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ABSTRACT 

Due to the fact that several species of commercial interest have been overexploited throughout the years it is 
important to understand how harvest and other factors like introducing reserves influence the dynamic 
behaviour of a population with respect to stability and possible extinction. Therefore, simple one-population 
models are analysed and it is shown that harvest acts in a strong stabilizing fashion in the sense that it 
may transfer a population which exhibits chaotic oscillations to a state where the equilibrium 
population is stable. Moreover, if we divide the habitat of the population into a reserve and a harvest 
zone we find that increased harvest as well as migration between the two areas act stabilizing but that 
the former turns out to be the dominating one. If age structure is included in the population model 
harvest may not necessarily play the same role, especially if the number of age classes become large. 
Regarding MSY, we demonstrate that it is indeed possible to obtain the same MSY in the case where 
the habitat is split into a reserve and a harvest zone as in case of no reserve. 
 
Keywords: Stability, Harvest, Reserve, Extinction, MSY 

1. INTRODUCTION 

As is well known, Flaaten and Mjolhus (2005) 
several species, both marine and terrestrial, have been 
overexploited throughout the years. Examples may be 
obtained in FAO (2004); Roman and Palumbi (2003) and 
Oldfield et al. (2004). In particular, overexploitation of 
marine fish stocks is a serious problem. The global 
production of marine capture fisheries from around 19 
million tonnes in catch in the 1950’s has increased to 
around 80 million tonnes annually since the mid 1980’s, 
cf. Tang and Chen (2004). In the worst cases species 
have become extinct or almost extinct as accounted for 
in Myers et al. (1997); Norton-Griffiths (2000) and 
Ceballos and Ehrlich (2002). It is also a well-known fact, 
especially regarding fish stocks, that there are large 
fluctuations of stock size from one year to another 
(Anon, 2001). Following Murray (1993) there are four 
principle reasons which may serve to explain these 
fluctuations. They are: (1) Environmental changes 

(variation in temperature, current systems, salinity, …), 
(2) Ecoystem dynamics (multispecies dynamics, changes 
of prey and predator biomasses), (3) Dynamics of the 
species under consideration, for example cod stock 
dynamics (including recruitment and cannibalism) and 
(4) Changes in fishing pattern (open access dynamics, 
fishery regulations, reserves, …). According to 
Jorgensen (1992) and Ottersen (1996) there is no 
established understanding as to which of the factors (1)-
(4) is the most dominant. Regarding (1) we refer to 
Nakken (1994); ICES (2006) see also Yndestad (2004; 
2009) and references therein. Factor (2) has been 
discussed from several perspectives including studies of 
concrete species as well as more theoretical studies, cf. 
Neubert and Kot (1992); Bogstad and Mehl (1997), 
Tjelmeland and Bogstad (1998) and Wikan (2001). The 
role of recruitment and cannibalism, especially with 
respect to dynamic consequences, factor (3), may be 
obtained in Wikan and Mjolhus (1996); Cushing et al. 
(1998); Magnusson (1999); Helle et al. (2000) and 
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Wikan and Eide (2004). Factor (4) has been investigated 
both in terms of dynamic as well as economic properties 
(Flaaten, 1988; Hastings and Botsford, 1999; Armstrong 
and Sumaila, 2000; Neubert, 2003; Wikan, 2004; Flaaten 
and Mjolhus, 2005; Eide and Wikan, 2010). 

The content of this study is in many ways located at 
the point of intersection between factors (3) and (4). 
Indeed, in one direction we discuss and compare 
dynamical properties and the extinction problem in 
models with and without harvest. Dividing the habitat of 
the population into a reserve and a harvest zone, focus is 
also on the interplay between harvest and migration in 
and out of the reserve with respect to stability and 
nonstationary behaviour. In another direction we will 
address the Maximum Sustainable Yield (MSY) 
problem. Of particular interest is the question whether it 
is possible to obtain the same MSY in “reserve models” 
as in models without reserve. 

2. MODELS AND ANALYSIS 

Let xt be the size of a population at time t and 
suppose that the relation between x at two consecutive 
time steps is given by the difference equation: 
 

t 1 t tx f(x )x+ =  (1) 

 
The function f(x) may take different forms ranging 

from compensatory relations (for example the Beverton 
and Holt relation f(x) = r/(1 + x)) to overcompensatory 
relations. In this study we shall partly deal with the 
general Equation (1) but also with the overcompensatory 
Ricker relation, hence we may write (1) as Equation (2): 
 

t 1 t
r(1 x )tx e x+

−=  (2) 

 
where, r > 0 may be interpreted as the intrinsic growth rate. 

