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ABSTRACT 

The Kolmogorov’s system of axioms can be extended to encompass the imaginary set of numbers and this by 
adding to the original five axioms an additional three axioms. Hence, any experiment can thus be executed in 
what is now the complex set C (Real set R with real probability + Imaginary set M with imaginary 
probability). The objective here is to evaluate the complex probabilities by considering supplementary new 
imaginary dimensions to the event occurring in the “real” laboratory. Whatever the probability distribution of 
the input random variable in R is, the corresponding probability in the whole set C is always one, so the 
outcome of the random experiment in C can be predicted totally. The result indicates that chance and luck in R 
is replaced now by total determinism in C. This new complex probability model will be applied to the concepts 
of degradation and the Remaining Useful Lifetime (RUL), thus to the field of prognostic. 
 
Keywords: Complex Probability, Probability Distributions, Prognostic, Degradation, Lifetime 

1. INTRODUCTION 

Abou Jaoude et al. (2010); Abou Jaoude (2013; 2005; 
2007); Bell (1992); Benton (1996); Boursin (1986); 
Chen et al. (1997); Cheney and Kincaid (2004); 
Dacunha-Castelle (1999); Dalmédico Dahan et al. 
(1992); Dalmedico Dahan and Peiffer (1986); Ekeland 
(1991); Feller (1968); Finney et al. (2004); Gentle 
(2003); Gerald and Wheatley (1999); Gleick (1997); 
Greene (2000; 2004) firstly, the Extended Kolmogorov’s 
Axioms (EKA for short) paradigm can be illustrated by 
the following figure (Fig. 1). 

In engineering systems, the remaining useful lifetime 
prediction is related deeply to many factors that 
generally have a chaotic behavior which decreases the 
degree of our knowledge of the system. 

As the Degree of Our Knowledge (DOK for short) in 
the real universe R is unfortunately incomplete, the 
extension to the complex universe C includes the 
contributions of both the real universe R and the 
imaginary universe M. Consequently, this will result in a 
complete and perfect degree of knowledge in C = R+M 
(Pc = 1). In fact, in order to have a certain prediction of 
any event it is necessary to work in the complex universe 
C in which the chaotic factor is quantified and subtracted 
from the Degree Of Knowledge to lead to a probability 

in C equal to one (Pc2 = DOK-Chf = 1). Thus, the study 
in the complex universe results in replacing the 
phenomena that used to be random in R by deterministic 
and totally predictable ones in C. 

This hypothesis is verified in a previous study and 
paper by the mean of many examples encompassing both 
discrete and continuous distributions. 

From the Extended Kolmogorov’s Axioms (EKA), 
we can deduce that if we add to an event probability in 
the real set R the imaginary part M (like the lifetime 
variables) then we can predict the exact probability of 
the remaining lifetime with certainty in C (Pc = 1). 

We can apply this idea to prognostic analysis 
through the degradation evolution of a system. As a 
matter of fact, prognostic analysis consists in the 
prediction of the remaining useful lifetime of a system 
at any instant t0 and during the system functioning.  

Let us consider a degradation trajectory D(t) of a 
system where a specific instant t0 is studied. The instant 
t0 means here the time or age that can be measured also 
by the cycle number N. 

Referring to the figure below (Fig. 2), the previous 
statement means that at the system age t0, the prognostic 
study must give the prediction of the failure instant tN. 
Therefore, the RUL predicted here at instant t0 is the 
following quantity: RUL (t0) = tN-t0. 
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Fig. 1. EKA paradigm 
 

 
 

Fig. 2. EKA and the prognostic of degradation 
 

In fact, at the beginning (t0 = 0) (point J), the failure 
probability Pr = 0 and the chaotic factor in our prediction 
is zero (Chf = 0). Therefore, RUL(t0 = 0) = tN-t0 = tN. 

If t0 = tN (point L) then the RUL(tN) = tN-tN = 0 and 
the failure probability is one (Pr = 1). 

If not (i.e., 0<t0<tN) (point K), the probability of the 
occurrence of this instant and the prediction probability 
of RUL are both less than one (not certain) due to non-
zero chaotic factors. The degree of our knowledge is 
consequently less than 1. Thus, by applying here the 
EKA method, we can determine the system RUL with 
certainty in C = R+M where Pc = 1 always. 

Furthermore, we need in our current study the 
absolute value of the chaotic factor that will give us the 
magnitude of the chaotic and random effects on the 
studied system. This new term will be denoted 
accordingly MChf or Magnitude of the Chaotic Factor. 
Hence, we can deduce the following: 
 

0 0

2
0 0 0 0 0

0

0 0 0 N

0 0

MChf(t )  Chf(t ) 0 and

Pc (t ) DOK(t ) Chf(t ) DOK(t ) Chf(t ) ,

since  0.5 Chf(t ) 0 

 DOK(t ) MChf(t ) 1,   0 t t

0 MChf(t ) 0.5 where 0.5 DOK(t ) 1

= ≥

= − = +
− ≤ ≤

= + = ∀ ≤ ≤
⇔ ≤ ≤ ≤ ≤
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Moreover, we can define two complementary events 
E and E with their respective probabilities: 
 

rob robP (E) p and P (E) q 1 p= = = −   
 

Then Prob (E) in terms of the instant t0 is given by: Prob 
(E) = Pr = Prob (t≤t0) = F(t0) where F is the cumulative 
probability distribution function of the random variable t.  

