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ABSTRACT

Due to the fact that several species of commeirietest have been overexploited throughout thesyieé#s
important to understand how harvest and other fadike introducing reserves influence the dynamic
behaviour of a population with respect to stabidibd possible extinction. Therefore, simple oneypaton
models are analysed and it is shown that harvdstia@ strong stabilizing fashion in the sensd tha
may transfer a population which exhibits chaoticibstions to a state where the equilibrium
population is stable. Moreover, if we divide thebhat of the population into a reserve and a harves
zone we find that increased harvest as well asatign between the two areas act stabilizing but tha
the former turns out to be the dominating one.dé atructure is included in the population model
harvest may not necessarily play the same rolegaally if the number of age classes become large.
Regarding MSY, we demonstrate that it is indeedsjids to obtain the same MSY in the case where
the habitat is split into a reserve and a harvestezs in case of no reserve.

Keywords: Stability, Harvest, Reserve, Extinction, MSY

1. INTRODUCTION (variation in temperature, current systems, sgiinit.),
(2) Ecoystem dynamics (multispecies dynamics, caang
As is well known, Flaaten and Mjolhus (2005) of prey and predator biomasses), (3) Dynamics ef th
several species, both marine and terrestrial, Heaen species under consideration, for example cod stock
overexploited throughout the years. Examples may bedynamics (including recruitment and cannibalismy an
obtained in FAO (2004); Roman and Palumbi (2008) an (4) Changes in fishing pattern (open access dyrsmic
Oldfield et al. (2004). In particular, overexploitation of fishery regulations, reserves, ...). According to
marine fish stocks is a serious problem. The globalJorgensen (1992) and Ottersen (1996) there is no
production of marine capture fisheries from arodrd  established understanding as to which of the faqtb)-
million tonnes in catch in the 1950’s has increated (4) is the most dominant. Regarding (1) we refer to
around 80 million tonnes annually since the mid@98  Nakken (1994); ICES (2006) see also Yndestad (2004;
cf. Tang and Chen (2004). In the worst cases specie2009) and references therein. Factor (2) has been
have become extinct or almost extinct as accouftted discussed from several perspectives including studf
in Myers et al. (1997); Norton-Griffiths (2000) and concrete species as well as more theoretical fudfe
Ceballos and Ehrlich (2002). It is also a well-kmofact, Neubert and Kot (1992); Bogstad and Mehl (1997),
especially regarding fish stocks, that there amgela Tjelmeland and Bogstad (1998) and Wikan (2001). The
fluctuations of stock size from one year to anotherrole of recruitment and cannibalism, especially hwit
(Anon, 2001). Following Murray (1993) there are ifou respect to dynamic consequences, factor (3), may be
principle reasons which may serve to explain theseobtained in Wikan and Mjolhus (1996); Cushiegal.
fluctuations. They are: (1) Environmental changes (1998); Magnusson (1999); Hellet al. (2000) and
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Wikan and Eide (2004). Factor (4) has been invatsi)

both in terms of dynamic as well as economic priger
(Flaaten, 1988; Hastings and Botsford, 1999; Aromjr

and Sumaila, 2000; Neubert, 2003; Wikan, 2004;tEtaa
and Mjolhus, 2005; Eide and Wikan, 2010).

where, X is eitherx or X. In particular, if x= 0 then
&1 = €&, and since -1<e<1 is impossible for all r>0 we
conclude that the origin is an unstable equilibriard,
moreover, that the population x will never becorxiinet.
If X" = 1 we may write (3) au, = (1-r)§ and since

The content of this study is in many ways located a —1<1-r =)<1 for rJ(0,2) it implies that X= 1 is stable in

the point of intersection between factors (3) addl (
Indeed,

this parameter region. Xoses its hyperbolicity when r =

in one direction we discuss and compare2. Theni = -1, hence the equilibrium undergoes a flip

dynamical properties and the extinction problem in bifurcation at instability threshold. Moreover, g F

models with and without harvest. Dividing the habiof
the population into a reserve and a harvest zameisfis
also on the interplay between harvest and migraition
and out of the reserve with respect to stabilityd an
nonstationary behaviour. In another direction wdl wi
address the Maximum Sustainable Yield (MSY)
problem. Of particular interest is the question thike it

is possible to obtain the same MSY in “reserve nside
as in models without reserve.