Although (1), (2) is far too simple in order to capture 
the dynamics of most populations (it lacks for example 
age structure which may influence the dynamics of the 
population) it is still useful for evaluating, especially 
when nonstationary or chaotic behaviour can be 
described purely by density dependent growth and (for 
later use) non-age specific harvesting. 

Obviously (2) has two equilibrium points, x 0=ɶ  and 
x* = 1. The linearized map is given as Equation (3): 
 

t 1 t
r(1 x)ξ (1 rx)e ξ+

−= −  (3) 

where, x  is either xɶ  or x*. In particular, if xɶ = 0 then 
ξt+1 = er ξt and since -1<er <1 is impossible for all r>0 we 
conclude that the origin is an unstable equilibrium and, 
moreover, that the population x will never become extinct. 
If x* = 1 we may write (3) as ξt+1 = (1-r)ξt and since 
−1<1−r = λ<1 for r∈(0,2) it implies that x* = 1 is stable in 
this parameter region. x* loses its hyperbolicity when r = 
2. Then λ = −1, hence the equilibrium undergoes a flip 
bifurcation at instability threshold. Moreover, defining F1 
(x, r) = x exp[r(1 − x)] we find at (x*,r) = (1,2) that the 
nondegeneracy condition Equation (4a): 
 

2 2
1 1 1

2

F F F
a 2 2 0

r x x r

∂ ∂ ∂= + = − ≠
∂ ∂ ∂ ∂

 (4a) 

 
and that the stability coefficient Equation (4b): 
 

22 3
1 1
2 3

1 F 1 F 4
b 0

2 x 3 x 3

   ∂ ∂= + = >   ∂ ∂   
 (4b) 

 
From which we conclude that the flip bifurcation is 

supercritical. Hence, when x* = 1 fails to be stable a 
stable period-2 orbit is established. 

Next, assume that the population is exposed to 
harvest h, h∈[0,1), thus the model becomes Equation (5): 
 

t 1 t
r(1 x )tx (1 h)e x+

−= −  (5) 
 
and the associated linearization may be cast in the form 
Equation (6): 
 

t 1 t
r(1 x)ξ (1 h)(1 rx)e ξ+

−= − −  (6) 
 

Considering the trivial equilibrium point x x 0= =ɶ  of 
(5) we may by use of (6) write the stability condition 
as Equation (7):  
 
r ln(1 h)< − −  (7) 
 

Thus the origin becomes unstable if we reverse the 
inequality sign in (7). If r becomes so small that (7) is valid 
it means that harvest may drive the population to extinction. 

Equation (5) has also a nontrivial equilibrium which 
may be expressed as x* = 1+r−1 ln(1-h) and by use of (6) 
we conclude that x* is stable whenever Equation (8): 
 

ln(1 h) r 2 ln(1 h)− − < < − −  (8) 
 

Note that in case of r = − ln(1-h) the associated 
eigenvalue of (6) is λ = 1 and a transcritical bifurcation 
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occurs. If r < − ln(1 − h), xɶ  is stable and x* is unstable. 
At r = -ln(1-h) there is a change of stability where xɶ  
becomes unstable and x* becomes stable. If r is increased 
to 2-ln(1-h), λ = −1 and a flip bifurcation occurs. 
Denoting F2(x,r) = (1-h)x exp[r(1-x)] we find at (x*,r) = 
(2(2-ln(1-h))−1, 2 − ln(1-h)) that quantities a and b 
defined through (4a,b) become Equation (9): 
 

21
3a 2 0  b (2 ln(1 h)) 0= − ≠ = − − >  (9) 

 
So again we conclude that the flip bifurcation is of 

supercritical nature. When r exceeds 2-ln(1-h) and |r- (2- 
ln(1-h))| is small the dynamics generated by (5) is a 
stable period-2 orbit. In case of an enlargement of r 
values, (2) and (5) generate qualitatively the same kind 
of dynamics, namely stable orbits of period 2k and also 
chaotic dynamics when r becomes sufficiently large. The 
difference between the two models is that the inclusion 
of harvest acts in a stabilizing fashion. This is 
particularly transparent when r = 2. Then (2) generates 
nonstationary dynamics but h > 0 means that the right 
hand side of (8) exceeds 2 which implies that the 
equilibrium of (5) still is stable. 