Since Prob (E)+Prob(Ē)= 1, therefore, Prob(Ē) = 1-
Prob(E) = 1-Pr = 1-Prob(t≤t0)= Prob (t>t0). 

Let us define the two particular instants: t0 = 0 
assumed as the initial time of functioning (raw state) 
corresponding to D = D0 = 0 and tN = the failure instant 
(wear out state) corresponding to the degradation D = 1. 

The boundary conditions are. 
For t0 = 0 then D = D0 (initial damage that may be 

zero or not) and F (t0) = Prob (t≤0) = 0. 
For t0 = tN then D = 1 and F(t0) = F (tN) = Prob (t≤tN) = 1. 
Also F(t0) is a non-decreasing function that varies 

between 0 and 1. In fact, F(t0) is a cumulative function 
(Fig. 3). In addition, since RUL(t0) = tN-t0 and 0≤t0≤tN 
then RUL(t0) is a non-increasing remaining useful 
lifetime function (Fig. 4). 

Referring to Fig. 5 below, we can infer the following:  
 

The complex probability Z(t0) = Pr(t0)+Pm(t0) = 
Pr(t0)+i[1-Pr(t0)]. 

The square of the norm of Z(t0) is: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

2

0 0 r 0 m 0

2
r 0 r 0 r 0 r 0

Z(t ) DOK t 1 2iP t P t  

1 2P t 1 P t 1 2P t 2P t

= = +

= −  −  = − + 

 

 
The Chaotic Factor and the Magnitude of the Chaotic 

Factor are: 
 
Chf(t0) = -2Pr(t0)[1-Pr(t0)] = -2Pr(t0)+2Pr

2(t0) is null when 
Pr(t0) = Pr(0) = 0 (point J) or when Pr(t0) = Pr(tN) = 1 
(point L) and MChf(t0) = |Chf(t0)| = 2Pr(t0)[1-Pr(t0)] = 
2Pr(t0)-2Pr

2(t0) is null when Pr(t0) = Pr(0) = 0 (point J) or 
when Pr(t0) = Pr(tN) = 1 (point L) 
 

At any instant t0 (point K), the probability expressed 
in the complex set C is: 
 

Pc(t0) = Pr(t0)+Pm(t0)/i = Pr(t0)+[1-Pr(t0)] = 1 always.  
 

Hence, the prediction of RUL(t0) of the system 
degradation in C is permanently certain. 

Let us consider thereafter many probability 
distributions to model the function F(t0). 

2. APPLICATION TO DIFFERENT 
PROBABILITY DISTRIBUTIONS 

2.1. The Uniform Probability Distribution 
(Guillen, 1995; Gullberg, 1997; Kuhn, 
1996; Liu, 2001; Mandelbrot, 1997; 
Montgomery and Runger, 2005; Mũller, 
2005; Orluc and Poirier, 2005; Poincaré, 
1968; Prigogine, 1997; Prigogine and 
Stengers, 1992; Robert and Casella, 2010; 
Science et Vie, 1999; Srinivasan and Mehata, 
1978; Stewart, 1996; 2002; Van Kampen, 
2007; Walpole, 2002; Ducrocq and Warusfel, 
2004; Weinberg, 1992) 

With a probability density function:  
 

1
if a t bdF(t)

f(t) b a
dt

0 elsewhere

 ≤ ≤= = −


 

 
and a cumulative distribution function:  
 

( )
0 0t t 0

0
0 rob 0

a

t a
if a t b

F(t ) P t t f(t)dt f(t)dt b a
0 elsewhere−∞

− ≤ ≤= ≤ = = = −


∫ ∫  

 
With the two boundaries a = 0 and b = tN then: 

 
0 0

0 0 N
N N

t 0 t
F(t ) if 0 t t

t 0 t

−= = ≤ ≤
−

 

 
We have taken the domain for the uniform variable 

t0= [0, tN = 1000] and dt0 = 0.1 then: 
 

0
0 0

t
F(t ) if 0 t 1000

1000
= ≤ ≤  

 
2.1.1. The Real Probability Pr:

 

 
0

r 0 0 0 N
N

t
P (t ) F(t ) if 0 t t 1000

t
= = ≤ ≤ =  

 
 We note that Pr(t0) is a non-decreasing function. 

2.1.2. The Complementary Probability Pm/i: 
 

0
m 0 r 0 0 0 N

N

t
P (t ) / i 1 P (t ) 1 F(t ) 1    if 0 t t 1000

t
= − = − = − ≤ ≤ =  
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Fig. 3. Occurrence probability 
 

 
 

Fig. 4. RUL prognostic model 

 

 
 

Fig. 5. Degradation prognostic model 
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We note that Pm (t0)/i is a non-increasing function. 

