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ABSTRACT

This study presents an analysis of a one-Dimenbk{diny time dependent wave equation from a vibigtin
guitar string. We consider the transverse displardgnof a plucked guitar string and the subsequent
vibration motion. Guitars are known for productiohgreat sound in form of music. An ordinary string
stretched between two points and then plucked doeproduce quality sound like a guitar string. ditgr
string produces loud and unique sound which caorpenized by the player to produce music. Whetkéds
origin of guitar sound? Can the contribution offegart of the guitar to quality sound be accourfitedby
mathematically obtaining the numerical solutionwave equation describing the vibration of the guita
string? In the present sturdy, we have solved the@ewequation for a vibrating string using the &nit
different method and analyzed the wave forms féfedint values of the string variables. The ressittaw
that the amplitude (pitch or quality) of the guiteave (sound) vary greatly with tension in thergfrilength

of the string, linear density of the string andoatm the material of the sound board. The appradma
solution is representative; if the step widlk;anddt are small, that is <0.5.

Keywords: Guitar String, Finite Differences

1. INTRODUCTION The string is a material made of several threadsead/

) ) o together. In this study, a string means a wirehraatd,

Ron (2002) defines a wave as, “A distortion in a nylon or any other synthetic material that is ttimpared

material or medium where the individual parts of th g jts length, stretchable between two points. &tuee, a

material only cycle back-and-forth or up-and-downf  gyitar string is any such material when used initag

th_e wave itself moves through the materlql”. Wameist A vibrating string is just a model of many objethat

widely in nature, such as electromagnetic wavesiand yiprates in nature. Most vibrations result into @awotion.

many other forms of mechanical waves. Waves caryag glready noted waves carry energy that can biectied
energy. The energy carried by a wave is evidemany ;. hyman benefits. The study of waves helps to ehod
ways. Seismic waves carry enormous amount of energy . ihinae that are useful in everyday life. Makic

that shake the earth resqltlng Into _earth quakes'instruments, engineering devices for weather fateca
Electromagnetic waves carry information in manynfer ) : . )
tsunami and earthquake detection devices as wélasis

enabling the use of communication through the r@gr o . S .
satellites, optical fibers and radios. The energymf communication de_wces. A vibrating sfring presentgtter
and an initial point to the study of waves becatise

microwaves is converted into thermal energy in . . - ; 7
microwave ovens. This study presents a mathematica¥@iables can easily be manipulated. The vibradéra
analysis of mechanical waves from a guitar strilgn ~ Stfing is time and space dependent, a typical ekawip
(2000) noted that, “electromagnetic, microwaves Multidimensional systems. Lutz and Rudolf (2000)edo
between the earth and communication satellitedt lig that “Multidimensional physical phenomena depending
waves in optical fibers are some of the ways incivhi time and space are commonly described by Partial
wave energy is utilized”. We can add that music is Differential Equations (PDEs). Technical applicatiof
another way of utilizing wave energy. PDEs include electro-magnetic, optics, acoustiesf land
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mass transfer”. We study a classical guitar stforgits T, cosf= T, cogp= T 1.1)
application in acoustics and entertainment.
1.1 The Guitar Applying Newton’s second law to vertical motion of

the string, that is;

A basic classical guitar consists of inter conngcte Resultant Force = masacceleration, implies that:
parts, these include: The head-containing the tupegs
and head nut for alignment. The neck-this has tifiegs N
which are plucked or strummed to vibrate and preduc T; Sin@=T1, sind = p Xﬁ'
sound, finger board and frets. The body-this casngi$
the soundboard, bridge and bridge rkig(1a). From Equation (1.1):

John (1999) says, “99% of the guitar sound conwen fr
the soundboard”. However, we have to note at thiatp T
that the soundboard is ‘forced’ to vibrate by thimg and it T = g®dh ~com’
vibrates at the same frequency as the string.guitar, the
mechanical energy used in plucking the stringassferred
into mechanical energy of vibration of the strifige string
forces the sound board to vibrate which in turndnait the

(1.2)

Substituting for Tand T, in Equation (1.2) gives:

vibration to the surrounding air. The vibration the air Ttang- Ttarb = pd x@ ' (1.3)
creates regions of low and high pressure. Thesgeteeted ot
by the human ear as souffdlg 1b). )
Using elementary calculus:
1.2. Wave Equation for a Vibrating Guitar String
In the present research, the word ‘string’ is regdiin [@J =tan9andta6@j - tap
the sence of ‘string matching’ algorithm as an efise o ), OX ) o
means for searching biological sequence databas@ass
used by Almazroi (2011), Al-mazroi and Rashid (2011 Substituting in Equation (1.3) gives:
Consider a single guitar string plucked from the
center and u(x, t) is the function describing anpoi 5u su au
along the stringKig. 2a-b). Kj —[—j }:paxz. (1.4)
T, and T, are tangential tensions at points x and X o \OXJy ot

x+0x respectively. Letp be mass per unit length of

the string (linear density). The linear density is  Equation (1.4) can be written as Equation (1.5):
constant throughout the string, Alan (2000). As the

wave propagates from point x to &< the horizontal 2
. . 1|(du ou p7du
component of the tension remains a constant T. —| = -I= | |m=" (1.5)
This means: OX|[ (X )y \OX ), | Tot
Meclllanical energy Vibration of Vibration of the
plucking the starting the string soundboard