Next, let us assume that the habitat of the population is 
divided into two patches, one patch where individuals are 
not exposed to harvest, “the reserve” and one patch where 
they are exposed to harvest, “the harvest zone”. Thus 
consider the extension of (1), Gyllenberg et al. (1993) 
Equation (10a and b): 
 

1,t 1 t 1,t t 2,tx (1 p)f(x )x pf(x )x+ = − +  (10a) 

 

{ }2,t 1 2 t 1,t t 2,tx (1 h ) pf(x )x (1 p)f(x )x+ = − + −  (10b) 

 
where, x1 is the subpopulation located in the reserve and 
x2 the subpopulation in the harvest zone. p is the 
probability that an individual will move from one patch 
to another. Moreover, we use h2 (instead of h) in order to 
emphasize that harvest occurs in the harvest zone only. 

Clearly, 1 2(x ,x ) (0,0)=ɶ ɶ  is an equilibrium point of 

(10a,b). There is also a nontrivial equilibrium point (x1
*, 

x2
*). Using the notation x*  = x1

* + x2
* and f*  = exp[r(1-

x*)] (cf. (2)) we find that f* satisfies the Equation (11): 
 

*2 *
2 2(1 h )(1 2p)f (1 p)(2 h )f 1 0− − − − − + =  (11) 

 
And Equation (12): 
 

* *1
x (r ln f )

r
= −  (12) 

Depending on the value of p there are two solutions 
of (11). Indeed, if p = ½ we find Equation (13): 
 

* *
1 2

2

2
f f (h )

2 h
= =

−
 (13) 

 
With properties f1

*(0) = 1, f1
*(h2) > 0, *

1 2h 12
lim f (h ) 2

→
=  

and the nontrivial equilibrium may be expressed as 
Equation (14): 
 

* * * *2
1 2

2 2

1 1 h
(x ,x ) x , x

2 h 2 h

 −=  − − 
 (14) 

 
where, * 1 2

r 1 h2
x (r ln )−= − . When p ≠ ½ the solution of (11) 

becomes Equation (15): 
 

* *
2 2

2

2 2
2 2

2

f f (h ,p)

(1 p)(2 h )

(1 p) (2 h ) 4(1 h )(1 2p)

2(1 h )(1 2p)

= =
− − −

− − − − −
− −

 (15) 

 
And: 
 

* *
2 2 2

* *
2 2 1 2

h 12

p 1/2

f (0,p) 1,   lim f (h ,p)

1
,    lim f (h ,p) f (h )

1 p

→

→

=

= =
−

 

 
The equilibrium of (10a,b) in this case may be written 

as Equation (16): 
 

* *
1 2

*
2 2

* *2
2 2 2

* 2 *2
* *2 2 2

* *2
2 2 2

(x ,x )

p(1 p)(1 h )f

1 (1 p)f (1 h )p(1 2p)f

1 (1 p)f p (1 h )f
x , x

1 (1 p)f (1 h )p(1 2p)f

=

 − −
 − − + − − 
 − − − −
  − − + − − 

 (16) 

 
In order to investigate stability properties we 

compute the Jacobian Equation (17): 
 

* * * *
1 1

* * * *
2 2 2 2

(1 p)f rx pf rx
J

(1 h )pf rx (1 h )(1 p)f rx

 − − −
=  

− − − − − 
 (17) 

 
Which in turn implies tr J = 1-rx* and |J| = 0 if p = ½. 

If p ≠ ½ we find tr J = (1-p)(2-h2)f2
* − rx*, |J| = [(1 -p)(2-

h2)f2
*-1](1-rx*). Stability of equilibria is ensured 

whenever Equation (18a to c): 
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1 tr J |J| 0− + >  (18a) 
 
1 tr J |J| 0+ + >  (18b) 
 
1 |J| 0− >  (18c) 
 
Hold. 