2.1.3. The Degree of Our Knowledge DOK 

DOK is the measure of our certain knowledge (100% 
probability) about the expected event, it does not include 
any uncertain knowledge (with probability less than 100%): 

 

[ ]

[ ]

2
0 0 r 0 m 0

rob rob r 0 r 0

0 0
0 0

N N

2

0 0

N N

DOK(t ) Pc (t ) 2iP (t )P (t )

          1 2.P (E).P (E) 1 2.P (t ). 1 P (t )

t t
          1 2.F(t ). 1 F(t ) 1 2. . 1

t t

t t
          1 2. 2.

t t

= +

= − = − −

 
= − − = − − 

 

 
= − +  

 

 

 Which is a parabola concave upward having a vertex 
(a minimum) at:  
 

3N
0

t
t 500 0.5 10 ,   0.5

2
 = = = × 
 

 

 
2.1.4. The Chaotic Factor Chf and MChf: 
 

[ ] [ ]
0 r 0 m 0 rob rob

r 0 r 0 0 0

2

0 0 0 0

N N N N

Chf (t ) 2iP (t )P (t ) 2.P (E).P (E)

            2.P (t ). 1 P (t ) 2.F(t ). 1 F(t )

t t t t
             2. . 1 2. 2.

t t t t

= = −
= − − = − −

   
= − − = − +   

   

 

 
Which is a parabola concave upward having a vertex 

(a minimum) at: 
 

3N
0

t
t 500 0.5 10 ,   0.5

2
 = = = × − 
 

 

 
Therefore, we can infer the magnitude of the chaotic 

factor MChf: 
 

[ ]
[ ] [ ]

0 0 r 0 r 0

r 0 r 0 0 0

2

0 0 0 0

N N N N

MChf (t ) Chf (t ) 2.P (t ). 1 P (t )

2.P (t ). 1 P (t ) 2.F(t ). 1 F(t )

t t t t
2. . 1 2. 2.

t t t t

= = − −

= − = −

   
= − = −   

   

 

 
Which is a parabola concave downward having a 

vertex (a maximum) at: 
 

3N
0

t
t 500 0.5 10 ,   0.5

2
 = = = × 
 

 

2.1.5. Pc: The Probability in the Complex Set C: 
 

2
0 0 0

2 2

0 0 0 0
0

N N N N

Pc (t ) DOK(t ) Chf(t )

t t t t
1 2. 2. 2. 2. 1 Pc(t ) 1

t t t t

= −

   
= − + + − = ⇒ =   

   

 

 
Thus we deduce that in the set C, we have a complete 

knowledge of the random variable since Pc = 1.  

2.1.6. The Intersection Point: 
 

0 0 0
r 0 m 0

N N N

N
0

r 0

m 0

t t t
P (t ) P (t ) / i 1 2.

t t t

t 1000
1 t 500

2 2
500

and P (t 500) 0.5 and
1000

500
P (t 500) / i 1 1 0.5 0.5

1000

= ⇔ = − ⇔

= ⇔ = = =

= = =

= = − = − =

 

 
So Pr(t0) and Pm(t0)/i intersect at (500, 0.5). 
Moreover, the minimum of DOK and the maximum 

of MChf occur at (500, 0.5). 
So we conclude that Pr(t0), Pm(t0)/i, DOK and MChf 

all intersect at (500, 0.5) (Fig. 6-9). 

2.1.7. The EKA Parameters Analysis in the 
Prognostic of Degradation: 

We note from the figure below that the DOK is 
maximum (DOK = 1) when MChf is minimum (MChf = 
0) (points J & L) and that means when the magnitude of 
the chaotic factor (MChf) decreases our certain 
knowledge increases. 

At the beginning Pr (t0)= t0/tN = 0/tN = 0, the system is 
intact (zero damage: D = 0) and has zero chaotic factor 
before any usage, at this instant DOK(0) = 1 and RUL(0) 
= tN-0 = tN with Pc(0) = 1. Afterward, 0<t0<tN, RUL(t0) = 
tN-t0 with Pr(t0) = t0/tN ≠ 0 and Pc(t0) = 1 and MChf starts 
to increase during the functioning due to the environment 
and intrinsic conditions thus leading to a decrease in 
DOK until they both reach 0.5 at t0 = tN/2 = 500 (point K) 
where RUL(tN/2) = tN/2 = 500. Since the real probability 
Pr is a uniform distribution MChf will intersect with 
DOK at the point (tN/2 = 500, 0.5) (point K).  

With the increase of the time of functioning, MChf 
returns to zero and the DOK returns to 1 where we 
reach total damage (D = 1) and hence the total failure 
of the system (point L). At this last point the failure 
here is certain, Pr(tN) = tN/tN = 1 and RUL(tN) = tN-tN = 
0 with Pc(tN) = 1, so the logical explanation of the 
value DOK = 1 follows (Fig. 10). 
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Fig. 6. EKA parameters in uniform probability distribution 
 

 
 

Fig. 7. EKA parameters in uniform probability distribution 
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Fig. 8. The probabilities Pr and Pm / i in terms of t and of each other 
 

 
 

Fig. 9. DOK and Chf in terms of t and of each other in uniform probability distribution 
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Fig. 10. EKA parameters and the prognostic of degradation 
 

 We note that the same logic and analysis apply 
concerning the degradation and the remaining useful 
lifetime for the all the six probability distributions. 

2.2. The Logarithmic Distribution: 

With a probability density function: 
 

N

α
if 0 t tdF(t)

f(t) 1 αt
dt

0 elsewhere

where α (e 1) /1000 0.001718281...

 ≤ ≤= = +


= − =

 

  
and a cumulative distribution function: 
 

0 0t t
0 0 N

0

0

Ln(1 t ) if 0 t t
F(t ) f(t)dt f(t)dt

0 elsewhere−∞

+ α ≤ ≤
= = =


∫ ∫  

 
We have taken the domain for the logarithmic 

variable t0= [0, tN = 1000] where dt0 = 0.1. 
 

