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ABSTRACT 

This study presents an analysis of a one-Dimensional (1D) time dependent wave equation from a vibrating 
guitar string. We consider the transverse displacement of a plucked guitar string and the subsequent 
vibration motion. Guitars are known for production of great sound in form of music. An ordinary string 
stretched between two points and then plucked does not produce quality sound like a guitar string. A guitar 
string produces loud and unique sound which can be organized by the player to produce music. Where is the 
origin of guitar sound? Can the contribution of each part of the guitar to quality sound be accounted for, by 
mathematically obtaining the numerical solution to wave equation describing the vibration of the guitar 
string? In the present sturdy, we have solved the wave equation for a vibrating string using the finite 
different method and analyzed the wave forms for different values of the string variables. The results show 
that the amplitude (pitch or quality) of the guitar wave (sound) vary greatly with tension in the string, length 
of the string, linear density of the string and also on the material of the sound board. The approximate 
solution is representative; if the step width; ∂x and ∂t are small, that is <0.5. 
 
Keywords: Guitar String, Finite Differences  

1. INTRODUCTION 

Ron (2002) defines a wave as, “A distortion in a 
material or medium where the individual parts of the 
material only cycle back-and-forth or up-and-down, but 
the wave itself moves through the material”. Waves exist 
widely in nature, such as electromagnetic waves and in 
many other forms of mechanical waves. Waves carry 
energy. The energy carried by a wave is evident in many 
ways. Seismic waves carry enormous amount of energy 
that shake the earth resulting into earth quakes. 
Electromagnetic waves carry information in many forms 
enabling the use of communication through the internet, 
satellites, optical fibers and radios. The energy from 
microwaves is converted into thermal energy in 
microwave ovens. This study presents a mathematical 
analysis of mechanical waves from a guitar string. Alan 
(2000) noted that, “electromagnetic, microwaves 
between the earth and communication satellites, light 
waves in optical fibers are some of the ways in which 
wave energy is utilized”. We can add that music is 
another way of utilizing wave energy. 

The string is a material made of several threads twisted 
together. In this study, a string means a wire, a thread, 
nylon or any other synthetic material that is thin compared 
to its length, stretchable between two points. Therefore, a 
guitar string is any such material when used in a guitar. 

A vibrating string is just a model of many objects that 
vibrates in nature. Most vibrations result into wave motion. 
As already noted waves carry energy that can be controlled 
for human benefits. The study of waves helps to model 
many things that are useful in everyday life. Musical 
instruments, engineering devices for weather forecast, 
tsunami and earthquake detection devices as well as basic 
communication devices. A vibrating string presents a better 
and an initial point to the study of waves because the 
variables can easily be manipulated. The vibration of a 
string is time and space dependent, a typical example of 
multidimensional systems. Lutz and Rudolf (2000) noted 
that “Multidimensional physical phenomena depending on 
time and space are commonly described by Partial 
Differential Equations (PDEs). Technical application of 
PDEs include electro-magnetic, optics, acoustics, heat and 
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mass transfer”. We study a classical guitar string for its 
application in acoustics and entertainment. 

1.1. The Guitar 

A basic classical guitar consists of inter connected 
parts, these include: The head-containing the tuning pegs 
and head nut for alignment. The neck-this has the strings 
which are plucked or strummed to vibrate and produce 
sound, finger board and frets. The body-this consists of 
the soundboard, bridge and bridge nut (Fig. 1a). 

John (1999) says, “99% of the guitar sound comes from 
the soundboard”. However, we have to note at this point 
that the soundboard is ‘forced’ to vibrate by the string and it 
vibrates at the same frequency as the string. In a guitar, the 
mechanical energy used in plucking the string is transferred 
into mechanical energy of vibration of the string. The string 
forces the sound board to vibrate which in turn transmit the 
vibration to the surrounding air. The vibration of the air 
creates regions of low and high pressure. These are detected 
by the human ear as sound (Fig. 1b). 

1.2. Wave Equation for a Vibrating Guitar String 

In the present research, the word ‘string’ is not used in 
the sence of ‘string matching’ algorithm as an essential 
means for searching biological sequence database as was 
used by Almazroi (2011), Al-mazroi and Rashid (2011). 

Consider a single guitar string plucked from the 
center and u(x, t) is the function describing a point 
along the string (Fig. 2a-b). 

T1 and T2 are tangential tensions at points x and 
x+∂x respectively. Let  ρ be mass per unit length of 
the string (linear density). The linear density is 
constant throughout the string, Alan (2000). As the 
wave propagates from point x to x+∂x, the horizontal 
component of the tension remains a constant T. 