Creation of pressure
variation in the
surrounding air

Vibration of the
surrounding air

Sound waves

Body

(@ (b)
Fig. 1. (a) Parts of a guitar (b) Energy transfer in aayui
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u(0.1)=0

wl,t)=0

Domain of u(x.t)

F(x) = Asian (7x)
(b)

Fig. 2. (a) sketch showing a plucked string (b) grid shmgathe problem domain of u(x,t)

g ¢
T,
X x+ox
X  xt+tox
(@
Thus:
0%u _ pd’u
a o 1.9

Introducing the constantczzl, Equation (1.6)
P

becomes:
0°u _ 10%u
FycararTe (€.7)

Equation (1.7) is the classical wave equation ia-on
2

Dimension (1D), %represents the 2nd partial
X

derivative of the wave function with respect to the
2

displacement;,%

- represents the 2nd partial derivative

of the wave function with respect to time; t. Tlomstant
c represents the wave speed and it is dependetiteon
tension in the string and linear density of thengtr

2. MATERIALSAND METHODS

2.1. Introduction

Partial Differential Equations (PDEs) can be
solved numerically using finite difference method,
Jain (2003). We write MatLab program for finite
difference method to generate numerical solutioon®e
Dimensional (1D) wave equation. As Kermit (1992)
explained “MatLab is an abbreviation for Matrix
Laboratory”. It is interactive matrix based softedor
scientific and engineering calculations, which da@
used to solve complex numerical problems.
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2.2. Central Difference Methods

The central difference scheme for Equation (1.7) is
obtained using Tailor’s series expansion, Jain 2@Md
Alejandro (1994). Thus, we then have:

{u(x +0ox,t) —2u(x,t)+ u(x-ox,t)} _ 1
(9x)? T
{u(x,t +0t) —2u(x,t)+ u(x,0t)}
(at)*

2.1)

Introducing the i, j notation such that u(x, t) 7 and
also assigningx = h anddt = k , Equation (2.1) becomes:

Uiy j _Zq,j + W
h2

1 U, —2u + i
-2 W k*j g (2.2)
Rearranging Equation (2.2) and putting the wave

numberi =%k:

u )\Zui—l,j + 2(1_)\2 )U,j +\? Waj = Hia (2-3)

i
Since the string is fixed at both ends, we have the
boundary conditions u(0,t ) = u(L,t) =0 .

These conditions are satisfied by the function)fx
Asin (x) when L = 1 and A is a constant. Or f (x) = x
(L-x) for any length L of the string.

To start the finite difference scheme we need the
value of y.; in order to calculate the value of the wave
function at the first time step, (i.e., at, i = 8dagj = 0).
Evanset al. (2000) suggests the use of the initial velocity
of the string.

That is Equation (2.4):

JMSS
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du(x,0) _

. (2.4)

9(x).

In this case the string is plucked from rest, se th
initial velocity g(x) = 0. Now from Tailor’'s seriewe
have Equation (2.5):

u(x,t+at)—u(x,t—ot) _

=g(x). 2.5
20t () (2.5)
In the i, j notation we have Equation (2.6):
Uy = Uy~ Dtg(x). (2.6)

When we substitute; 4 in Equation (2.3), we get
Equation (2.7):

1 A?
Ui jaa :E)\Zui—l )+ @-A*)y, (X)+? Y, (X)Fotg(x; (2.7)
But g(x) = 0:

1., ) A2
= U :E)‘ U, (X)+ (1=A )L',j (X)+E Uy (X)

(2.8)

Equation (2.8) is the finite difference scheme used
the analysis of the wave function u(x, t) at diéfier
values of the string parameters.

3.RESULTS

3.1. Introduction

The solution to the wave Equation (1.7) varies
greatly with changes in the string variables. Using
Equation (2.8), with the sine function; f (x) = Osth

(x) for the condition (t = 0), we wrote MatLab ni€fi
program for Equation (2.3) and used it to find the
numerical solution to the wave function u(x,t) at
different values of the string parameters.

We analyzed the nature of the wave forms
produced by a guitar string in terms of the string
variables. Results showed that changes in the tengt
of the string tension and linear density of theénstras
well as changes in the steps sizés éndot); change
the nature of wave form. Changes in tensions and
linear density are done by varying the wave cortstan
while changes in the step sizes are done by varying

For a guitar string we havesg<L, t>0 where L is the
length of the string and t represents time, wittidhand
boundary conditions Equation (3.1 and 3.2):

u(x,0)= f(x)=0.2sin(x) (3.1)
And:

ou(x,0) _

B =0 (3.2)

3.2. Variation in Values of Length I, the wave
Constant ¢ and Steps Sizes, h and k

The constant=\/? ; T represents the tension in the
p

string andp linear density of the string. The value of ¢
will increase with lower values qf and higher values
of T. Results for different values of ¢ are showrthe
Fig. 3-12. When c is high the wave form is non
uniform as seen ifig. 6.

