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ABSTRACT

The Kolmogorov’s system of axioms can be extendegshtompass the imaginary set of numbers and yhis b
adding to the original five axioms an additionakthaxioms. Hence, any experiment can thus be &dkou
what is now the complex set C (Real set R with galbability + Imaginary set M with imaginary
probability). The objective here is to evaluate tloenplex probabilities by considering supplementaey
imaginary dimensions to the event occurring in“teal” laboratory. Whatever the probability distition of

the input random variable in R is, the correspogdinobability in the whole set C is always one,tlse
outcome of the random experiment in C can be prediitotally. The result indicates that chance aicl In R

is replaced now by total determinism in C. This remmplex probability model will be applied to thencepts

of degradation and the Remaining Useful Lifetim&IR thus to the field of prognostic.
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1. INTRODUCTION in C equal to one (B¢ DOK-Chf = 1). Thus, the study
in the complex universe results in replacing the
Abou Jaoudet al. (2010); Abou Jaoude (2013; 2005; phenomena that used to be random in R by detertiginis
2007); Bell (1992); Benton (1996); Boursin (1986); and totally predictable ones in C.
Chen et al. (1997); Cheney and Kincaid (2004); This hypothesis is verified in a previous study and

Dacunha-Castelle (1999); Dalmédico Dahah al. paper by the mean of many examples encompassihg bot
(1992); Dalmedico Dahan and Peiffer (1986); Ekelanddiscrete and continuous distributions. _
(1991); Feller (1968); Finneyt al. (2004); Gentle From the Extended Kolmogorov's Axioms (EKA),

(2003); Gerald and Wheatley (1999); Gleick (1997); we can deduce that if we add to an event probgbilit
Greene (2000; 2004) firstly, the Extended Kolmogtso the real set R the imaginary part M (like the lifet
Axioms (EKA for short) paradigm can be illustratey variables) then we can predict the exact probgbdit
the following figure Fig. 1). the remaining lifetime with certainty in C (Pc = 1)

In engineering systems, the remaining useful hieti We can apply this idea to prognostic analysis
prediction is related deeply to many factors thatthrough the degradation evolution of a system. As a
generally have a chaotic behavior which decredses t matter of fact, prognostic analysis consists in the
degree of our knowledge of the system. prediction of the remaining useful lifetime of assym

As the Degree of Our Knowledge (DOK for short) in at any instantstand during the system functioning.
the real universe R is unfortunately incompleteg th Let us consider a degradation trajectory D(t) of a
extension to the complex universe C includes thesystem where a specific instapis studied. The instant
contributions of both the real universe R and thet, means here the time or age that can be measwed al
imaginary universe M. Consequently, this will resnla by the cycle number N.
complete and perfect degree of knowledge in C = R+M  Referring to the figure belowr{g. 2), the previous
(Pc = 1). In fact, in order to have a certain pcédn of statement means that at the system ggée prognostic
any event it is necessary to work in the compleixense study must give the prediction of the failure ims$td,.

C in which the chaotic factor is quantified and tsatted Therefore, the RUL predicted here at instantst the
from the Degree Of Knowledge to lead to a probghili following quantity: RUL (§) = ty-to.

////A Science Publications 1 JMSS



Abdo Abou Jaoude / Journal of Mathematics and Sitedi 10 (1): 1-24, 2014

Input: Real set R ’ Output: Complex set C
P g +3 axioms P P
5 original ﬂ 8 Kolmogorov’s axioms

Add imaginary set M

kol oV’
e (hidden variables)

axioms Complex numberZ =P +P,,

il Complex probability P-= 1
Pc® = DOK-Chf

[ Real probability P, ]

Imaginary probability Py
— Ght=21P D,
= DOK =17?

Chance and luck Total determinism

Fig. 1. EKA paradigm

MChf =0
A DOK =1
D® P,=1Pc=1
L
1
MChf =0
oopoRel Pc*(t,) = DOK(t,)— Chft,)
Pe=1 = DOK(t,) + MChfit,)
D (to) =1 . 70,21,
K
MChf =0
DOK =1
P,=0Pc=1 J
T
0 1o ty = Lifetime g
Fig. 2. EKA and the prognostic of degradation
In fact, at the beginningq(t 0) (point J), the failure Furthermore, we need in our current study the
probability R= 0 and the chaotic factor in our prediction absolute value of the chaotic factor that will give the
is zero (Chf = 0). Therefore, RUb& 0) = f-to = ty. magnitude of the chaotic and random effects on the

If to = oint L) then the RUL( = t-tv = 0 and  Studied system. This new term will be denoted
the fai(l)urempr(gb;\bilitil is one (P 1) B = bty accordingly MChf or Magnitude of the Chaotic Factor

If not (i.e., 0<<ty) (point K), the probability of the ~EMNCe» We can deduce the following:
occurrence of this instant and the predict.ion pbaliig MChfit,) = |Chf(t,) = 0 and
of RUL are both less than one (not certain) duado-
zero chaotic factors. The degree of our knowledge i P ()= DOK(t )~ Chf(t, )= DOK(t,)+| Chf(, )
consequently less than 1. Thus, by applying heee th since - 0.5 Chf¢ x 0
EKA method, we can determine the system RUL with = DOK(t,) + MChf(t;) =1, 0 0s ;< t;
certainty in C = R+M where Pc = 1 always. < 0< MChf(t,)< 0.5 where 0.5 DOK(t ¥ 1
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Moreover, we can define two complementary events
E and E with their respective probabilities:

Pw(BE)=p and B, 7(E;: G 1

Then Ry, (E) in terms of the instang is given by: R,
(E) = R = B, (tg) = F(t) where F is the cumulative
probability distribution function of the random iadole t.