This means: 

1 2T cos T cos Tθ = φ =   (1.1) 
 

Applying Newton’s second law to vertical motion of 
the string, that is; 

Resultant Force = mass×acceleration, implies that: 
 

2

2 1 2

u
T sin T sin x .

t

∂φ = θ = ρ∂
∂

 (1.2) 

 
From Equation (1.1): 

 

1 2

T T
T andT .

cos cos
= =

θ φ
 

 

Substituting for T1 and T2 in Equation (1.2) gives: 
 

2

2

u
T tan T tan x .

t

∂φ − θ = ρ∂
∂

 (1.3) 

 
Using elementary calculus: 

 

x x x

u u
tan and tan tan

x x +∂

δ δ   = θ = φ   δ δ   
 

 
Substituting in Equation (1.3) gives: 

 
2

2
x x x

u u u
T x .

x x t+∂

 δ δ ∂   − = ρ∂    δ δ ∂     
 (1.4) 

 
Equation (1.4) can be written as Equation (1.5): 

 
2

2
x x x

1 u u u
.

x x x T t+∂

 δ δ ρ ∂   − =    ∂ δ δ ∂     
 (1.5) 

 

  
 (a) (b) 
 

Fig. 1. (a) Parts of a guitar (b) Energy transfer in a guitar 
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 (a) (b) 
 

Fig. 2. (a) sketch showing a plucked string (b) grid showing the problem domain of u(x,t) 
 

Thus: 
 

2 2

2 2

u u
.

x T t

∂ ρ∂=
∂ ∂

 (1.6) 

 

Introducing the constant 2 T
c =

ρ
, Equation (1.6) 

becomes: 
 

2 2

2 2 2

u 1 u
.

x c t

∂ ∂=
∂ ∂

 (1.7) 

 
Equation (1.7) is the classical wave equation in one-

Dimension (1D), 
2

2

u

x

∂
∂

represents the 2nd partial 

derivative of the wave function with respect to the 

displacement; 
2

2

u
,

t

∂
∂

 represents the 2nd partial derivative 

of the wave function with respect to time; t. The constant 
c represents the wave speed and it is dependent on the 
tension in the string and linear density of the string. 

2. MATERIALS AND METHODS 

2.1. Introduction 

Partial Differential Equations (PDEs) can be 
solved numerically using finite difference method, 
Jain (2003). We write MatLab program for finite 
difference method to generate numerical solution to one 
Dimensional (1D) wave equation. As Kermit (1992) 
explained “MatLab is an abbreviation for Matrix 
Laboratory”. It is interactive matrix based software for 
scientific and engineering calculations, which can be 
used to solve complex numerical problems. 

2.2. Central Difference Methods 

The central difference scheme for Equation (1.7) is 
obtained using Tailor’s series expansion, Jain (2003) and 
Alejandro (1994). Thus, we then have: 
 

2 2

2

{u(x x, t) 2u(x, t) u(x x, t)} 1

( x) c

{u(x, t t) 2u(x, t) u(x, t t)}

( t)

+ ∂ − + − ∂ =
∂

+ ∂ − + ∂
∂

  (2.1) 

 
Introducing the i, j notation such that u(x, t) = ui,j and 

also assigning ∂x = h and ∂t = k , Equation (2.1) becomes: 
 

i l, j i, j i l, j i, j 1 i, j i, j 1

2 2 2

u 2u u u 2u u1
.

h c k
+ − + −− + − +

=  (2.2) 

 
Rearranging Equation (2.2) and putting the wave 

number 
ck

h
λ = : 

 
2 2 2

i, j 1 i 1, j i, j i 1, j i, j 1u u 2(1 )u u u .+ − + −= λ + − λ + λ −  (2.3) 

 
Since the string is fixed at both ends, we have the 

boundary conditions u(0,t ) = u(L,t) = 0 . 
These conditions are satisfied by the function f (x) = 

Asin (πx) when L = 1 and A is a constant. Or f (x) = x 
(L-x) for any length L of the string. 

To start the finite difference scheme we need the 
value of ui,-1 in order to calculate the value of the wave 
function at the first time step, (i.e., at, i = 0 and j = 0). 
Evans et al. (2000) suggests the use of the initial velocity 
of the string. 

