiors a \\nich is applicable to over dispersed count datth wi

negative binomial which is a mixture of Poisson and ., riates The application of P-WE distributiord &+

gamma (Klugmanet al., 2008; Lawless, 1997), WE regression model on two sets of count data are

nMeegnatlveet bgomliggpgretopo(ilglsl:)%\r?r?\%rsae:.' ngl?gs;ian provided in section 5. Finally, several conclusiare
g 3 ), presented in section 6.

(Klugman et al., 2008; Tremblay, 1992), Poisson-
Lindley (Sankaran, 1970; Ghitangt al., 2008), 2 MATERIALSAND METHODS

negative binomial-inverse Gaussian (Gomez-Dehi., '

2008), negative binomial-beta (Wang, 2011) and . Cbrig b

negative binomial-lindley (Hossein and Ismail, 2010 2.1. P-WE Distribution

Lord and Geedipally, 2011).Several applications of A new class of two-parameter Weighted Exponential
mixed Poisson distributions for fitting real dateea (WE) distribution was recently introduced by Guptad
discussed in Karlis and Xekalaki (2005). Kundu (2009) and the p.d.f. is:
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general family of distributions examined by Kemp
(1979) involving convolutions of binomial and
pseudo-binomial variables. Several models from this
where, is the Shape parameter and the scale pmam famlly of distributions, such as Non-central Negati
new WE distribution, which was obtained froman idea Binomial (NNB), Generalized Non-central Negative
suggested by Azzalini (1985) who introduced a shapeBinomial (GNNB) and Binomial-Binomial (BB)
parameter for several symmetric distributions, was distributions, were discussed in more details inmige
proposed by Gupta and Kundu (2009) who introduced a(1979) and Ong (1995). , ,

shape parameter to exponential distribution which '"€ mean and variance are easier to be obtained by
belongs to non-symmetric distributions. In seveases, USING M« (). The mean and variance respectively are

the new WE distribution provides better fit thanilvg!, Equation (3 and 4):
gamma or generalized exponential distributions. The

f(x;a,B)=aT+1[3e"3X(1— ), x> 0,aB> |

new WE distribution can aI_so pe r_eprgsented asredu | - g(x) :1(“ 1 J (3)
two independent exponential distributions. BL o+l
Assume that the conditional random variabl@ ¥
Poisson distributed with p.m.f.,: And:
e\ 1 1 1 1
Pr(X=x|A)= ,  x=0/ 2 =21+ = 1 — 4
(x=x]))== o B[ a+1j BZ( (a+1)2] (@)

And the random variabfis distributed as WE with Since >0, this condition implies that

p.d.f.: )
o’ :p+a2La+2pz or 6 = p(1+au), where 0.8a<1
u()\):a_H'Be‘B?\ (1_ éaB)\ ) A> 0Q B> ) ) a +4:C1 +-4
a : ' is the dispersion index.
The coefficient of variation is
The p.m.f. of P-WE distribution is Equation (1): cv=9- \/([3 +1)(+1P +BE+ D)+ 1 where the range is
u a+2 '
a+1 “(x+ . .

Pr(X= X)=(%‘)B[(B+1) o ) 1/J2<cv<w. The skewness is given by

_W _(B+3P+2)+ DR+ I+ B+ D 2

~(ap+B+1)"*M],  x=0,1 y, =2 3
[(B+1)(a +1)° +B(a + D+ 1P

o
The m.g.f. of P-WE distribution is Equation (2):

Figure 1 and 2 show the coefficient of variation

N (a+1)B _(x+1) _ - (x+1)
Mx(® Xzzzse a G+1) Gp+p+D ) and skewness of P-WE distribution as functions ef z

B aB+pB 2 g(x=a,y=p). Figure3-6 s_how _sev_era_l examples of
_ B+1 af+p+1 p.m.f. of P-WE distribution, indicating that the
- S T distribution can be considered as an alternative fo
B+1 aB+p+1 over dispersed count data.