Since Ry, (E)+Ros(E)= 1, therefore, R(E) = 1-
Prob(E) = 1-R = 1-Rop(t<to)= Pob (t>10)-

Let us define the two particular instantg:=t O
assumed as the initial time of functioning (rawtesta
corresponding to D = = 0 and ¢ = the failure instant
(wear out state) corresponding to the degradatienlD

The boundary conditions are.

For { = 0 then D = I (initial damage that may be
zero or not) and Fdit= P,y (t<0) = 0.

For y=tythen D =1 and Rft=F ({) = P (t<ty) = 1.

Also F(b) is a non-decreasing function that varies
between 0 and 1. In fact, E)(fis a cumulative function
(Fig. 3). In addition, since RUL{} = fy-to and &t<ty
then RUL() is a non-increasing remaining useful
lifetime function Fig. 4).

Referring toFig. 5 below, we can infer the following:

The complex probability Zgt = PB(tg)+Pu(ty) =
Pi(to)+i[1-Pi(to)].
The square of the norm of g)is:

|2(t,)|" = DOK(t,) =1+ 2iR(t,) P,( 1)

=1-2R(4)[+ B(§)]= + 2/ §+ 27( J

The Chaotic Factor and the Magnitude of the Chaotic
Factor are:

Chf(te) = -2R(to)[1-Pi(to)] = -2P(to)+2P(to) is null when
P(to)) = R(0) = 0 (point J) or when &) = R(ty) = 1
(point L) and MChf(§) = [Chf(b)] = 2R(to)[1-P(to)] =
2P (to)-2P4(ty) is null when Rt,) = P(0) = 0 (point J) or
when R(tg) = P(ty) = 1 (point L)

At any instant 4 (point K), the probability expressed
in the complex set C is:

Pc(b) = R(to)+Pm(to)/i = P(to)+[1-P(to)] = 1 always.

Hence, the prediction of RULJt of the system
degradation in C is permanently certain.

Let us consider thereafter many probability
distributions to model the function Bt

////4 Science Publications

2. APPLICATION TO DIFFERENT
PROBABILITY DISTRIBUTIONS

2.1. The Uniform Probability Distribution
(Guillen, 1995; Gullberg, 1997; Kuhn,
1996; Liu, 2001; Mandelbrot, 1997;

Montgomery and Runger, 2005; Miller,
2005; Orluc and Poirier, 2005; Poincaré,
1968; Prigogine, 1997; Prigogine and
Stengers, 1992; Robert and Casella, 2010;
Science et Vie, 1999; Srinivasan and Mehata,
1978; Stewart, 1996; 2002; Van Kampen,
2007; Walpole, 2002; Ducrocq and Warusfel,
2004; Weinberg, 1992)

With a probability density function:

1
b-a
0

and a cumulative distribution function:

dF(t) _ if ast<b

dt

f(t) =

elsewhere

ty to %;a . <t <
F(ty) = Py (t< t) = j f(t)dt:jf(t)dt: — if ast,<b
h 2 0 elsewhere

With the two boundaries a = 0 and bythen:

t,-0 _t,
t,-0 t,

F(t,) = O<t,<t,

We have taken the domain for the uniform variable

to= [0, ty=1000] and dt= 0.1 then:

t .
F(t,)=—2 if
) 1000

0<t,<1000

2.1.1. The Real Probability R

P)= F(tg)ztt—0 if 0<t,<t,=1000

N

We note that o) is a non-decreasing function.

2.1.2. The Complementary Probability R/i:

P.(t)/i=1- P ()= I F(t ) 1—%0 it G t< {,= 1001

N
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F(tO):Pr:Prob(t =< tO)

t
0 t N
Fig. 3. Occurrence probability
RUL(Y)
A
&(0): "
S
RUL(ty) =0
t
< >
Fig. 4. RUL prognostic model
A D)
L
1
L-By= mefll = Prob(t:}to)
D (to)
Pr P Plob(tSIO) K
t
J >
0 to ty = Lifetime
- A =)
hd v

Fig. 5. Degradation prognostic model
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We note that R (to)/i is @ non-increasing function. 2.1.5. Pc: The Probability in the Complex Set C:
2.1.3. The Degree of Our Knowledge DOK P& (t,)= DOK(t,)- Chf(t,)

DOK is the measure of our certain knowledge (100% t, t, t,
probability) about the expected event, it doesindude R Bl B ZE'

2
2(:0] = > Peft ¥
any uncertain knowledge (with probability less tha0%): § §

N

) Thus we deduce that in the set C, we have a coenplet
DOK(t,) = P2 (t,)+ 2iP ()R, (1) knowledge of the random variable since Pc = 1.