2.2.1. The Real Probability Pr: 
 

r 0 0 0 NP F(t ) Ln(1 t ) if 0 t t 1000= = + α ≤ ≤ =

  

We note that Pr is a non-decreasing function. 

 2.2.2. The Complementary Probability Pm/i: 
 

m r 0 0

0 N

P / i 1 P 1 F(t ) 1 Ln(1 t )

   if 0 t t 1000

= − = − = − + α
≤ ≤ =  

We note that Pm/i is a non-increasing function. 

2.2.3. The Degree of Our Knowledge DOK: 

DOK is the measure of our certain knowledge 
(100% probability) about the expected event, it does 
not include any uncertain knowledge (with probability 
less than 100%): 

 

[ ]
[ ]

[ ]

r r rob rob

0 0

0 0

2

0 0

DOK 1 2.P .(1 P ) 1 2.P (E).P (E)

1 2.F(t ). 1 F(t )

1 2.Ln(1 t ). 1 Ln(1 t )

1 2.Ln(1 t ) 2 Ln(1 t )

= − − = −

= − −

= − + α − + α

= − + α + + α
 

 
which is a curve concave upward having a minimum at:  
 

( )0t 377.54,   0.5=  

 
2.2.4. The Chaotic Factor Chf and MChf: 
 

( )
[ ]

[ ]
[ ]

r r rob rob

0 0

0 0

2

0 0

Chf 2.P . 1 P 2.P (E).P (E)

2.F(t ). 1 F(t )

2.Ln(1 t ). 1 Ln(1 t )

2.Ln(1 t ) 2. Ln(1 t )

= − − = −

= − −

= − + α − + α

= − + α + + α

 

  
which is a curve concave upward having a minimum at: 
 

( )0t 377.54,   0.5= −  
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Therefore, we can infer the magnitude of the chaotic 
factor MChf: 

 

[ ]
[ ] [ ]

[ ]
[ ]

0 0 r 0 r 0

r 0 r 0 0 0

0 0

2

0 0

MChf (t ) Chf (t ) 2.P (t ). 1 P (t )

2.P (t ). 1 P (t ) 2.F(t ). 1 F(t )

2.Ln(1 t ). 1 Ln(1 t )

2.Ln(1 t ) 2. Ln(1 t )

= = − −

= − = −

= + α − + α

= + α − + α

 

 
Which is a curve concave downward having a 

maximum at: 

 
( )0t 377.54,   0.5=  

 
2.2.5. Pc: The Probability in the Complex Set C: 
 

[ ]
[ ]

22
0 0

2

0 0

Pc DOK Chf 1 2.ln(1 t ) 2. ln(1 t )

2.ln(1 t ) 2. ln(1 t ) 1 Pc 1

= − = − + α + + α

+ + α − + α = ⇒ =
 

 
Thus we deduce that in the set C, we have a complete 

knowledge of the random variable since Pc = 1.  

2.2.6. The Intersection Point:  
 

( )

r 0 m 0 0 0

0 0

0

r 0

m 0

P (t ) P (t ) / i Ln(1 t ) 1 Ln(1 t )

1
2.Ln(1 t ) 1 Ln(1 t )

2
t exp(0.5) 1 / 377.54

and P (t 377.54) Ln(1 377.54) 0.5

and P (t 377.54) / i 1 Ln(1 377.54)

1 0.5 0.5

= ⇔ + α = − + α

⇔ + α = ⇔ + α =

⇔ = − α =
= = + α × =
= = − + α ×

= − =

 

 
So Pr(t0) and Pm(t0)/i intersect at (377.54, 0.5). 
Moreover, the minimum of DOK and the maximum 

of MChf occur at (377.54, 0.5). 
So we conclude that Pr(t0), Pm(t0)/i, DOK and MChf 

all intersect at (377.54, 0.5) (Fig. 11-13). 

2.2.7. The EKA Parameters Analysis in the 
Prognostic of Degradation: 

In this case, we note from the figure below that the 
DOK is maximum (DOK = 1) when MChf is 
minimum (MChf = 0) (points J & L). Afterward, 
MChf starts to increase with the decrease of DOK 
until it reaches 0.5 at t0 = 377.54 (point K). Since the 

real probability Pr is a logarithmic distribution 
(convex curve) it will intersect with DOK at the point 
(377.54, 0.5) (point K). With the increase of t0, MChf 
returns to zero and the DOK returns to 1 where we 
reach total damage (D = 1) and hence the total certain 
failure (Pr = 1) of the system (point L). We note that 
the point K is no more at the middle of DOK since the 
distribution is not anymore uniform and symmetric. 

At each instant t0, the remaining useful lifetime 
RUL(t0) is certainly predicted in the complex set C with 
Pc maintained as equal to one through a continuous 
compensation between DOK and Chf. This 
compensation is from instant t0 = 0 where D(t0) = 0 until 
the failure instant tN where D(tN) = 1 (Fig. 11).  

