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ABSTRACT

In this study we discuss the optimization of thepitioal Likelihood (EL) criterion function when the
moment condition is nonstandard. We deal with thisie following the Method of Simulated Moment
(MSM) introduced and we use importance samplinghoetto smooth discrete moment conditions. We
have demonstrated the convergence and asymptatitatity of the empirical likelihood estimator frotine
simulated moment conditions.
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1. INTRODUCTION the moment condition through observations from a
different probability distribution which is relagly easy
Recently the Empirical Likelihood (EL) method has to handle. Also, we notice that as McFadden (1989)
been increasingly popular in statistics and econidese  points out, importance sampling can be used to #moo
as an alternative to GMM, due to its desirable @igh discrete moment conditions, therefore we extend our
order properties, Owen and Zhou (2000) for a estimation method to more general case where the
comprehensive introduction, Newey and Smith (2004) moment conditions can even be discrete. Similath&
for higher order asymptotics and Wang (2013) fogéa results of PP, the proof of consistency of our EL
deviation efficiency of the EL test with weakly estimator based on simulation requires only the
dependent data, among others. In this study wecontinuity of the simulated moment condition, bwit n
contribute to the literature by addressing how HElald  that of the original one.

with non standard moment conditions as:
2.EMPIRICAL LIKELIHOOD WITH

E[9(x,8,)]=0 NON STANDARD MOMENT CONDITION

where, x is the observed daf, is the parameter to be Consider the following moment condition model
estimated and g is a nonstandard function in theesthat g~ Equation (1):

is diff cult to compute or can even benon-smoaththis

case both the Generalised Method Of Moments (GMid) a  E[g(x,8, )] =0 (1)

EL will be difficult to apply because they requegplicit

calculation of the sample analogue of the momemdiiion where, x is the observed dat®, 0O0OR is the

and existence of the derivative of g @xwith respect t®. parameter to be estimated and g is a real function.

Pakes and Pollard (1989) (hereafter PP) andpg|iowing the well established procedures, (e.dn, &d
McFadden and Ruud (1994) (here-after MR) deal with | 5\vless (1994) and Newey and Smith (2004), the EL

this problem in GMM by simulating the moment gsiimator based on (1) is defined as:
condition where it is hard to compute. In our paper
show that the simulation method can also be usdtlin 8 =argminsupR@ A @)
and furthermore, we use importance sampling toustal 800 Amr
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where, Equation (3):

R(G,A)Eilog(l+)\'g(x,9)) (3)

And A is a vector of Lagrangian multipliers.

A problem in empirical likelihood estimation &f
by minimizing (3) is that g(.) is sometimes intralcke,
i.e., not in an explicit form, so that we cannot

* Gn(B0) = 1)
' S“Fﬂe-eouﬁ G, QH_1= Q (3> ( where,

norm depending of

0 is some

Remarks

The intuitions of these conditions is to require th
simulation G(.) be as closeto E[g(X)] as possible.
Specifically:

calculate its sample analogue, nor we can get its

derivative. Another situation is that sometimes) dg.
not continuous irB, but usually empirical likelihood
estimation assumes that g(.) should be continuods a
differentiable in the parameter of interest, sot ta

can demonstrate the consistency of EL estimatay, (se
e.g., assumption 1 of Newey and Smith (2004). To

summarize these situations we list the followingesa
Casel. g (.) is discontinuous if.

Example 1

McFadden (1989) considered estimation of discrete
response model. Suppose we have obtained the model

like Equation (4):

y; =I(Bx; +§ >0) (4)
where, I(.) is the indicator function ang is i.i.d with
density p¢). So we have the moment conditions
E[g(x,8)] = E[y:-I(Bxi+&>0)] and the GMM estimatoB

is based on the following sample analogue:

N

a(x8) =2 [y - 1(px +& >0)]

1=1

Problems arises becaug€x, ) is not continuous ifi.
Case 2: Computation of g(.) is infeasible.

To overcome these problems in GMM, Pakes and
Pollard (1989) considered simulating a good estmat Ep[g(x)]:J‘g(x)Mq(x)(jx= E, [9()W(x)]

g(.)instead of usingj(.) directly. Specifically, if we let
G,(8) be a simulation of E [g(®)] and 8 be the GMM

estimator based on,@), then the conditions under which
8 converges t@, are described in the following theorem.

Theorem 1
(Pakes and Pollard, 1989)converges in probability

to 6, if:
G, @) < infy |

G, )+ 0,
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* Gy(.) evaluated at the estimatércannot be much
bigger than the smallest value of(§ in ©

* Gy(.) evaluated at the true parame€grcannot be

much bigger than zero

Gn(.) evaluated outside some neighborhoodOgf

should be large

To use the results of this theorem in EL, we cogrsid
a specific simulation method Importance Sampling
which is introduced in the next section.