=¥ 2R B B 1 2P()1 Rl 2.1.6. The Intersection Point:

= 2F¢ ]+ Ft]= % #(. at‘]] ¢ t N
ty ty P)=P (t)/ie 2=1--2« 2.0
t t 2 ty N ty
— 0 ‘o
S . 500
Which is a parabola concave upward having a vertex and P (f = 500F 1000° 0.5 and

(a minimum) at: 500
P.(t, = 500)/i= I-—— =1 0.5 0.
t, 1000
t, == =500= 0.5¢ 16, o.

So R(t) and Ry(to)/i intersect at (500, 0.5).

Moreover, the minimum of DOK and the maximum

2.1.4. The Chaotic Factor Chf and MChf: of MChf occur at (500, 0.5).
) - So we conclude that,[®), Pu(to)/i, DOK and MChf
Chf(t) = 2IF ()R, (6)=~ 2.1, (BB, (B) all intersect at (500, 0.5F(g. 6-9).

=-2. > - 2Ft)4 E
Pel® PUF “ i 2.1.7. The EKA Parameters Analysis in the

2
=—olo| gl |- oy plo Prognostic of Degradation:
t [ 7ty t,

We note from the figure below that the DOK is
P : maximum (DOK = 1) when MChf is minimum (MChf =
a rY]YEiIr%TJ;i)aaﬁarabma concave upward having a vertexo) (points J& L) and that means when the magnitm‘de_
' the chaotic factor (MChf) decreases our certain
¢ knowledge increases.
[to =N =500=0.5¢<18, - 0.% At the beginning P(t))= ty/ty = 0/{y = 0, the system is
2 intact (zero damage: D = 0) and has zero chaotimfa

) ] _ before any usage, at this instant DOK(0) = 1 and.@®Y
Therefore, we can infer the magnitude of the cleaoti = -0 = 4, with Pc(0) = 1. Afterward, Og&ty, RUL(to) =

factor MChf: tn-to With P(to) = t/ty 2 0 and Pcg) = 1 and MChf starts
to increase during the functioning due to the emvinent

MChf (t,) = |Chf (t,)| =\—2.F; K[ P QN and intrinsic conditions thus leading to a decre&se
_ _ _ DOK until they both reach 0.5 at=t t\/2 = 500 (point K)

2RG)[r P@)= 2Fe & Fe) where RUL(t/2) = /2 = 500. Since the real probability

2(t0j2 P, is a uniform distribution MChf will intersect with
[ty DOK at the point /2 = 500, 0.5) (point K).

With the increase of the time of functioning, MChf
returns to zero and the DOK returns to 1 where we
reach total damage (D = 1) and hence the totalrail
of the system (point L). At this last point the léae
here is certain, Bty) = t/ty = 1 and RUL({) = ty-ty =
(tozLN=5oo= 0.5¢ 16, 0_% 0 with Pc(k) = 1, so the logical explanation of the

2 value DOK = 1 follows Fig. 10).

Lotefpote) ke
tN tN tN

Which is a parabola concave downward having a
vertex (a maximum) at:
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---- Pm/i: Complementary probability
Fig. 6. EKA parameters in uniform probability distribution
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Fig. 7.EKA parameters in uniform probability distribution
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T

Fig. 9.DOK and Chf in terms of t and of each other in anif probability distribution
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A
MChf,;,= 0 MChf,, =0
] 1 /L
1
DOK P, Unif
12 K 12
7
MChE, =1/2
D(1)
MChf
t
0 /2 =500 t= 1000

Fig. 10.EKA parameters and the prognostic of degradation

We note that the same logic and analysis apply \ye note that Ri is a non-increasing function.
concerning the degradation and the remaining useful

lifetime for the all the six probability distributins. 2.2.3. The Degree of Our Knowledge DOK:

2.2. The Logarithmic Distribution: DOK is the measure of our certain knowledge
(100% probability) about the expected event, itdoe
not include any uncertain knowledge (with probapili
less than 100%):

With a probability density function:

dF(t)_{“ if osts<t,

f(t) = 1+at B
dt 0 elsewhere DOK=1-2R.(- PF ¥ 2 (B)R (E
wherea = (e-1) /1000= 0.001718281 =1-2F)[+ F ]

=1-2Ln(I+at)[1- Ln(krat )

and a cumulative distribution function: =1-21n@+ay)+ { Ln@at |

Lnl+aty) if O<t,<t,

which is a curve concave upward having a minimum at
0 elsewhere

F(t,) = ] f(t)dt = Ijof(t)dt ={

We have taken the domain for the logarithmic (t,=377.54, 03

variable §= [0, = 1000] where ¢t=0.1.
2.2.4. The Chaotic Factor Chf and MChf:

2.2.1. The Real Probability B B
Chf=-2R(+ P)=-2p (E)R (¢t

P =F()=Ln(l+at) if 0< t<t,=100C = 2. F(,)[1- F(, ]
=-2.Ln(1+at,)[1- Ln(z+a ¢ §
We note that Fis a non-decreasing function. )
=-2.Ln(l+at,)+ 2[ Ln(l+a g

2.2.2. The Complementary Probability R/i:
which is a curve concave upward having a minimum at

P, /i=1-P=1 F(t )= + Ln(¥a
if 0<t,<t, =1000 (t,=377.54, - 0.5

,////4 Science Publications 8 JMSS
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Therefore, we can infer the magnitude of the cleaoti real probability P is a logarithmic distribution

factor MChf: (convex curve) it will intersect with DOK at the ipb
(377.54, 0.5) (point K). With the increase gf MChf
MChf(to):\Chf(to)\:\—Z.F:(to )| = E’(SN returns to zero and the DOK returns to 1 Whe_re we
_ ~ reach total damage (D = 1) and hence the totahivert
=2RG)[-PG)= 2Fg L+ Fg) failure (R = 1) of the system (point L). We note that
:2.Ln(1+at0){1— Ln(+a g] the point K is no more at the middle of DOK sinbe t
=2.In(+at)- 2] Ln(+a § ]2 distribution is not anymore uniform and symmetric.

At each instant of the remaining useful lifetime
] . . RUL(ty) is certainly predicted in the complex set C with
Which is a curve concave downward having a p; maintained as equal to one through a continuous
maximum at: compensation between DOK and Chf. This
compensation is from instanrt=t 0 where D) = 0 until
(t,=377.54, 05 the failure instantgwhere D(t) = 1 Fig. 11).

2.3. The Power Probability Distribution:

2.2.5. Pc: The Probability in the Complex Set C: _ . _ _
With a probability density function:

P¢ = DOK- Chf=1- 2In(ta § ¥ 4. In(xa ¢]f

148
+2In(1+at)- 2 In(1+ag]2= = P& 1 f(t) _dF® _ 1000° if 0ststy
dt 0 elsewhere

Thus we deduce that in the set C, we have a coeplet
knowledge of the random variable since Pc = 1. and a cumulative distribution function:

2.2.6. The Intersection Point:

t to ttA .
P.()= P, (4)/i~ Ln(+at)= - Ln(ta ) Ft,)= [ fOdt= [fdt={1005" " °='o="
- 0 0 elsewhere

- 2Lln(l+at)=1- Ln(+at, ):%

= 1o =(exp(0.5)- } k= 377.54 We have taken the domain for the power variapte t

and P ({ = 377.54F Ln(Zax 377.54) 0.5 [0,ty = 1000] and git= 0.1.

and P (,= 377.54)/+ * Ln@ax 377.54) N

-1-05= 05 2.3.1. The Real Probability R
So R(ty) and Ry(ty)/i intersect at (377.54, 0.5). P = ()= % & 0<t<t =100C
Moreover, the minimum of DOK and the maximum ' 1000* o

of MChf occur at (377.54, 0.5).

So we conclude that,@®), Py(to)/i, DOK and MChf
all intersect at (377.54, 0.55i¢. 11-13.
2.2.7. The EKA Parameters Analysis in the 2-3-2. The Complementary Probability f/i:

Prognostic of Degradation:

We note that Fis a non-decreasing function.

14
In this case, we note from the figure below that th P.li=1-P=1-F{ F 1_1(;8(}4
DOK is maximum (DOK = 1) when MChf is if 0<t <t =1000
minimum (MChf = 0) (points J & L). Afterward, ComoN
MChf starts to increase with the decrease of DOK
until it reaches 0.5 at & 377.54 (point K). Since the We note that Ri is a non-increasing function.
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-0.6
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1
---- Chf: Chaotic factor
---- Pr: Real probability
---- DOK: Degree of our knowledge
---- Pm/i: Complementary probability
Fig. 11.EKA parameters in logarithmic cumulative distrilmuti
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Fig. 12.EKA parameters in logarithmic cumulative distrilmurti
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Chl

1000

Fig. 13.DOK and Chfin terms of t and of each other in hithanic cumulative distribution

2.3.3. The Degree of Our Knowledge DOK: Which is a curve concave upward having a minimum at

DOK is the measure of our certain knowledge (t,=951.7, - 0.5
(100% probability) about the expected event, itsloe
not include any uncertain knowledge (with probabili

less than 100 %): Therefore, we can infer the magnitude of the cleaoti

factor MChf:
DOK=1-2P.(- PF + 2B (E)R (

=1-2F()[ - FG ] MCHhf (t,) =|Chf (t,)] =|-2.R (4 ) = P (¢ }
e e £ =2R(4,)[- P ()= 2F¢ [ £ F¢]
_1_2'10064(1_ 1006“} =T %1008 o [ ), t
u N\ u s ‘1006~ 1006 "1008 1008
2| Lo —o b yo b
1000* 100¢ 1008

Which is a curve concave downward having a
_ . " maximum at:
Which is a curve concave upward having a minimum at

t, =951.7, 0.
(t,=951.7, 0.5 (t ?