2.3. The Power Probability Distribution:  

With a probability density function: 

 
13

N14

14.t
dF(t) if 0 t t

f(t) 1000
dt

0 elsewhere


≤ ≤= = 




 

 
and a cumulative distribution function: 

 

0 0

14
t t 0

0 N14
0

0

t
if 0 t t

F(t ) f(t)dt f(t)dt 1000
0 elsewhere−∞


≤ ≤= = =




∫ ∫  

 
We have taken the domain for the power variable t0 = 

[0,tN = 1000] and dt0 = 0.1. 

2.3.1. The Real Probability Pr: 
 

14
0

r 0 0 N14

t
P F(t ) if 0 t t 1000

1000
= = ≤ ≤ =

 

 We note that Pr is a non-decreasing function. 

2.3.2. The Complementary Probability Pm/i:  
 

14
0

m r 0 14

0 N

t
P / i 1 P 1 F(t ) 1    

1000
if 0 t t 1000

= − = − = −

≤ ≤ =
 

 We note that Pm/i is a non-increasing function. 
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Fig. 11. EKA parameters in logarithmic cumulative distribution 
 

 
 

Fig. 12. EKA parameters in logarithmic cumulative distribution 
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Fig. 13. DOK and Chf in terms of t and of each other in logarithmic cumulative distribution 
 
2.3.3. The Degree of Our Knowledge DOK: 

DOK is the measure of our certain knowledge 
(100% probability) about the expected event, it does 
not include any uncertain knowledge (with probability 
less than 100 %): 
 

[ ]
r r rob rob

0 0

14 14 14
0 0 0

14 14 14

214 14 28
0 0 0

14 14 28

DOK 1 2.P .(1 P ) 1 2.P (E).P (E)

1 2.F(t ). 1 F(t )

t t t
1 2. . 1  1 2.

1000 1000 1000

t t t
2. 1 2. 2.

1000 1000 1000

= − − = −
= − −

 
= − − = − 

 

 
+ = − + 

 

 

 
Which is a curve concave upward having a minimum at:  

 
( )0t 951.7,   0.5=  

 
2.3.4. The Chaotic Factor Chf and MChf: 
 

( )
[ ]
r r rob rob

0 0

214 14 14 14
0 0 0 0

14 14 14 14

14 28
0 0

14 28

Chf 2.P . 1 P 2.P (E).P (E)

2.F(t ). 1 F(t )

t t t t
2. . 1 2. 2.

1000 1000 1000 1000

t t
2. 2.

1000 1000

= − − = −

= − −

   
= − − = − +   

   

= − +

 

Which is a curve concave upward having a minimum at: 
 

( )0t 951.7,   0.5= −  

 
Therefore, we can infer the magnitude of the chaotic 

factor MChf: 
 

[ ]
[ ] [ ]

0 0 r 0 r 0

r 0 r 0 0 0

14 14 14 28
0 0 0 0

14 14 14 28

MChf (t ) Chf (t ) 2.P (t ). 1 P (t )

2.P (t ). 1 P (t ) 2.F(t ). 1 F(t )

t t t t
2. . 1 2. 2.

1000 1000 1000 1000

= = − −

= − = −

 
= − = − 

 

 

 
Which is a curve concave downward having a 

maximum at: 
 

( )0t 951.7,   0.5=  
 
2.3.5. Pc: The Probability in the Complex Set C: 
 

214 14
2 0 0

14 14

214 14
0 0

14 14

t t
Pc DOK Chf 1 2. 2.

1000 1000

t t
2. 2. 1 Pc 1

1000 1000

 
= − = − +  

 

 
+ − = ⇒ = 

 

 

 

Thus we deduce that in the set C, we have a complete 
knowledge of the random variable since Pc = 1.  
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2.3.6. The Intersection Point:  
 

14 14
0 0

r 0 m 0 14 14

14 14
0 0

14 14

14 14
0

t t
P (t ) P (t ) / i 1

1000 1000

t t 1
2. 1

1000 1000 2

t 0.5 1000 951.7

= ⇔ = −

⇔ = ⇔ =

⇔ = × =

 

14

r 0 14

14

m 0 14

951.7
and P (t 951.7) 0.5

1000

951.7
and P (t 951.7) / i 1 1 0.5 0.5

1000

= = =

= = − = − =
 

 
So Pr(t0) and Pm(t0)/i intersect at (951.7, 0.5). 
Moreover, the minimum of DOK and the maximum 

of MChf occur at (951.7, 0.5). 
So we conclude that Pr(t0), Pm(t0)/i, DOK and MChf 

all intersect at (951.7, 0.5) (Fig. 14-16). 

2.3.7. The EKA Parameters Analysis in the 
Prognostic of Degradation: 

In this case, we note from the figure below that the 
DOK is maximum (DOK=1) when MChf is minimum 
(MChf = 0) (points J & L). Afterward, MChf starts to 
increase with the decrease of DOK until it reaches 0.5 
at t0 = 951.7 (point K). Since the real probability Pr is 
a power distribution it will intersect with DOK at the 
point (951.7, 0.5) (point K). With the increase of t0, 
MChf returns to zero and the DOK returns to 1 where 
we reach total damage (D =1) and hence the total 
certain failure (Pr = 1) of the system (point L). At this 
last point L the failure here is certain, Pr(tN) = tN/tN = 1 
and RUL(tN) = tN-tN = 0 with Pc(tN) = 1, so the logical 
explanation of the value DOK = 1 follows. We note that 
the point K is no more at the middle of DOK since the 
distribution is neither uniform nor symmetric (Fig. 14). 