Which is equivalent to the sum of two geometric 2-2.Parameter Estimation: Method of Moment

o . " ap+p Estimators
distributions, each with probabllltaﬂ and——.
+1 ap+p+1 Assume that ¥x,...,x, are sample data of size n
Therefore, P-WE distribution can be represented; X distributed as P-WE with p.m.f. (1). The Method of
_ B _ aB+pB Moment (MM) estimators oft and3 can be obtained by
Y +Z, where'Y Ge[ ] and z G{GB+B+1] equating the sample and theoretical moments

Since the P-WE distribution is a convolution of mFEZn:X» and mzzlzn:(xb_y()z
ng n '

two geometric distributions, it is a special cageao =] =]
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Fig. 1. Graph of coefficient of variation
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Fig. 2. Graph of skewness
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B: m1+V2rT12_2m_ni (5)
m,-m, —

And:

m2:m1+ani (6)

Condition d@ >0in (4) requiresm,=m, + anf, where
0.5<0<1. Therefore, the MM estimatof3 can be
calculated from (5) if and only ifn,=m, + anf, where
0.5<0<1.

2.3. Parameter Estimation: Maximum

Likelihood Estimators
The log-likelihood of P-WE distribution is:

InL(a,B) =4(a,B)=nin(a+21)- nina + ninB

#3In(+1) Y - @B B 4 ),

By taking the partial derivatives with respecttand
B and equating them to zero, we obtain:

0 n n
—l(ap) =———-—
da (@.B) a+l o

N (x +D@BHB+Y TP
+Biz=1: B+1) V- @p+p+1 D 0

And:
0 _n
a—Bf(G,B)—B

_i (X +D(B+ l)_(xi 2 @ +DEB+p+ 1)‘(Xi +2) )
@E+1) N —@B+p+1yH Y =

i=l

0

where, the Maximum Likelihood (ML) estimators can
be solved numerically using MM estimators as ihitia
values.

2.4. P-WE Regression M odel

Let a = v-1 and3= 1\;\/ . The p.m.f. of P-WE
distribution can be reparameterized as Equation (7)
Pr(Y, =¥, iH,V)
~(3%;+1) - +D)
__1+v [l+ 1+ v] _[1+ 1+ v] , @)
Hi(v=1) VI Hi
y; =0,1,2
With mean E(Y = | and variance
2
Var(Y,)) =y, + 1+v -1, wherev>landy;>0.

1+v)
The covariates can be incorporated via a log link
function,E(Y,) =, =¢ exp(Xp), where e denotes the
exposure, xthe vector of covariates arfidthe vector of
regression parameters. Hence, the log likelihoodP-of
WE regression model is:

log L(y;:B,v) =
log(+ v)—log, )~ log(v-1)

=(y; +1) -(y +1)
Zi“+log[[l+—l+ VJ —(1+—l+ Vj ]
VH; M

The ML estimators off andv can be obtained by
maximizing the log likelihood.

The new P-WE regression model can be compared
with other regression models for count data with
covariates such as Poisson, Negative Binomial (NB)
and Generalized Poisson (GP). In actuarial litesaas
well as insurance practice, Poisson regression mode
has been widely used for modeling claim count das.
examples, (Nasr-Esfahaai al., 1990; Renshawt al.,
1994) respectively fitted Poisson regression mddel
two different sets of U.K. motor claim count data.

For handling over dispersion, several regression
models such as NB and GP have been suggestedaSever
parameterizations have been performed for NB
regression models and the two well known models,
referred asNB-1 and NB-2 in Greene (2008), havenbee
developed and applied (Cameron and Trivedi, 1986;
Lawless, 1987; Ismail and Jemain, 2007; Zulleflial.,
2013). Several parameterizations have also been
performed for GP regression models and the two well
known models, referred as GP-1 and GP-2 in Yeira.

The new P-WE regression model can be derived(2009), have been developed and applied (Cons8B;19

using different parameterization of P-WE distrilounti
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3.RESULTS

Example 1

An insurance count data from Belgium in year 1993
is considered (Denuit, 1997) for fitting PoissorB End
P-WE distributions, using both ML and MM estimation
procedures. It should be noted that the MM estirsatd
P-WE distribution can be calculated using closethfdas
(5 and 6) as long asn> =m, +anf, where 0.50<1.
Based on the sample data, m0.1057 and m= 0.1149,
so that a = 0.8211. The chi-square and log likelihare
considered as comparison criteriaable 1 provides the
observed values, fitted values, estimated paras)ethi-
square and log likelihood.