2 3.4. The Chaotic Factor Chf and MChf- 2.3.5. Pc: The Probability in the Complex Set C:

_ {4 {14 2
Chf=-2P (¥ P)=- 2. E E PZ = DOK- Chf=1- 2—9 _+ 2.0
(+ P=-28 ER © . {100(’)“}
=-2.F(t)[1~ F( ] 3 Y v
t t
£ £ £ ) S —2( 0| =1= P 1
=20 _/1-—0 |=-2.9 4+ 2 20 1000* 1006
1000* ( 1006“} 1008 [ 1060}
L, Thus we deduce that in the set C, we have a coenplet
1000* 1006° knowledge of the random variable since Pc = 1.
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2.3.6. The Intersection Point: fo to
F(to) = [ f(tdt= [ f(t)dt

R()= P, ()/ie —o =1L exp{—(looo_g)} t ostst,

1000* 1006 =

200
14 14
- 2. fo =l L 1 0 elsewhere
'1000* 100(334 2
= 1, =1/0.5x100¢' = 951.7 We have taken the domain for the logarithmic
4 variable § = [0,iy = 1000] and ¢t= 0.1.
and P (;= 95175 951674 _ [ ]
100 " 2.4.1. The Real Probability P:
and P (1= 950.7) /& 3 ok _=1 05 0
000 P = F(y)= exg 020" b)
! b 200
So R(tp) and R(to)/i intersect at (951.7, 0.5). if 0<t,<t,=1000

Moreover, the minimum of DOK and the maximum
of MChf occur at (951.7, 0.5).

. We note that Pis a non-decreasing function.
So we conclude that@®), Py(to)/i, DOK and MChf

all intersect at (951.7, 0.5Fig. 14-16. 2.4.2. The Complementary Probability R/i:
2.3.7. The EKA Parameters Analysis in the (1000- 1)
Prognostic of Degradation: P /i=1-R=1 Ft ) F ex%_zoo}
In this case, we note from the figure below that th if 0<t,<t,=1000

DOK is maximum (DOK=1) when MChf is minimum
(MChf = 0) (points J & L). Afterward, MChf starte t
increase with the decrease of DOK until it reacBgs
at = 951.7 (point K). Since the real probabilityi®  2.4.3. The Degree of Our Knowledge DOK:
a power distribution it will intersect with DOK ahe
point (951.7, 0.5) (point K). With the increase tgf
MChf returns to zero and the DOK returns to 1 where
we reach total damage (D =1) and hence the total
certain failure (P= 1) of the system (point L). At this
last point L the failure here is certain(tf) = W/t = 1

and RUL(L) = ty-ty = 0 with Pc(f) = 1, so the logical

We note that Ri is a non-increasing function.

DOK is the measure of our certain knowledge
(100% probability) about the expected event, itdoe
not include any uncertain knowledge (with probapili
less than 100%):

DOK=1-2P.- PE + 2R (E)R (E)

explanation of the value DOK = 1 follows. We ndtett =1-2F()[ 1 F( )
the point K is no more at the middle of DOK sinbe t B [ (1000- )] (1000- 5
distribution is neither uniform nor symmetrigig. 14). =l-2exq- 200 ke 200
2.4. The Exponential Probability Distribution: [ (1000~ t)] { (1000- ¢
=1-2exp—— |+ 2. % }
With a probability density function: L 200 | 200
1-2ex] _(2000-4) 1, he % 2,(1000- }
dE(t iex _M if O<t<t - 200 - 200
ft) = —() =1200 200 oo
0 elsewhere Which is a curve concave upward having a minimum at
and a cumulative distribution function: (t,=861.37, 0.5
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Fig. 16.DOK and Chf in terms of t and of each other in popmbability distribution

2.4.4. The Chaotic Factor Chf and MChf: (t,=861.37, 0.5

Chf=-2P(%+ P)=- 2R, (E)\R (E) 2.4.5. Pc: The Probability in the Complex Set C:

=-2.F(t,)[1- F(@t §

P& = DOK- Chf= 1- 2.exJE—(1000_t°)}

=-2.ex ;—M_ t e VM ] 200
- 200 | 200 (1000~ 1)
[ ] : +2'[ex{_2ooD
:—2.ex3—M + 2. e{p_(looo'é)} ]
[ 200 | 200 (1000- 1) (1000- §) 1Y _
_ _ +2.ex _T - 2| ex _W =
:—2.ex3—w +2.ex _2(1000- ) !
L 200 | 200 = Pc=1

. ) . Thus we deduce that in the set C, we have a coenplet
Which is a curve concave upward having a minimum at ynowledge of the random variable since Pc = 1

2.4.6. The Intersection Point:

(t,=861.37, - 0.5

Therefore, we can infer the magnitude of the cloaoti
factor MChf:

MChf (t,) =|Chf (t,) =|-2.R (1,)[ = P (& )
=2P )[Rt )= 2F¢ | = F¢)

oot )
2.ex%—(102885)} - z_e{pz(lgggﬂ

Which is a curve concave downward having a
maximum at:

,////4 Science Publications 14

_ . _(1000— t)
R ()= Ry () /i~ ex{ =

1e{(1°°°'0)} - ze%(lm”} !