2. MODELSAND ANALYSIS

Let x be the size of a population at time t and
suppose that the relation between x at two consecut
time steps is given by the difference equation:

Xip =FX )X, 1)

The function f(x) may take different forms ranging
from compensatory relations (for example the Bewrert
and Holt relation f(x) = r/(1 + x)) to overcompetmy
relations. In this study we shall partly deal witme
general Equation (1) but also with the overcompmga
Ricker relation, hence we may write (1) as Equafi®n

r(1-x¢ )

X —€

1 %, 2)
where, r > 0 may be interpreted as the intringiewn rate.

Although (1), (2) is far too simple in order to tane
the dynamics of most populations (it lacks for epéam
age structure which may influence the dynamicshef t
population) it is still useful for evaluating, espaly
when nonstationary or chaotic behaviour
described purely by density dependent growth and (
later use) non-age specific harvesting.

Obviously (2) has two equilibrium pointg,=0 and
X = 1. The linearized map is given as Equation (3):
£ = (1- ), (3)
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(x, 1) = x exp[r(L — x)] we find at () = (1,2) that the
nondegeneracy condition Equation (4a):

2 2
:%F‘Lf 29 o0 (4a)
r ox oxor
and that the stability coefficient Equation (4b):
2\ 3
SR LR 4, (4b)
2| ox 3\ 0x 3

From which we conclude that the flip bifurcation is
supercritical. Hence, when x 1 fails to be stable a
stable period-2 orbit is established.

Next, assume that the population is exposed to
harvest h, A[0,1), thus the model becomes Equation (5):
Xy = (1= N)ES x ®)
and the associated linearization may be cast irfdime
Equation (6):
£ = (1= h)(1- M)EE, (6)

Considering the trivial equilibrium poirt =x =0 of
(5) we may by use of (6) write the stability conalit
as Equation (7):
r<-In(1-h) (7)

Thus the origin becomes unstable if we reverse the
inequality sign in (7). If r becomes so small tf@tis valid

it means that harvest may drive the populatiorxtim&tion.
Equation (5) has also a nontrivial equilibrium whic

we conclude that'xXs stable whenever Equation (8):
(8)

Note that in case of r = — In(1-h) the associated
eigenvalue of (6) i3 = 1 and a transcritical bifurcation

—-In(1-h)< r< 2-1In(2- h)
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occurs. If r < = In(1 - h)x is stable and xis unstable.
At r = -In(1-h) there is a change of stability wiex
becomes unstable andbecomes stable. If r is increased
to 2-In(2-h), » = -1 and a flip bifurcation occurs.
Denoting B(x,r) = (1-h)x exp[r(1-x)] we find at (xr) =
(2(2-In(1-h))*, 2 - In(1-h)) that quantities a and b
defined through (4a,b) become Equation (9):

(9)

So again we conclude that the flip bifurcation fs o
supercritical nature. When r exceeds 2-In(1-h) jan¢R-
In(1-h))| is small the dynamics generated by (5)ais
stable period-2 orbit. In case of an enlargement of
values, (2) and (5) generate qualitatively the s&ind
of dynamics, namely stable orbits of periddahd also
chaotic dynamics when r becomes sufficiently lafigee
difference between the two models is that the Biolu

a=-2#0 b=1 (2 In(x hp)> (

Depending on the value of p there are two solutions
of (11). Indeed, if p = %2 we find Equation (13):

- 2
f =f/(h,)=——
=55

(13)
With properties £ (0) = 1, f (hy) > 0, lim f,(h,) =2
o

and the nontrivial equilibrium may be expressed as
Equation (14):

1, 1-h
2-h," '2-h,

where, x’ =1r-Ingf). When p# ¥ the solution of (11)

(x;,x;>:[ (14)

becomes Equation (15):

of harvest acts in a stabilizing fashion. This is fr=f,(h,p)=

particularly transparent when r = 2. Then (2) gates
nonstationary dynamics but h > 0 means that thiet rig

hand side of (8) exceeds 2 which implies that the

equilibrium of (5) still is stable.