That is Equation (2.4): 
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u(x,0)
g(x).

t

δ =
δ

 (2.4) 

 
In this case the string is plucked from rest, so the 

initial velocity g(x) = 0. Now from Tailor’s series we 
have Equation (2.5): 
 
u(x, t t) u(x, t t)

g(x).
2 t

+ ∂ − − ∂ =
∂

 (2.5) 

 
In the i, j notation we have Equation (2.6): 

 

i, 1 i,1u u 2 tg(x).− = − ∂  (2.6) 
 

When we substitute ui,-1 in Equation (2.3), we get 
Equation (2.7): 
 

2
2 2

i, j 1 i 1 i, j i 1

1
u u (x) (1 )u (x) u (x) tg(x)

2 2+ − +
λ= λ + − λ + + ∂   (2.7) 

 
But g(x) = 0: 

 
2

2 2
i, j 1 i 1 i, j i 1

1
u u (x) (1 )u (x) u (x)

2 2+ − +
λ

⇒ = λ + − λ +   (2.8) 

 
Equation (2.8) is the finite difference scheme used in 

the analysis of the wave function u(x, t) at different 
values of the string parameters. 

3. RESULTS  

3.1. Introduction 

The solution to the wave Equation (1.7) varies 
greatly with changes in the string variables. Using 
Equation (2.8), with the sine function; f (x) = 0.2 sin 

(x) for the condition (t = 0), we wrote MatLab m-file 
program for Equation (2.3) and used it to find the 
numerical solution to the wave function u(x,t) at 
different values of the string parameters. 

We analyzed the nature of the wave forms 
produced by a guitar string in terms of the string 
variables. Results showed that changes in the length 
of the string tension and linear density of the string as 
well as changes in the steps sizes (∂x and ∂t); change 
the nature of wave form. Changes in tensions and 
linear density are done by varying the wave constant c 
while changes in the step sizes are done by varying λ. 

For a guitar string we have 0≤x≤L, t>0 where L is the 
length of the string and t represents time, with initial and 
boundary conditions Equation (3.1 and 3.2): 
 
u(x,0) f (x) 0.2sin(x)= =   (3.1) 
 

And: 
 

u(x,0)
0

t

δ =
δ

  (3.2) 

 
3.2. Variation in Values of Length l, the wave 

Constant c and Steps Sizes, h and k 

The constant 
T

c =
ρ

; T represents the tension in the 

string and ρ linear density of the string. The value of c 
will increase with lower values of ρ and higher values 
of T. Results for different values of c are shown in the 
Fig. 3-12. When c is high the wave form is non 
uniform as seen in Fig. 6. 

 

 
 

Fig. 3. Wave form, a plot of u(x, t) at L = 0.8, t = 0.5, c = 1 and λ = 1 
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Fig. 4. A plot of u(x, t) at L = 1.5, t = 0.5, c = 2 and λ =1 
 

 
 

Fig. 5. Wave form, a plot of u(x, t) at L = 1, t = 0.5, c = 2 and λ = 4 
 

 
 

Fig. 6. Wave form, a plot of u(x, t) at L = 1, t = 1, c = 5 and λ = 5 
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Fig. 7. Wave form, a plot of u(x, t) at L = 1, t = 0.5 and c = 2 and λ = 2 
 

 
 

Fig. 8. 3D wire mesh plot of u(x, t) at L = 1, t = 1, c = 3 and λ = 3 
 

 
 

Fig. 9. 3D wire mesh plot of u(x, t) at L = 0.8, t = 0.5, c = 1 and λ =1 
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Fig. 10. 3D wire mesh plot of u(x, t) at L = 0.5, t = 0.5 and c =1 
 

 
 

Fig. 11. 3D wire mesh plot of u(x, t) at L = 1.5, t = 0.5, c = 2 and λ = 1 
 

 
 

Fig. 12. 3D wire mesh plot of u(x, t) at L = 1, t = 1, c = 1 and λ = 4 
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This means non uniform frequency of vibrations. Since c 
depends on tension T, it means to have a mixture of 
waves with different amplitudes and frequencies, strings 
should be stretched to different tensions. 

For shorter strings at lower values of c (c≤2), we 
have many vibrations which die out faster; evident in 
Fig. 3-5. In Fig. 3, the amplitude falls just after 20th 
mark (see horizontal axis) whereas in Fig. 4, the 
amplitude is nearly uniform up to the 150th mark. As 
Mark (2004) stated “The amplitude of the wave is a 
measure of the pressure of its oscillations and 
corresponds to the volume of the sound”. The variation 
in amplitudes due to differences in the length of the 
strings makes a guitar string to produce varied volumes. 
The guitar has ‘infinitely many strings’, because every 
time a string is tapped against the plate the effective 
length that is free to vibrate changes. Varied length 
means varied amplitude and pitch. The varied volumes 
are organized by the guitar player to produce music. 