2.4. The Exponential Probability Distribution: 

With a probability density function: 

 

( )
N

1000 t1
exp if 0 t tdF(t)

f(t) 200 200
dt

0 elsewhere

  − 
− ≤ ≤  = =   




 

 
and a cumulative distribution function: 

( )

0 0t t

0

0

0
0 N

F(t ) f(t)dt f(t)dt

1000 t
exp if 0 t t

200

0 elsewhere

−∞

= =

  − 
− ≤ ≤  =   




∫ ∫

 

 
We have taken the domain for the logarithmic 

variable t0 = [0,tN = 1000] and dt0 = 0.1. 

2.4.1. The Real Probability Pr: 
 

( )0
r 0

0 N

1000 t
P F(t ) exp

200

if 0 t t 1000

 − 
= = − 

 

≤ ≤ =  

 

We note that Pr is a non-decreasing function. 

2.4.2. The Complementary Probability Pm/i: 
 

( )0
m r 0

0 N

1000 t
P / i 1 P 1 F(t ) 1 exp

200

if 0 t t 1000

 − 
= − = − = − − 

 

≤ ≤ =  

 

We note that Pm/i is a non-increasing function. 

2.4.3. The Degree of Our Knowledge DOK: 

DOK is the measure of our certain knowledge 
(100% probability) about the expected event, it does 
not include any uncertain knowledge (with probability 
less than 100%): 

 

[ ]
( ) ( )

( ) ( )

( )

r r rob rob

0 0

0 0

2

0 0

0

DOK 1 2.P .(1 P ) 1 2.P (E).P (E)

1 2.F(t ). 1 F(t )

1000 t 1000 t
1 2.exp . 1 exp

200 200

1000 t 1000 t
1 2.exp 2. exp

200 200

1000 t
1 2.exp 2.exp

200

= − − = −
= − −

  −   − 
= − − − −     

    

  −   − 
= − − + −     

    

 − 
= − − + − 

 

( )02. 1000 t

200

 − 
 
 

 

 
Which is a curve concave upward having a minimum at: 

 ( )0t 861.37,   0.5=  
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Fig. 14. EKA parameters in power probability distribution 
 

 
 

Fig. 15. EKA parameters in power cumulative distribution 
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Fig. 16. DOK and Chf in terms of t and of each other in power probability distribution 
 
2.4.4. The Chaotic Factor Chf and MChf: 
 

( )
[ ]
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0 0

2

0 0

0

Chf 2.P . 1 P 2.P (E).P (E)

2.F(t ). 1 F(t )
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        2.exp . 1 exp

200 200

1000 t 1000 t
        2.exp 2. exp

200 200

1000 t
        2.exp

= − − = −

= − −

  −   − 
= − − − −     

    

  −   − 
= − − + −     

    

−
= − − ( )02. 1000 t

2.exp
200 200

   − 
+ −   

   

 

 
Which is a curve concave upward having a minimum at: 

 
( )0t 861.37,   0.5= −  

 
Therefore, we can infer the magnitude of the chaotic 

factor MChf: 
 

[ ]
[ ] [ ]

( ) ( )

( ) ( )

0 0 r 0 r 0

r 0 r 0 0 0

0 0

0 0

MChf (t ) Chf (t ) 2.P (t ). 1 P (t )
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             2.exp . 1 exp
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             2.exp 2.exp
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  −   − 
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    

 −   − 
= − − −   

   

 

 
Which is a curve concave downward having a 

maximum at: 

( )0t 861.37,   0.5=  
 
2.4.5. Pc: The Probability in the Complex Set C: 
 

( )

( )

( ) ( )

02

2

0

2
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1000 t
Pc DOK Chf 1 2.exp
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    

⇒ =

 

 
Thus we deduce that in the set C, we have a complete 

knowledge of the random variable since Pc = 1.  

2.4.6. The Intersection Point:  
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r 0 m 0
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Fig. 17. EKA parameters in exponential cumulative distribution 
 

 
 

Fig. 18. EKA parameters in exponential cumulative distribution 
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Fig. 19. DOK and Chf in terms of t and of each other in exponential cumulative distribution 
 

So Pr(t0) and Pm(t0)/i intersect at (861.37, 0.5). 
Moreover, the minimum of DOK and the maximum 

of MChf occur at (861.37, 0.5). 
So we conclude that Pr(t0), Pm(t0)/i, DOK and MChf 

all intersect at (861.37, 0.5) (Fig. 17-19). 

2.4.7. The EKA Parameters Analysis in the 
Prognostic of Degradation: 

In this case, we note from the figure above that the 
DOK is maximum (DOK=1) when MChf is minimum 
(MChf=0) (points J & L). Afterward, the magnitude of 
the chaotic factor MChf starts to increase with the 
decrease of DOK until it reaches 0.5 at t0=861.37 
(point K). Since the real probability Pr is an 
exponential distribution it will intersect with DOK at 
the point (861.37, 0.5) (point K). With the increase of 
t0, Chf and MChf return to zero and the DOK returns 
to 1 where we reach total damage (D = 1) and hence 
the total certain failure (Pr = 1) of the system (point 
L). At this last point L the failure here is certain, 
Pr(tN) = tN/tN = 1 and RUL(tN) = tN-tN = 0 with Pc(tN) = 
1, so the logical explanation of the value DOK = 1 
follows. We note that the point K is no more at the 
middle of DOK since the exponential distribution is 
not symmetric (Fig. 17). 