200 200

ex,{_(looo-%)} _1
200 2

t, =1000+ 200.Ln(0.5% 861.37

1000- 861.3

(1000- 861.37}

and B, (t= 861.37)/+ texp -
200

=1-0.5= 0.5
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Fig. 19.DOK and Chf in terms of t and of each other in egrttial cumulative distribution

So R(tp) and R(to)/i intersect at (861.37, 0.5). dF () 1 1 =1V

Moreover, the minimum of DOK and the maximum f(t) = pra o expl—z[ } 1 ,
of MChf occur at (861.37, 0.5). 2no, o

So we conclude that,@®), Pn(to)/i, DOK and MChf for—co<t<oo

all intersect at (861.37, 0.55if). 17-19.

2.4.7. The EKA Parameters Analysis in the
Prognostic of Degradation:

2 K ! 1 1=
. , F(t,) = | f(tydt= | f()dt= -=|—| |.dt,

In this case, we note from the figure above that th (t) L © ;[ © '([\/Zﬂ(it N2 o,
DOK is maximum (DOK=1) when MChf is minimum

and a cumulative distribution function:

for Ot <t

(MChf=0) (points J & L). Afterward, the magnitudé o
the chaotic factor MChf starts to increase with the We have taken the domain for the normal variaple t
decrease of DOK until it reaches 0.5 gt861.37 = [0, t = 1000], d§ = 0.1, T =500 (Mean) ands; = 150
(point K). Since the real probability ,Pis an (Sta'ndard devia’ltion). '
the point (861.37, 0.5) (point K). With the increasf

tp, Chf and MChf return to zero and the DOK returns o e oo —\2

to 1 where we reach total damage (D = 1) and hence dezf f(t)dtzj 1 exp{—l(t_ t} } dt= 1

the total certain failure (= 1) of the system (point - “u2no, 2\ o

L). At this last point L the failure here is cenmai

1, so the logical explanation of the value DOK =1

follows. We note that the point K is no more at the - 1 1-7)

middle of DOK since the exponential distribution is P(t)= F(p]):jJ_ ex;{—z[ J} di

not symmetric Fig. 17). 0 V2mo,

2.5. The Normal Probability Distribution: 0=t =t, =1000

exponential distribution it will intersect with DOKt Note that:
Pi(tn) = t/ty =1 and RUL(%) = ty-ty = 0 with Pc(f) = 2.5.1. The Real Probability P
With a probability density function: We note that o) is a hon-decreasing function.
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2.5.2. The Complementary Probability R/i:
Pot)/1=1-R ()= 1 F()

t —\2
A N 1f t-t

=1- exg —= .dt
J(;\/ZTEG F{ 2( G, ]1

:T ex{—;( t;:t ﬂ dt

i J2ns,
if 0<t, <t, =1000

We note that R(to)/i is a non-increasing function.

2.5.3. The Degree of Our Knowledge DOK:

DOK is the measure of our certain knowledge
(100% probability) about the expected event, itsloe
not include any uncertain knowledge (with probabili
less than 100%).

DOK(t,) = P& (t,)+ 2iP (4, )R, (1)
=1-2.R, (E).R, (EF * 2P (t).4 P((t])

rob

t—t

=1-2F@)[ 1 Fi )=+ 2}\/_
1 t-1)
-—= dt
x{[ \/Ect ex{ 2( Oy ] :l
bog 1 t-1)
=1- 2._[ ex;{—[ ] }.dt
oV 210, 2\ o,
—\2 2
ex;{—l(t_ t} 1dt]
2\ o,
Which is a curve concave upward having a minimum at
to 1

[ o EX‘{‘;(: ﬂ'd‘
t

=05- At(t,=1t=500, 05

]d

t,

¢ 1
+2.
[! Tore

Since the normal distribution is symmetric abow th
mean which ist =500.

2.5.4. The Chaotic Factor Chf and MChf:

Chf(t,) = 2P, ()R, (4 )=~ 2., (E).B, (E
=2R ()[R )=-2F¢ [+ F¢]

////4 Science Publications 17

¢ _\2
¢ 1 1f t-t

=-2. expg —— dt
’([\/271201 ;{ 2( o, ]1

t —\2

r 1 1f t-t
x exp —— .dt
{[\/EG‘ { 2( G, J}

b 1 t-1)
=-2. exg —— .dt
}[x/ﬂct ;{ 2( G, ]1

—\2 2
2\ o,
Which is a curve concave upward having a minimum at
to 1

[ o EX{_;( - ﬂ'dt
t

=05- At(t,=1=500, - 0.5

to 1
+2.
| fore

Since the normal distribution is symmetric abow th
mean which ist =500.