Next, let us assume that the habitat of the papulas
divided into two patches, one patch where indivislaae
not exposed to harvest, “the reserve” and one palehre
they are exposed to harvest, “the harvest zonelisTh
consider the extension of (1), Gyllenbesgal. (1993)
Equation (10a and b):

Xy 1 = (1= PI(X )Xy + PRX )X, (10a)

X = (L= N, Y PR )X+ (1= P)T(X, )X, ) (10b)

where, X is the subpopulation located in the reserve and
X, the subpopulation in the harvest zone. p is the

probability that an individual will move from onefch
to another. Moreover, we usg (nstead of h) in order to
emphasize that harvest occurs in the harvest zolye o
Clearly, (x,,%,)=(0,0) is an equilibrium point of
(10a,b). There is also a nontrivial equilibrium mofx;
Xo ). Using the notation 'x= x +x, and f = exp[r(1-
x)] (cf. (2)) we find that T satisfies the Equation (11):

@-h,)(1- 2p)f* - (- p)( h)f+ E ¢ (11)
And Equation (12):
X :%(r “nf) (12)
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(1-p)2-h -
J@A-pF(-h ¥- 4F h )& 2p)
2(1- h,)(1- 2p)

(15)

And:

f,0.p)=1, limf,(h,.p)
o
1

:rpv p”jszz (hz!p): f;(hz)

The equilibrium of (10a,b) in this case may be terit
as Equation (16):

(X;X*z) =
p(1-p)(I- h)f
1- (1- p)f, + (1~ hy)p(= 2p)f
1-(1-pf -F (- h)E
"1~ (1~ p)f, + (1~ h)p(- 2p)f

(16)

In order to investigate stability properties we
compute the Jacobian Equation (17):

pf —rx, ]
(1- h,)(2- p)f -

— (l_ p)f* - I’X*l (17)
(1- h,)pf - X,

Which in turn implies tr J = 1-nand |[J] = 0 if p = %.
If p # %2 we find tr J = (1-p)(2Hf, — <, [I] = [(1 -p)(2-
hy)f, -1](1-rx). Stability of equilibria is ensured
whenever Equation (18a to c):
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1-tr H|J|> ( (18a) orbits occur and it is in fact possible to obtairstable
equilibrium when h = 0.8. These findings suggest that

1+tr H|J]> ( (18b) although increased migration as well as harvestiog
stabilizing, the latter has the strongest effect.

1-9]> (18c) Let us also make a few comments on the extinction
problems. From the analysis of (5) we found thatr

Hold. In(1-h) guarantees that the origin is unstable thit

In the general case (p %2) we find that stability  turn implies that the population will not becometileot.
threshold is given by (18b), hence we conclude th&}  When we split the habitat into a reserve and adsirv

is stable whenever Equation (19 and 20): zone, r must be larger than the left hand side€0f,
(21) in order to avoid extinction. Now, solving the
0<x <2 (19) equation Inf = -In(1 + h) yields Equation (22):
r
_ h@p-h)
Inf, <r<2+Inf, (20) 2" p-(1-p)h (22)

Considering the special case p = ¥ we arrive at the Hence, wheneverfis smaller than the right hand side
same conclusion as stated in (19) and the expressioOf (22) population density is always greater tharozand

corresponding to (20) may be written as Equatid:(2 we conclude that the split of the habitat into seree and
a harvest zone essentially leads to a better piateaf the
<r<2+In population (Note that p = ¥ implieg $ 2h).

2

In

(21)
3. MAXIMUM SUSTAINABLE YIELD

Now, let us focus on dynamical properties. Assuming . . .
(19) the equilibrium is stable and in case of gdand a Next, let us turn to the Ma>_<|mum Sustainable Yield
fixed value of r (satisfying (20), (21)) we findaththe ~ (MSY) problem and we start with the case of no mese
value of the total equilibrium population becomes The problemis, find Equation (23):
smaller as harvest is increased. Wherel0, x = X, o
and through an enlargement of, hg'>x, and the yh:maxr!mlze{ hf(x )x] 23)
difference peco[ngas Iarger as, rbecomes larger.  subject to X, = (& hyf(x)x
Moreover, since fis an increasing function of, hwe
may increase r and still obtain a stable equilitoriu At equilibrium X = (1-h)fx" which implies hix" =
Consequently, we may argue that increased hareest a (f-1)x’. Hence, assuming equilibrium, we may rewrite
in a stabilizing fashion in accordance with thecdssion  the MSY problem as, find Equation (24):
following (9), Wikan (2004). When p is small (small

migration both in and out of the reserve) we detect Y, =max[(f" -1)x ] (24)
through an increase of r periodic_ orbits of per@sdk = "
1,2,3,.. as well as chaotic dynamics. In caselafge we The solution of this problem is Equation (25):

may increase r more than in case of p small without

observing chaotic behaviour. Thus, increased migrat 1(f -1p

acts stabilizing too, Gyllenberg al. (1993). Yy T (25)
In order to investigate the strength between these

stabilizing effects we have performed the following where, r is related to h through Equation (26):

(numerical) experiment. Suppose p = 05:0.1 and r = 3.