2.5. The Normal Probability Distribution: 

With a probability density function: 

2

tt

dF(t) 1 1 t t
f(t) exp  , 

dt 2 σ2πσ

 for t

  −
 = = −  
   

− ∞ < < ∞

 

 
and a cumulative distribution function: 
 

0 0 0
2t t t

0
t0 0 t

0 N

1 1 t t
F(t ) f(t)dt f(t)dt exp .dt,    

2 σ2πσ

for  0 t t

−∞

  −
 = = = −  
   

≤ ≤

∫ ∫ ∫  

 
We have taken the domain for the normal variable t0 

= [0, tN = 1000], dt0 = 0.1,  t 500=  (Mean) and σt = 150 
(Standard deviation).  

Note that: 
 

2

tt

1 1 t t
dF f(t)dt exp .dt 1

2 σ2πσ

+∞ +∞ +∞

−∞ −∞ −∞

  −
 = = − = 
   

∫ ∫ ∫  

 

2.5.1. The Real Probability Pr: 
 

0
2t

r 0 0
t0 t

0 N

1 1 t t
P (t ) F(t ) exp .dt

2 σ2πσ

if 0 t t 1000

  −
 = = −  
   

≤ ≤ =

∫  

 
We note that Pr(t0) is a non-decreasing function. 
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2.5.2. The Complementary Probability Pm/i: 
 

0

N

0

m 0 r 0 0

2t

t0 t

2t

tt t

0 N

P (t ) / i 1 P (t ) 1 F(t )

1 1 t t
1 exp .dt

2 σ2πσ

1 1 t t
exp .dt

2 σ2πσ

if 0 t t 1000

= − = −

  −
 = − −  
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  −
 = −  
   

≤ ≤ =

∫

∫
 

 
We note that Pm(t0)/i is a non-increasing function. 

2.5.3. The Degree of Our Knowledge DOK: 

DOK is the measure of our certain knowledge 
(100% probability) about the expected event, it does 
not include any uncertain knowledge (with probability 
less than 100%). 
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∫
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Which is a curve concave upward having a minimum at: 
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0
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t0 t
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1 1 t t
exp .dt

2 σ2πσ

0.5  At t t 500,   0.5
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Since the normal distribution is symmetric about the 

mean which is t 500= . 

2.5.4. The Chaotic Factor Chf and MChf: 
 

[ ] [ ]
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Which is a curve concave upward having a minimum at: 
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0
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exp .dt
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Since the normal distribution is symmetric about the 

mean which is t 500= . 
Therefore, we can infer the magnitude of the chaotic 

factor MChf: 
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Which is a curve concave downward having a 

maximum at: 
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Since the normal distribution is symmetric about the 

mean which is t 500= . 
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2.5.5. Pc: The Probability in the Complex Set C: 
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Thus we deduce that in the set C, we have a complete 

knowledge of the random variable since Pc = 1.  

2.5.6. The Intersection Point: 
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So Pr(t0) and Pm(t0)/i intersect at (500, 0.5). 
Moreover, the minimum of DOK and the maximum 

of MChf occur at (500, 0.5). 
So we conclude that Pr(t0), Pm(t0)/i, DOK and MChf 

all intersect at (500, 0.5) (Fig. 20-22). 

2.5.7. The EKA Parameters Analysis in the 
Prognostic of Degradation: 

In this case, we note from the figure that the DOK 
is maximum (DOK = 1) when MChf is minimum 

(MChf = 0) (points J & L). Afterward, the magnitude 
of the chaotic factor MChf starts to increase with the 
decrease of DOK until it reaches 0.5 at t0 = 500 (point 
K). Since the real probability Pr is a normal 
distribution it will intersect with DOK at the point 
(500, 0.5) (point K). With the increase of t0, Chf and 
MChf return to zero and the DOK returns to 1 where 
we reach total damage (D = 1) and hence the total 
certain failure (Pr = 1) of the system (point L). At this 
last point L the failure here is certain, Pr(tN) = tN/tN = 1 
and RUL(tN) = tN-tN = 0 with Pc(tN) = 1, so the logical 
explanation of the value DOK=1 follows. We note 
that the point K is at the middle of DOK since the 
normal distribution is symmetric (Fig. 20). 

2.6. The Lognormal Probability Distribution: 

With a probability density function: 
 

2
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and a cumulative distribution function: 
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0
t0 0 t
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≤ ≤

∫ ∫  

 
We have taken the domain for the lognormal variable 

t0 = [0,tN = 1000], dt0 = 0.1, t 5.3= (mean) and σt = 0.7 
(standard deviation). 

Note that: 

 
2

t0 0 0 t
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+∞ +∞ +∞   −
 = = − = 
   

∫ ∫ ∫  

 

2.6.1. The Real Probability Pr: 
 

0
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We note that Pr(t0) is a non-decreasing function. 
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Fig. 20. EKA parameters in normal probability distribution 
 

 
 

Fig. 21. EKA parameters in normal probability distribution 
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Fig. 22. DOK and Chf in terms of t and of each other in normal probability distribution 
 
2.6.2. The Complementary Probability Pm/i: 
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∫
 

 
We note that Pm(t0)/i is a non-increasing function. 