The results show that the PWE-MLE provides the
largest log likelihood and the smallest chi-squdteen
though the NB distribution is a strong competitbe P-
WE distribution provides better performances beedhs
log likelihood of PWE-MLE is larger than NB-MLE and
the chi-square of PWE-MM is smaller than NB-MM.
Example 2

The US National

Medical Expenditure Survey

physician office visit and the number of hospital
outpatient visit. For an illustration purpose, weeu
only the first 2000 data for fitting the regression
models. Our response variable is number of physicia
visit (OFP) and the covariates are the number of
Hospital Stays (HOSP), self-perceived health status
(POORHLTH and EXCLHLTH), number of chronic
conditions (NUMCHRON), gender (MALE), number
of years of education (SCHOOL) and private
insurance indicator (PRIVINS)Table 2 shows the
mean and standard deviation of the selected vasabl
whereas Table 3 shows the parameter estimates,
standard errors and t-ratios for the fitted models.

The results show that the regression parameters for
all models have similar estimates. As expected, \B-
GP-2 and P-WE regression models provide similar
inferences for the regression parameters where the
absolute value of t-ratios are smaller than Poisson
regression model. Comparison between the standard
errors of regression parameters of NB-2, GP-2 and P
WE regression models indicate that the standamt®rr
of NB-2 and P-WE models are equal or smaller than
GP-2 model, with the exception of regression vddab

1987/88 (NMES) data from Deb and Trivedi (1997) is EXCLHLTH. Based on the log likelihood, AIC and
considered. The NMES data was used to model theB!C, the P-WE regression model is the best model fo
demand for medical care, captured by the number offitting the US NMES count data.

Table 1. Observed and fitted values (example 1)

No. of accidents Frequency Poisson NB-ML NB-MM PWEE PWE-MM
0 57178 56949.52 57185.53 57197.08 57180.20 57495.9
1 5617 6019.80 5583.45 5563.16 5592.08 5566.27
2 446 318.16 485.86 492.69 482.14 490.05
3 50 }=1151 }=43.87 }=46.37 }=44.27 =4
4 8
Parameters A =0.1057 f=1.2780 F=1.2179 d =5.7736 G =8.0683

- p=0.9236 p=0.9201 =10.8518 f=10.5035
Chi-square 267.011 8.02 8.23 7.08 7.34
Log likelihood -22150.54 -22064.31 - -22063.76 -
Table 2. Descriptive summary (example 2)
Variable Measurement Mean Stddev
OFP Number of physician visit 6.046 7.561
HOSP Number of hospital stays 0.297 0.716
POORHLTH Self-perceived health status; poor =ldg & 0 0.130 0.336
EXCLHLTH Self-perceived health status; excellentelse = 0 0.071 0.257
NUMCHRON Number of chronic conditions 1.533 1.337
MALE Gender; male =1, else =0 0.408 0.491
SCHOOL Number of years of education 10.355 3.640
PRIVINS Private insurance indicator, yes = 1, no = 0.794 0.405
////4 Science Publications 152 JMSS
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Table 3. Poisson, NB-2, GP-2 and P-WE regression modetmnfple 2)

Parameter Poisson NB-2 GP-2 P-WE

est. s.e. t-ratio est. s.e. t-ratio est. s.e. tiera est. s.e. t-ratio
Intercept 0.99 0.04 27.51 0.88 0.09 10.17 0.82 .090 09.12 0.86 0.09 9.91
HOSP 0.19 0.01 20.39 0.24 0.03 7.14 0.28 0.04 6.220 0.24 0.03 7.20
POORHLTH 0.21 0.03 8.28 0.31 0.07 4.32 0.39 0.09 45® 0.30 0.07 421
EXCLHLTH -0.21 0.04 -4.84 -0.18 0.10 -1.92 -0.17 09D. -1.80 -0.19 0.10 -1.96
NUMCHRON 0.16 0.01 24.48 0.19 0.02 10.04 0.20 0.02 09.54 0.20 0.02 10.44
MALE -0.10 0.02 -5.31 -0.12 0.05 -2.52 -0.13 0.05 -254 -0.12 0.05 -2.59
SCHOOL 0.03 0.00 12.19 0.04 0.01 5.29 0.04 0.01 295 0.04 0.01 5.37
PRIVINS 0.15 0.02 5.85 0.14 0.06 2.28 0.15 0.07 202 0.16 0.06 2.65
Dispersion - - - a= 0.04 25.03 a= 0.01 30.08 v= 5.36 3.05

0.90 0.28 16.37
Log likelihood -8813.74 5607.195 -5614.72 05688
AlC -17611.48 11196.39 -11211.44 -11191.38
BIC -17566.67 11145.98 11161.03 11140.97
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