3. IMPORTANCE SAMPLING

Importance sampling is a simulation method which is
useful to estimate an integral about a probability
distribution from a different distribution. Suppose
want to evaluate the integral:

E,[900)] = [ g()p(x)dx

where, g(x) is a function of x and p(x) is the dgnsf

x. If it is difficult to sample from p(x), we carhoose
another probability distribution Q(x) with density
d(x), which is called the importance function arash
the same support as p(x) and transform[g{x)] as
Equation (5):

a(x) ©)

where, w(x) = p(x)/q(x) is called the importanceigte
(also inverse likelihood ratio). Note that w(x)adivays
positive,  [w(x)] = 1 and this weight function reflects
the important regions of the sampling space. A ispec
case is that q(x) = p(x), when w(x) = 1.

About (5) motivates an unbiased estimator fpfdfx)]
by sampling S independent values from Q(x) and
calculating Equation (6):
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13 moment condition to estimat@,. We further define
5;9()("5)"\’()("5) ®) Equation (10 to 12):
As simulated value of g(x)w(x): Hencg, [(x)] can g(e)siig(xn 0) (10)
be estimated by Equation (7): =
. = = | 99(X,.6,)
E ()= nzlglg(x IW(X,) (7  G= E[ P } (11)
Note that g(x)w(x) is an unbiased estimator gf E And:
[g9(X)] by construction, with expectation taken with . .
respect to q(x). It is interesting to check theemtption 2 = E[0(X,,6,) (%, .8,)] (12)

of g(X)w(x) with respect to p(x). Generally it will

depend on the choice of q(x), but in some And let their counterparts from g (8) be defined
circumstances this expectation can be bounded by @nalogously and denoted without accent above, e.g.
function that does not depend on the choice of.q(x) g, 0)=— z '_9(x, 8).To apply the results of theorem 1,
The following result will be useful later. "

we define the empirical likelihood estimatéras the
solution to the following problem Equation (13):

Assume that g(x) is nonnegative and the importance

Proposition 1

weight w(X)=p(x)/q(x) is infinitely integrable, ig R®.y)< m.n supRQy ¢ (13)
E,[w(x)“]<M, where M is finite, then E[g(X)w(xX)] is VIRP
also bounded, in particular Equation (8):
Where:
E [9(x)w(x)] < E [9(x)IM (8) ) 1 .
R(O.v)=NZlog(1+v“g(>a )
n=1
Pr oof
The result is directly from the Holder inequality: Andy is a vector of Lagrangian multipliers which is a
function of@ implicitly defined through:
E 900w = [900 2 pO0des [ g00p(a 14 S0

Hw(x)Hw <E,[g(x)M 11+Y9(x, 8)

e.g., Qin and Lawless (1994).

where, ||, denotes the norm in“Lspace. For the general asymptotic properties of empirical
likelihood estimator, we make the following regithar
4. LARGE SAMPLE THEORY assumption.

. o Assumption 1
Now we replace E [g (08)] in the original model (1)

by its simulated version computed by (7) through 8,0 int (©) andO is a compact subset &P :
importance sampling and define Equation (9): _
*  Elsupo|g(xB) e 00> 2

a(x,.8)= E[g(x8)]- E, [0(x8)] (9) «  Q=E[g(x,80)'9(x,080)] is nonsingular

5 Assumption 2
As mentioned aboveg,[g(x,8,)] is unbiased, so

4 .
E,[g9(x.6,)] and thereforecan be used as a new For any3>0, Su%-%H%ngN - Q(N)'
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Furthermore, we need a smoothing condition for
uniform convergence. Let the simulation residual
process defined as Equation (14):

w(®) =VN(g(®) -~ E,[3(x8)]) (14)

Assumption 3

The processw (0) is stochastically equicontinuous at

6o, i.e., for any1>0, there exists a neighborhood UBgf
which satisfies:

sudm@)—w@o }ss a.

JING@) = A, +[w(0)] - «(8,)] +B (9 +C (6) (15)

Where:
Ay sg(z,90)+ﬁg(g(xn 80)- E,[3(x, 8.))
I o _
CN(G)=m;(g(Xn'eo) g(xn'eo)
18 N
By (0) EW;(Eq[g(XWG)]- 9(x,.8))

McFadden and Ruud (1994) have shown that=A

The following theorem demonstrates the consistencyop(Nﬂ?) , with i.i.d assumption on the observations and

of 8, by checking similar conditions given in theorem 1.