In the general case (p ≠ ½) we find that stability 
threshold is given by (18b), hence we conclude that (16) 
is stable whenever Equation (19 and 20): 
 

* 2
0 x

r
< <  (19) 

 
* *
2 2ln f r 2 ln f< < +  (20) 

 
Considering the special case p = ½ we arrive at the 

same conclusion as stated in (19) and the expression 
corresponding to (20) may be written as Equation (21): 
 

2 2

2 2
ln r 2 ln

2 h 2 h
< < +

− −
 (21) 

 
Now, let us focus on dynamical properties. Assuming 

(19) the equilibrium is stable and in case of p fixed and a 
fixed value of r (satisfying (20), (21)) we find that the 
value of the total equilibrium population becomes 
smaller as harvest is increased. When h2 = 0, x1

* = x2
*  

and through an enlargement of h2, x1
*>x2

* and the 
difference becomes larger as h2 becomes larger. 
Moreover, since f* is an increasing function of h2 we 
may increase r and still obtain a stable equilibrium. 
Consequently, we may argue that increased harvest acts 
in a stabilizing fashion in accordance with the discussion 
following (9), Wikan (2004). When p is small (small 
migration both in and out of the reserve) we detect 
through an increase of r periodic orbits of period 2k, k = 
1,2,3,.. as well as chaotic dynamics. In case of p large we 
may increase r more than in case of p small without 
observing chaotic behaviour. Thus, increased migration 
acts stabilizing too, Gyllenberg et al. (1993). 

In order to investigate the strength between these 
stabilizing effects we have performed the following 
(numerical) experiment. Suppose p = 0.5, h2 = 0.1 and r = 3. 
Then the population is located in the chaotic regime and we 
find that if p is increased to 0.9 the population still shows 
chaotic behaviour. Thus, given that h2 is small, increased 
migration is not capable of changing an initial chaotic 
dynamic behaviour. On the other hand, still considering p = 
0.9 and r = 3 we find through more severe harvest pressure 
that the chaotic behaviour disappears. Indeed, when h2 = 0.4 
we recognize 4-periodic dynamics, when h2 = 0.5 2-periodic 

orbits occur and it is in fact possible to obtain a stable 
equilibrium when h2 = 0.8. These findings suggest that 
although increased migration as well as harvesting act 
stabilizing, the latter has the strongest effect. 

Let us also make a few comments on the extinction 
problems. From the analysis of (5) we found that r >-
ln(1-h) guarantees that the origin is unstable which in 
turn implies that the population will not become extinct. 
When we split the habitat into a reserve and a harvest 
zone, r must be larger than the left hand sides of (20), 
(21) in order to avoid extinction. Now, solving the 
equation ln f2

* = −ln(1 + h) yields Equation (22): 
 

2

h(2p h)
h

p (1 p)h

−=
− −

 (22) 

 
Hence, whenever h2 is smaller than the right hand side 

of (22) population density is always greater than zero and 
we conclude that the split of the habitat into a reserve and 
a harvest zone essentially leads to a better protection of the 
population (Note that p = ½ implies h2 = 2h). 

3. MAXIMUM SUSTAINABLE YIELD 

Next, let us turn to the Maximum Sustainable Yield 
(MSY) problem and we start with the case of no reserve. 
The problem is, find Equation (23): 
 

[ ]h t t
h

t 1 t t

y maximize hf(x )x  

 subject to  x (1 h)f(x )x+

=

= −
 (23) 

 
At equilibrium x* = (1-h)f*x*  which implies hf*x* = 

(f*-1)x*. Hence, assuming equilibrium, we may rewrite 
the MSY problem as, find Equation (24): 
 

* *
h

h
Y max[(f 1)x ]= −  (24) 

 
The solution of this problem is Equation (25): 

 
* 2

h *

1 (f 1)
Y

r f

−=  (25) 

 
where, r is related to h through Equation (26): 
 

*
*

*

f 1
r ln f

f

−= +  (26) 

 
In case of f(x) = exp[r(1-x)], (26) may be written 

as r = r1 = h-ln(1-h) and since g(h) = h-ln(1-h) is an 
increasing function, r1 is increasing when h is 
increasing and the maximum sustainable yield may be 
written as Equation (27): 
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[ ]
2 2

h
1

h h
Y

r (1 h) h ln(1 h) (1 h)
= =

− − − −
 (27) 

 
In Fig. 1 we show Yn for some specific values of h. 
Now, turning to the case where the habitat is split 

into a reserve and a harvest zone we may formulate the 
MSY problem (cf. (10a,b)) as, find Equation (28): 
 

{ }2 t 1,t t 2.t

h2 h2
z maximize

h [pf(x )x (1 p)f(x )x ]

=

+ −
 (28) 

 
subject to (10a,b). 