Therefore, we can infer the magnitude of the cleaoti
factor MChf:

MChf (t,) =|Chf (t,) =|-2.P ()] = P (1 )
=2R () RP(t)= 2F¢ | ¢+ F¢t)
P

1 t-1)
:2!@(& ex;{—z( 5 ]1.dt
—\2
ex;{—l(t_ t] 1.dt
2\ o,
—\2
ex;{—l(t_ t] 1.dt
2\ o,

—\2 2
1Ift-t
ap{—z( o J}.dt]

Which is a curve concave downward having a

maximum at:
1 -1
exp —— .dt
2[\/501 { 2( o, ]}

=05- At(t,=1t=500, 05

Since the normal distribution is symmetric abow th
mean which ist =500.
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2.5.5. Pc: The Probability in the Complex Set C:  (MChf = 0) (points J & L). Afterward, the magnitude
of the chaotic factor MChf starts to increase wtle

PE (1, )= DOK(t, )- Chf(t,) decrease of DOK until it reaches 0.5 @t 500 (point
K). Since the real probability ,Pis a normal
—1- ]9 1 F{ 1(H] }.di distribution it will intersect with DOK at the pdin
s V216, o (500, 0.5) (point K). With the increase @f Chf and
" . MChf return to zero and the DOK returns to 1 where
x| 1 oex _1(t‘ t] dt we reach total damage (D = 1) and hence the total
o Vo, 2{ o, certain failure (P= 1) of the system (point L). At this
. —\2 last point L the failure here is certain(tR) = ty/ty=1
12| ex{_l(t_ t] }dt and RUL(k) = ty-ty = 0 with Pc(t) = 1, so the logical
2/2nc, 2\ o, explanation of the value DOK=1 follows. We note
wooq 1 =1V that the point K is at the middle of DOK since the
xt{ N exp{ 2( o ] }.dt— 1 normal distribution is symmetrid={g. 20).
— Po(t)= 1 2.6. The Lognormal Probability Distribution:

With a probability density function:
Thus we deduce that in the set C, we have a coeplet

knowledge of the random variable since Pc = 1. f(t) = dF®__ 1 2 Ln(-1)°
. . Todt J2no t c '
2.5.6. The Intersection Point: ! !

for 0<t<o

1, —\2
. . 1f t-t . L . .
Pt)=P li= exp —— .di and a cumulative distribution function:
()= P, () !Jﬁot { 2( ”

P 1 -1 _
R o ] 22
e 15

“ 1 t-1 for 0< t, < t,
- 2 -— de= 1
}[x/ﬂcl ex[{ 2[ o, ]
. ) 1 We have taken the domain for the lognormal variable
J' p{ [ } 1.dt,:2 =05 to = [0, = 1000], d§ = 0.1, t =5.3(mean) ands; = 0.7
o2 Ot (standard deviation).
= t,=t =500 Note that:

and P(t,=1=500)= 0.5

r

and P, (t="t= 500)/F + 0.5 05

m

de:jf(t)dt j\/ﬂ ;{ [L”(;)'t” dt=

2.6.1. The Real Probability R:

So R(tp) and R(to)/i intersect at (500, 0.5).

Moreover, the minimum of DOK and the maximum
of MChf occur at (500, 0.5).

So we conclude that@®), Pn(to)/i, DOK and MChf

all intersect at (500, 0.5F{g. 20-22. Ln(t)—
o P ()= Flt)= fJ— { (”““Hm
2.5.7.The EKA Parameters Analysis in the L O
Prognostic of Degradation: if 0<t, <t, =1000

In this case, we note from the figure that the DOK
is maximum (DOK = 1) when MChf is minimum We note that ft;) is a non-decreasing function.
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2.6.2. The Complementary Probability R/i:
Po)/i=1-R ()= 1 F()
s

o1 Ln(t) -
I\/ﬂc t ex;{ (
Ln(t)-t dt
Gt

Gl

J.\/Eot F{ (
if0<t,<t, =1000

We note that R(to)/i is a non-increasing function.

2.6.3. The Degree of Our Knowledge DOK:

DOK is the measure of our certain knowledge
(100% probability) about the expected event, itsloe
not include any uncertain knowledge (with probabili
less than 100 %):

DOK(t,) = PC (t,)+ 2iP ()R, (})
=1-2.P, (E).R, (EF ¥ 2P ). ¢ P (i
=1-2.Ft,)[1- F@t |

e

P 1( Ln(t)-
exp ——
\2no,t 2 G,

- Z-J;

Ln(t)-t
{[\/EGI { ( o, ]}dt
L 1 n@-1Y
2.£@ctt ex{ 2( 0‘ ]}dl

20

,////4 Science Publications

Ln(t)-

Ot

sy

which is a curve concave upward having a minimum at

FE
[J‘\/%Gt

©1 L
[y 0

=05 At(t,=200.34, 0p

Notice thatLn(200.34)= 5.3= "t which is the mean of
the distribution and equivalentép(t= 5.3 = 200.3.
This is conformed to the lognormal distribution.