Theorem 2

Given assumption 6-8, we have the following results

« sup,, o0 =
® a®,)= Op(l)
© 3®=9,(3)

ﬁ(90 1V) = op( N']-/Z)
where, y=argsup R@, v |

And then® converges in probability té.
Proof

The first result is to say that(0) is big outside some

neighborhood 06,, which is from the identification dd,.
To see this, note that from triangle inequalityhawe:

jTgH ot - b

\
J

sup |96 )=

Je-e>5 le

sup [ 9@}~ sup| )~ bl

o-80|>3 o-80|>3

> sup |g@)- seu#pfgﬁ y &)

Je-80[>3

>

Given the assumption 3 of stochastic equicontinuity
sup |3(6)-g®)| = o, (1) and with assumption 2 we have

Suf, ,.[06)" = Q (- 1,

Secondly we follow the way of McFadden (1989),
McFadden and Ruud (1994), where/Ng®) is
decomposed as Equation (15):
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simulations. Also note that\@8) = g, (N"?) and By(8,)
= 0, so we have/Ng§(8,)=o,(N"?)+o,(N"?) and hence
9(6,)=0,(1).

To see the third results, a first order Taylor egian
of R(8,y) y=0 gives:

9(x, 8)o(x P)

: 16
1+Y9(x, 8 (19)

REY)=YEO)-3V|~ 3

n=1

where, y lies between 0 ang According to Lemma Al
and A2 of Newey and Smith (2004) we have

v=op(N‘”2)ano%s—1/2. Thus from (16)
@+y9(x, .0)F

and result 1 we have:
R(®,,Y)< O, (N"?)o, (1)
+op(N-1)[;n§_lg(xn 9)a(x, ,e)]
=0,(N¥?)+0,(N?)

— -1/2
_Op(N )

Now from the definition o® we have Equation (17):

R®,9)=0,(N"*)g6)+ O (N*)
< meinsup~R6 y¥ g (N')

vOR? a7
<R, ¥)+0,(N7)
- Op(N—ZLIZ)
Solving §(8) out of (17) gives Equation (18):
JMSS
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|6®)| =0, @ (18)  (8y)=argminsupRAy (19)
YORP
Then the following argument is similar to Pakes and
Pollard (1989). By result 1we have just proved, for Gn(e):amm(e)/ae,(;(eo)zlz’“_lgneo)gn
arbitrary 8>0, there exists a bounded, positive constantet ’\i " ,
M such thatsu%_e H>5H~96H_1< M. On the other hand, =NZ::1mn(90)y m,®,)'

Expand the first order condition for the saddleppioblem

since
! of (??) around®, andy, = 0 Equation (20 and 21):

§(8)| is 9,(1), for N large enoug%g(é)H_l >M with
probability approaching one. Hence:

] - IR@®.Y) 5 G, 0)y
~ 1 ~ 1 — =0=- n—~
Sup Jwe < Mue) 2 2y (0, - M 6) (20)
13 -
i = 2.8, 6)Y
Which implies 6 must be within the neighborhood of n=1
6, of radiusd, by noting thatg(®)is continuous. The y .
convergence follows sin@can be arbitrary small. oR@E.Y) _ 0= _ZN:”‘n—(e)
ay n=11+y'(bn_ ﬁ’]n(e)) 21
Remarks 1 . (1)
==00,)-=2.G,6,)6-0,)+Qy
The consistency o does not depend on the choice ° N;l ° °
of number of simulations S, although S does afthet
asymptotic efficiency of. About (20) and (21) imply:

Assumption 4

g(x, 0) is differentiable ab, and G = E§g(x,00)/06]
is of full rank. Note that from Lemma 1 we have:
Theorem 3

JIN(-6) = -(G(8,)Q,'G@,)) "GO, X2,V Ng6 )

i JNg®,) 011 N(0.5)
Given assumption 1-3/n(®-6,) 0 1. N(0,V), where:

s Also from i.i.d assumption and unconditional
V=(GZ'G) simulation:

Pr oof

1 N
- —»G,0,)0% E[G,0,)]=G
Firsty we show thatv/n(®-6,) is stochastically anzll ) [Gn B0l

bounded. Sincg(®)= 0, (1) henceC, ©)= 0,(1) and by ) ~ )

So V/n(®-6,) - N(0,V). Next we showd andé are
asymptotically equivalent.

The definition of8 implies:

expandingc, (8) we have:

= ~ 1Y am(x ,6,) ~
Cy(®)=vn@-8,) =Y | —n"0l+ O(8-8, . n
o=t )[Nzll( o ( )B ROGV)<ROY)+q (N ) REY) g (N*]
=0,(@
Then with the similar expansion as (17) we have:

With the consistency 6071 8, we
have Jﬁ(é—eo):op(l) . Based on theorem 1, the

following proof is similar to Parente and Smith Q3.
Now we define Equation (19):

0,(N"*)g®)+ O, (N™)
<O, (N*)g®)+ O,(N")+ o, (N*)
=§®)-3@)0, (N*?)
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