2.6.3. The Degree of Our Knowledge DOK: 

DOK is the measure of our certain knowledge 
(100% probability) about the expected event, it does 
not include any uncertain knowledge (with probability 
less than 100 %): 
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which is a curve concave upward having a minimum at: 
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Notice that Ln(200.34) 5.3 t= =  which is the mean of 

the distribution and equivalently ( )exp t 5.3 200.34= = . 

This is conformed to the lognormal distribution. 

2.6.4. The Chaotic Factor Chf and MChf: 
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which is a curve concave upward having a minimum at: 
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Therefore, we can infer the magnitude of the chaotic 

factor MChf: 
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which is a curve concave downward having a maximum 
at: 
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2.6.5. Pc: Probability in the Complex Set C: 
 

0

2
0 0 0

2t

t0 t

Pc (t ) DOK(t ) Chf(t )

1 1 Ln(t) t
1 2. exp .dt

2 σ2πσ t

= −

  −
 = − −  
   

∫
 

N

0

2t

tt t

1 1 Ln(t) t
exp .dt

2 σ2πσ t

  −
 × −  
   

∫  

0
2t

t0 t

1 1 Ln(t) t
2. exp .dt

2 σ2πσ t

  −
 + −  
   

∫  

N

0

2t

0
tt t

1 1 Ln(t) t
exp .dt 1 Pc(t ) 1

2 σ2πσ t

  −
 × − = ⇒ = 
   

∫  

Thus we deduce that in the set C, we have a complete 
knowledge of the random variable since Pc = 1.  

2.6.6. The Intersection Point:  
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So Pr(t0) and Pm(t0)/i intersect at (200.34, 0.5). 
Moreover, the minimum of DOK and the maximum 

of MChf occur at (200.34, 0.5). 
So we conclude that Pr(t0), Pm(t0)/i, DOK and MChf 

all intersect at (200.34, 0.5) (Fig. 23-25). 

2.6.7. The EKA Parameters Analysis in the 
Prognostic of Degradation: 

In this case, we note from the figure below that the 
DOK is maximum (DOK=1) when MChf is minimum 
(MChf = 0) (points J & L). Afterward, the magnitude 
of the chaotic factor MChf starts to increase with the 
decrease of DOK until it reaches 0.5 at t0 = 200.34 
(point K). Since the real probability Pr is a lognormal 
distribution it will intersect with DOK at the point 
(200.34, 0.5) (point K). With the increase of t0, Chf and 
MChf return to zero and the DOK returns to 1 where 
we reach total damage (D = 1) and hence the total 
certain failure (Pr = 1) of the system (point L). We note 
that the point K is no more at the middle of DOK since 
the lognormal distribution is not symmetric. 

At each instant t0, the remaining useful lifetime 
RUL(t0) is certainly predicted in the complex set C 
with Pc maintained as equal to one through a 
continuous compensation between DOK and Chf. This 
compensation is from instant t0 = 0 where D(t0) = 0 
until the failure instant tN where D(tN) = 1 (Fig. 23).  
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Fig. 23. EKA parameters in log-normal probability distribution 
 

 
 

Fig. 24. EKA parameters in log-normal probability distribution 
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Fig. 25. DOK and Chf in terms of t and of each other in log-normal probability distribution 
 

3. CONCLUSION 

In this study I applied the theory of Extended 
Kolmogorov Axioms to different probability 
distributions: the uniform, the logarithmic, the power, the 
exponential, the normal and the lognormal cumulative 
probability distributions. In addition, I established a tight 
link between the new theory and degradation or the 
remaining useful lifetime. Hence, I developed the theory 
of “Complex Probability” beyond the scope of the 
previous first and second paper on this topic. As it was 
proved and illustrated, when the degradation index is 0 
or 1 and correspondingly the RUL is tN or 0 then the 
Degree of Our Knowledge (DOK) is one and the 
chaotic factor (Chf and MChf) is 0 since the state of the 
system is totally known. During the process of 
degradation (0<D<1) we have: 0.5<DOK<1, -0.5<Chf<0 
and 0<MChf<0.5. Notice that during the whole process 
of degradation we have Pc = DOK - Chf = DOK + 
MChf = 1, that means that the phenomenon which 
seems to be random and stochastic in R is now 
deterministic and certain in C = R + M and this after 
adding to R the contributions of M and hence after 
subtracting the chaotic factor from the degree of our 
knowledge. Moreover, for each value of an instant t0, I 
have determined its corresponding probability of 
survival or of the remaining useful lifetime RUL(t0) = 
tN-t0. In other words, at each instant t0, RUL(t0) is 

certainly predicted in the complex set C with Pc 
maintained as equal to one through a continuous 
compensation between DOK and Chf. This 
compensation is from instant t0 = 0 where D(t0) = 0 
until the failure instant tN where D(tN) = 1. Furthermore, 
using all these graphs illustrated throughout the whole 
paper, we can visualize and quantify both the system 
chaos (Chf and MChf) and the system certain 
knowledge (DOK and Pc). This is certainly very 
interesting and fruitful and shows once again the 
benefits of extending Kolmogorov’s axioms and thus 
the originality and usefulness of this new field in 
mathematics that can be called verily: “The Complex 
Probability and Statistics Paradigm”. 
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