Again, considering equilibrium, (10b) implies that 
h2[pf*x1

* + (1 − p)f*x2
*] = pf*x1

* + [(1 − p)f* − 1]x2
* and 

by use of (10a) the latter expression simplifies to (f*  − 
1)x*. Hence, the MSY problem may be reformulated as 
Equation (29): 
 

* *
h2 h2

Z max[(f 1)x ]= −  (29) 

 
Which we recognize as nothing but (24). However, note 

that while f* and x* in (24) is a function of h, f* and x* is a 
function of both h2 and p in (29). Therefore Equation (30): 
 

* 2

*h2

1 (f 1)
Z

r f

−=  (30) 

 
and (26) is still valid. 
In the special case p = ½ we have f* = f1

* = 2/(2 − h2) 
and r = r2 = h2/2 + ln 2 − ln(2 − h2) from which we obtain 
Equation (31):  

2
2

2 2
h2

1 h
Z

r 2(2 h )
=

−
 (31) 

 
In the general case p ≠ ½, f*  = f2

*(h2,p) is given by 
(15) and the relation between r and h2 may be found 
from (26). Figure 2 displays the values of 

2hZ in case of 

p = 0.2, 0.5 and 0.8 respectively. Obviously, as long as h 
= h2, then Yh > h2

Z .  

Now, a natural question to ask is whether it is possible 
to obtain the same MSY in case of reserve as in case of no 
reserve. If p = ½ it is straightforward. Indeed, assuming h 
= h2/2 we find (cf. (27) and (31)) Equation (32): 
 

2

2

2
2
2

2 2 2

h /22

h2
2

h2

1
Y

h 1
ln

2 1

h
1 h2

Z
h r 2(2 h )1
2

=
 

+  
 − 

 
 
  = =

−−

 (32) 

 
Thus, whenever p = ½, h /2 h2 2

Y Z=  and h ≤ ½. In case 

of p ≠ ½ the calculations must be done by means of 
numerical methods. First we compute Yh for given 
values of h. Then by use of (26) and (30) we find f*  = f2

*  
by solving the equation h h2

Y Z=  and finally we find h2 

through (15). In Fig. 3 we show the values of h2 such 
that hh2

Z Y=  for given values of h as function of p. (p-

values along the horizontal and h2 values along the 
vertical axis.) From bottom to top the curves correspond 
to h = 0.1, 0.3 and 0.5 respectively. 

 

 
 

Fig. 1. Maximum sustainable yield Yh as function of harvest h 
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Fig. 2. Maximum sustainable yield h2
Z as function of h2 from top to bottom the curves correspond to p = 0.8, 0.5 and 0.2 

 

 
 
Fig. 3. h2 values such that h h2

Z Y=  for given values of h as function of p. p-values along the horizontal and h2 values along the 

vertical axis. From top to bottom the curves correspond to h = 0.1, 0.3 and 0.5 respectively 
 

4. DISCUSSION 

First, let us comment on the model. The model we 
have used in this study is of simplistic type, it is a special 
case of the general Deriso-Schnute family, cf. Bergh and 
Getz (1988) and Tuljapurkar et al. (1994) Equation (33): 
 

1/γz k(1 γβz) z→ −  (33) 
 
where, k, γ and β are constants. Our model (2) 
corresponds to k = exp(r), β = 1, γ→0 and z = x/r. 
Another well-known member of (33) is the 
compensatory Beverton and Holt relation x →r(1+x)−1x 
(i.e. k = r, β = 1, γ → -1 and z = x). In this study we 
prefer the Ricker model (2) mainly because it may 
generate nonstationary and chaotic dynamics which is in 
contrast to the capabilities of the Beverton and Holt 

model as well of other members of (33) such that γ → -1, 
Silva and Hallam (1992) and Wikan (1998). We do not 
consider such models as natural choices in order to study 
the interplay between different stabilizing and 
destabilizing effects. 