2.6.4. The Chaotic Factor Chf and MChf:

Chf (1)) = 2iP, (4, )R, ()=~ 2.R,, (E)-R, (E

=2P()[- Pt )=-2F¢ [ & Fg)

Lt C1f -1
= 2"([\/tht ex;{ Z(Gt J}.dt

t —\2
R | 1/ Ln(t)-t
x exp| —— .dt
{[\/21‘[(5(1: p|: 2[ o, ] }
PR 1{ Ln-TY
=-2. exp——=| ——m— .dt
'([ V2not { 2( Gy J :|

Ln(t)-

Ot

x/ﬂct

ol o4 o
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which is a curve concave upward having a minimum at

J@Gt [ [ Hdt:"f’

~ At (t,=exp(t=5.9= 200.34,- O

Ln(t)-

Ot

Therefore, we can infer the magnitude of the cloaoti
factor MChf:

MChf (t,) =|Chf (t,) =|-2.R (,)[ = P (4 )
=2P )[Rt )= 2F¢ | = F¢)

L1 1 -1
Z.JJEGJ exp{ 2[0‘ ]}.dt

1 -1 "
2 o, '

I 1 -1
—Z.L/%GIIex;{ 2[ o J}.dt

]

e

Thus we deduce that in the set C, we have a coenplet
knowledge of the random variable since Pc = 1.

2.6.6. The Intersection Point:

R ()= (ro)/wj@t ;{ (L”g‘t”m
:_JJEM { [Ln(t) ﬂ
Jmct ’{ (Ln(t ”dﬂ
j@ct { "”(t)_t 1dt

= t,=200.34= exf t= 5.)3
And P ({, = 200.34F 0.5
and B, (,= 200.34)/% * 05 O

So R(to) and R(to)/i intersect at (200.34, 0.5).

Moreover, the minimum of DOK and the maximum
of MChf occur at (200.34, 0.5).

So we conclude that,{@®), Pn(to)/i, DOK and MChf

which is a curve concave downward having a maximumall intersect at (200.34, 0.55if. 23-23.

at:

g 2 o

- At (t,=exp(t=5.9= 200.34, 0k

Ln(t)-

Oy

2.6.5. Pc: Probability in the Complex Set C:

PC (1,)= DOK(}, )= Chf(t,)

:1—210\/2_;jt x{ (Ln(cg_t”di
i Jz—l{i[ L()]]d
S I
tJ;\/EGt { [L”(gt”dtb Pct F

////4 Science Publications 21

2.6.7. The EKA Parameters Analysis in the
Prognostic of Degradation:

In this case, we note from the figure below that th
DOK is maximum (DOK=1) when MChf is minimum
(MChf = 0) (points J & L). Afterward, the magnitude
of the chaotic factor MChf starts to increase vite
decrease of DOK until it reaches 0.5 at=t200.34
(point K). Since the real probability, s a lognormal
distribution it will intersect with DOK at the pdin
(200.34, 0.5) (point K). With the increase gf€hf and
MChf return to zero and the DOK returns to 1 where
we reach total damage (D = 1) and hence the total
certain failure (P= 1) of the system (point L). We note
that the point K is no more at the middle of DOKcs
the lognormal distribution is not symmetric.

At each instantqt the remaining useful lifetime
RUL(ty) is certainly predicted in the complex set C
with Pc maintained as equal to one through a
continuous compensation between DOK and Chf. This
compensation is from instan§ £ 0 where D@ = 0
until the failure instantytwhere D(t) = 1 (Fig. 23.
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1000

Fig. 25.DOK and Chf in terms of t and of each other in lo@rmal probability distribution

3. CONCLUSION certainly predicted in the complex set C with Pc
maintained as equal to one through a continuous
In this study | applied the theory of Extended compensation between DOK and Chf. This
Kolmogorov ~ Axioms to different  probability compensation is from instan§ £ 0 where D@ = 0
distributions: the uniform, the logarithmic, thevper, the until the failure instantitwhere D(t) = 1. Furthermore,
exponential, the normal and the lognormal cumutativ ysing all these graphs illustrated throughout thele
probability distributions. In addition, | establestha tight paper, we can visualize and quantify both the syste
link between the new theory and degradation or thechaos (Chf and MChf) and the system certain
remaining useful lifetime. Hence, | developed theotry knowledge (DOK and Pc). This is certainly very
of “Complex Probability” beyond the scope of the interesting and fruitful and shows once again the
previous first and second paper on this topic. tAsds  benefits of extending Kolmogorov’s axioms and thus
proved and illustrated, when the degradation inde®  the originality and usefulness of this new field in
or 1 and correspondingly the RUL ig or O then the  mathematics that can be called verily: “The Complex
Degree of Our Knowledge (DOK) is one and the Probability and Statistics Paradigm”.
chaotic factor (Chf and MChf) is 0 since the stait¢he
system is totally known. During the process of 4. REFERENCES
degradation (0<D<1) we have: 0.5<DOK<1, -0.5<Chf<0 5, Jaoude, A., 2005. Computer simulation of reont
and 0<MChf<0.5. Notice that during the whole praces carlo methods and random phenomena. Ph.D.
of degradation we have Pc = DOK - Chf = DOK + Thesis, Bircham International University.
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