0.2
0.15

40

60 80 100 120

Number of oscillations

Fig. 3. Wave form, a plot of u(x,t)atL=0.8,t =05 1 anch = 1
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Fig. 5. Wave form, a plot of u(x, t)atL=1,t=0.57Q and\ = 4
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Fig. 10. 3D wire mesh plot of u(x, t) at L

=1
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Fig. 11. 3D wire mesh plot of u(x, t) at L

=4
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Fig. 12. 3D wire mesh plot of u(x, t) at L
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This means non uniform frequency of vibrations.c8in The k_ey thing to note in plot d¥ig. 5 is that. the
depends on tension T, it means to have a mixture oWave existed only above the rest position, whicty ma
waves with different amplitudes and frequenciesngs ~ NOt be true. This could have been due to the sigss
should be stretched to different tensions. A = 4. The estimated solution is not accurate.

For shorter strings at lower values of &2}, we The plot of Fig. 6 shows the effect of the high
have many vibrations which die out faster; evident ~Vales ofA. AtA =5, the frequency is not uniform also
Fig. 3-5. In Fig. 3, the amplitude falls just after 90 extreme and non uniform amplitudes are observed.
mark (see horizontal axis) whereas Fig. 4, the This means the computed values of u(x, t) are ngt a

amplitude is nearly uniform up to the f5@nark. As near in agreement with exact values.

. . . In the plotFig. 7 the string did not vibrate for long,
Mark (2004) stated "The amphtude of thg Wave IS a o cause ¢ = 2 is relatively high. The vibrationsddio
measure of the pressure of its oscillations and

. L zero just before the 80mark (see horizontal axis). Also
corresponds to the volume of the sound”. The viamat

. litudes d diff o the | h o6 some extreme vales are observed far from the
in-amp ltudes ue.to Inerences in the e.ngt t theoretically expected pattern. When compared iith
strings makes a guitar string to produce variedimas.

) I o 5, much the oscillations ifrig. 5 continued passed the
The guitar has ‘infinitely many strings’, becauseery 80" mark wheri = 4, the solution seem out of trend of a
time a string is tapped against the plate the #ffec

/ ) ) wave, it is only above the rest position.
length that is free to vibrate changes. Varied feng _ _
means varied amplitude and pitch. The varied vokime 3.4. The Three Dimensional Plot of U(x, t),
are organized by the guitar player to produce music Figure8-12

The effect of thikstep sizes; h and k is seen by At high values o, Fig. 8 the approximations are really

varying A, since A =—. Higher values ofA produce  poor. For a normal wave, this would show up and own
h folding plane as it nearly appears sé&ig. 11, where\ =1.

wave forms with non uniform amplitude and Note thatFig. 9 is a 3D plot of the waveform d&fig.

frequencies. This means accuracy is lost at higher3 It is representative of the wave nature
values of the step width. Compakeg. 3, A = 1, Fig. In the plot ofFig. 10, the vibrations (oscillations)
6,A =5 andFig. 7, A = 2. _ appears to have been noticeable for just one otk
The valueA also depends on the wave velocity ¢, die off. It could be due to small value of L, stesttin
since (A:C—k) but c is also dependent on the initial among all the sets of data. N
h The plot ofFig. 11 shows a better approximation to

force with which the string is plucked, strummed or U(X, t). Undulating plane, hill and slopes likeist on
struck. In this sturdy, it was not possible to earth surface. Note. The data used to plot thisessame

mathematically analyze the effects of differentuesl of  as that use ifrig. 4.

the initial force. However, it seems clear that lehi The set of resultFig. 12 also gives a poor
playing the guitar, the strings just need appraerfarce approximation to the wave function. The plot shaves
to make them vibrate with stable frequencies. part of the wave above the rest position, u(x, €. Fhe
. valueA at 4 may be too high for accurate results.
3.3. The Wave Forms for Different Values of Y g
String Variables 4. DISCUSSION

In the plot ofFig. 3 where, L = 0.8, the wave form
(vibrations) die off faster, around the 10amark,
compared to the one Fig. 4 where L=1.5

The plotFig. 4 shows a wave form with a stable
and fairly uniform frequency. The parameters heee a 4.1 The Length of the String
nearly average. However the sharp peak with _ _ )
‘amplitude’, >0.2 and also after the IDGnark, the The frequency of vibration of a guitar sound
wave oscillated above the rest line. This anormally (pitch) varies greatly with the free length of thteing.
could have occurred due to truncation errors iredirr When the free length is short, the vibration istéas
in deriving the finite difference scheme or due to and shorter and this produces a high pitch. Butagsi
higher value of c. (c = 2). have strings of the same length; however, the m®ce

Following from the analysis of the different wave
forms and mesh plot of the wave function, we catkema
some discussions about the wave from the a giiiag.
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