The effect of the step sizes; h and k is seen by 

varying λ, since 
ck

h
λ = . Higher values of λ produce 

wave forms with non uniform amplitude and 
frequencies. This means accuracy is lost at higher 
values of the step width. Compare Fig. 3, λ = 1, Fig. 
6, λ = 5 and Fig. 7, λ = 2. 

The value λ also depends on the wave velocity c, 

since 
ck

h
 λ = 
 

, but c is also dependent on the initial 

force with which the string is plucked, strummed or 
struck. In this sturdy, it was not possible to 
mathematically analyze the effects of different values of 
the initial force. However, it seems clear that while 
playing the guitar, the strings just need appropriate force 
to make them vibrate with stable frequencies. 

3.3. The Wave Forms for Different Values of 
String Variables 

In the plot of Fig. 3 where, L = 0.8, the wave form 
(vibrations) die off faster, around the 100th mark, 
compared to the one in Fig. 4 where L = 1.5 

The plot Fig. 4 shows a wave form with a stable 
and fairly uniform frequency. The parameters here are 
nearly average. However the sharp peak with 
‘amplitude’, >0.2 and also after the 100th mark, the 
wave oscillated above the rest line. This anormally 
could have occurred due to truncation errors incurred 
in deriving the finite difference scheme or due to 
higher value of c. (c = 2). 

The key thing to note in plot of Fig. 5 is that the 
wave existed only above the rest position, which may 
not be true. This could have been due to the step sizes, 
λ = 4. The estimated solution is not accurate. 

The plot of Fig. 6 shows the effect of the high 
vales of λ. At λ = 5, the frequency is not uniform also 
extreme and non uniform amplitudes are observed. 
This means the computed values of u(x, t) are not any 
near in agreement with exact values. 

In the plot Fig. 7 the string did not vibrate for long, 
because c = 2 is relatively high. The vibrations died to 
zero just before the 80th mark (see horizontal axis). Also 
some extreme vales are observed far from the 
theoretically expected pattern. When compared with Fig. 
5, much the oscillations in Fig. 5 continued passed the 
80th mark when λ = 4, the solution seem out of trend of a 
wave, it is only above the rest position. 

3.4. The Three Dimensional Plot of U(x, t), 
Figure 8-12 

At high values of λ, Fig. 8 the approximations are really 
poor. For a normal wave, this would show up and own 
folding plane as it nearly appears so in Fig. 11, where λ =1. 

Note that Fig. 9 is a 3D plot of the waveform of Fig. 
3. It is representative of the wave nature. 

In the plot of Fig. 10, the vibrations (oscillations) 
appears to have been noticeable for just one cycle and 
die off. It could be due to small value of L, shortest in 
among all the sets of data. 

The plot of Fig. 11 shows a better approximation to 
u(x, t). Undulating plane, hill and slopes like it is on 
earth surface. Note. The data used to plot this is the same 
as that use in Fig. 4. 

The set of result Fig. 12 also gives a poor 
approximation to the wave function. The plot shows no 
part of the wave above the rest position, u(x, t) = 0. The 
value λ at 4 may be too high for accurate results. 

4. DISCUSSION 

Following from the analysis of the different wave 
forms and mesh plot of the wave function, we can make 
some discussions  about the wave from the a guitar string. 

4.1. The Length of the String 

The frequency of vibration of a guitar sound 
(pitch) varies greatly with the free length of the string. 
When the free length is short, the vibration is faster 
and shorter and this produces a high pitch. But guitars 
have strings of the same length; however, the process 
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of playing involves tapping the string against the 
finger board. This process makes it possible for 
variation in the free length of the string, hence 
producing a mix of harmonics. 

4.2. The Value of C 

 Since the wave velocity 
T

c =
ρ

 where T is the 

tension in the string and ρ is its linear density, it means 
variation in c effectively means variation in the tension 
and density. From the different plots in Fig. 4-12, 
increasing T means an increase in c which is the wave 
speed. Thus, to have superposition of different waves, it 
is important to have string stretched to different tension. 
Related to that, it may be advisable to have strings of 
different linear densities. This may mean to have string 
made of different materials or the same material but 
different cross sectional area. 

4.3. Other Parts of the Guitar-The Sound Board 

The sound board is one other significant part of a 
classical guitar. It serves to transmit the vibration of the 
string to the vibration of the surrounding air, which 
creates pressure differences in the immediate 
surrounding which are detected as sound. Some 
materials make better sound boards. As John (1999) 
wrote “A guitar with a graphite sound board has a 
unique sound as does a guitar with a spruce 
soundboard, or a cedar sound board, or a sound board 
made out of old garbage can”. Some materials when 
used as sound board have high damping effects. 
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