Regarding the relation between (5) and age-structured 
models, consider the n-age structured model (Wikan, 2004) 
Equation (34): 

 

1,t 1 1 1 t 1,t n t n,t

2,t 1 2 1 1,t

n,t 1 n n 1 n 1,t

x (1 h )(f (x )x f (x )x )

x (1 h )P x

x (1 h )P x

+

+

+ − −

= − + +
= −

= −

⋯

⋮
 (34) 

 
where, xi is the population located in age class i and x = 
x1 + ··· + xn is the total population. fi (x) = Fi exp(−x) is 
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the fecundity (the average number of daughters born per 
female) in age class i and Pi is the density independent 
survival probability from age class i-1 to i. hi ∈  (0,1) is 
the harvest in each age class. 

Assuming n = 2 and a small survival probability P1 
we find from (34) that increased harvest acts as a weak 
destabilizing effect while increased h acts in a strong 
stabilizing fashion whenever P1 is large. Indeed, just as 
in the analysis of (5) we find that increased harvest may 
transfer a population which exhibits chaotic oscillations 
to a state where the fixed point (x1

*,x2
*) is stable. If we 

increase the number of age classes n it improves stability 
properties but now harvest acts destabilizing. The only 
way to make it stabilizing in this case is to restrict 
harvest to the older age classes. The use of other 
fecundity functions, for example the generalized 
Beverton and Holt function fi(x) = Fi(1 + xγ)−1 with 
abruptness parameter γ>1, Getz (1996), confirms that h = 
h1 = h2 mainly acts stabilizing when n = 2. Also here 
harvest acts destabilizing when n is large but it is a weak 
effect. In fact, depending on γ there exist regions in 
parameter space where h = h1 = ··· = hn leads to better 
stability properties in this case too, cf. Wikan (2004). 
Hence, it is natural to suggest that (2), (5) on the whole 
possess much of the same stability properties as (34) 
when n is small. If n is large, age specific harvesting is 
necessary. Note however, that the dynamics beyond 
instability threshold of (34) may be very different from 
the periodic behaviour found from (5) due to the 
presence of Hopf bifurcations at the thresholds. Such 
differences of the nonstationary dynamics were not 
found when we extended (5) by splitting the habitat into 
a reserve and a harvest zone, cf. (10a,b). Therefore, a 
more detailed analysis where such phenomena are taken 
into account is clearly a matter of future research. 
Further details of age-structured models may be 
obtained in Wikan (2004). Moreover, we have 
considered stage-structured population models in this 
study, cf. Neubert and Caswell (2000) and Wikan 
(2012a), see also the review paper by Wikan (2012b). In 
such models the usual approach is to divide the 
population into two stages, one sexual immature stage 
and one sexual mature stage. The motivation for these 
models is that sexual maturity may be strongly linked to 
other factors than age, for example length or weight. As 
accounted for in Wikan (2012a) the dynamic outcome 
from stage-structured models may differ from what one 
finds in the age-structured cases, in particular when 
there is a substantial time from birth to maturity of the 
species under consideration. Consequently, we do not 
claim that the results obtained from (5) and (34) take 

over in all cases if we use a stage-structured model, so 
again this is a matter of future research. 

Finally, let us comment on the harvest h in (5) and 
the MSY problem. Referring to the catch data of the 
Northeast Arctic cod stock during the period 1946-2000 
in Anon (2001) and Eide and Wikan (2010) where a 
harvest economy model of the cod stock is presented we 
find it plausible to assume that h never exceeds 0.4. 
Hence, considering species of commercial interest where 
h<0.4 and referring to our analysis of the MSY problems 
(23) and (28) we find it natural to suggest that it is 
indeed possible to obtain the same MSY in case of 
splitting the habitat into a reserve and a harvest zone in 
contrast to no splitting. Moreover, turning to the 
extinction problem, cf. (22), we have also argued that a 
split of the habitat into a reserve and a harvest zone 
essentially leads to a better protection of the population. 

5. CONCLUSION 

In this study we have by use of simple one-
population models focused on the role of harvest with 
respect to dynamical behaviour and extinction. One of 
the main findings is that harvest acts as a strong 
stabilizing effect. If we split the habitat of the population 
into a reserve and a harvest zone we find that increased 
migration between the two patches also acts in a stabilizing 
fashion but not so profound as the effect of harvest. 
Moreover, harvest may drive a population to extinction, but 
as we show, the inclusion of a reserve clearly leads to a 
better protection of the population. Our result which says 
that it is possible to obtain the same MSY in the case where 
the habitat is split into a reserve and a harvest zone as in 
case of no reserve is important from an economic point of 
view. As we see it, it should indeed be included in the 
planning of reliable harvest strategies. 
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