Then the population is located in the chaotic regimd we (= f-1 inf (26)

find that if p is increased to 0.9 the populatitih shows f

chaotic behaviour. Thus, given that ik small, increased

migration is not capable of changing an initial atia In case of f(x) = exp[r(1-x)], (26) may be written
dynamic behaviour. On the other hand, still comsigep =  @s r = § = h-In(1-h) and since g(h) = h-In(1-h) is an
0.9 and r = 3 we find through more severe harvestspre  increasing function, ir is increasing when h is
that the chaotic behaviour disappears. Indeed, Wherd.4 increasing and the maximum sustainable yield may be

we recognize 4-periodic dynamics, whersi9.5 2-periodic  written as Equation (27):
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h? h?

YT @ - @ & h) 1)

In Fig. 1 we show Y, for some specific values of h.

Now, turning to the case where the habitat is split
into a reserve and a harvest zone we may formtiate
MSY problem (cf. (10a,b)) as, find Equation (28):

z,. = maximize
2 hy

(28)
{hIpfoc )%, + (1= YO )X, ]}
subject to (10a,b).

Again, considering equilibrium, (10b) implies that
hofpf xi + (1 - p)fx. 1= pfx.’ +[(1 - p)f - 1]x, and
by use of (10a) the latter expression simplifie{fto—

1)x. Hence, the MSY problem may be reformulated as

Equation (29):

Z,, = rqu[(f* -1)X] (29)
Which we recognize as nothing but (24). Howevete no

that while f and x in (24) is a function of h, fand x is a

function of both hand p in (29). Therefore Equation (30):

_1(f -1y

R (30)

hy

and (26) is still valid.

In the special case p = ¥ we havef;, = 2/(2 - h)
andr=p=h/2 +1In 2 - In(2 - k) from which we obtain
Equation (31):

1w

T 221 (5D

In the general case p¥, f = f, (h,,p) is given by
(15) and the relation between r ang rhay be found
from (26).Figure 2 displays the values af, in case of

p = 0.2, 0.5 and 0.8 respectively. Obviously, aglas h
= hy, then ¥, > Zy, -

Now, a natural question to ask is whether it issjizls
to obtain the same MSY in case of reserve as ia cBso
reserve. If p = ¥ it is straightforward. Indeedsuaming h
= hy/2 we find (cf. (27) and (31)) Equation (32):

h

-
—2+In 1h
2 1—%
& 2

2) _1 h3

=Z
1-N: r,202-h,) T
2

Y =
hy /2

(32)

Thus, whenever p = ¥, ,=Z, and h< . In case

of p # % the calculations must be done by means of
numerical methods. First we compute, Yor given
values of h. Then by use of (26) and (30) we find f,
by solving the equatiory, =Z,, and finally we find h

through (15). InFig. 3 we show the values of, lsuch
that Z,, =Y, for given values of h as function of p. (p-

values along the horizontal and kalues along the
vertical axis.) From bottom to top the curves cspand
to h =0.1, 0.3 and 0.5 respectively.

!

/

/

/

0.8

Fig. 1. Maximum sustainable yield,yas function of harvest h
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Fig. 3. h, values such thaZhz =Y, for given values of h as function of p. p-valuésng the horizontal and,tvalues along the

vertical axis. From top to bottom the curves cquogsl to h = 0.1, 0.3 and 0.5 respectively

4. DISCUSSION

model as well of other members of (33) such that -1,
Silva and Hallam (1992) and Wikan (1998). We do not

First, let us comment on the model. The model we consider such models as natural choices in ordstutty

have used in this study is of simplistic typesitispecial
case of the general Deriso-Schnute family, cf. Bexrgd
Getz (1988) and Tuljapurkat al. (1994) Equation (33):
z - k(1-yp2)"'z (33)
where, k, y and B are constants. Our model (2)
corresponds to k = exp(rg = 1, y—0 and z = x/r.
Another well-known member of (33) is the

compensatory Beverton and Holt relation-(1+x)"x
(le.k=rp=1v > -1and z = x). In this study we

prefer the Ricker model (2) mainly because it may

generate nonstationary and chaotic dynamics wisigh i

the interplay between different and
destabilizing effects.

Regarding the relation between (5) and age-strerttur
models, consider the n-age structured model (WiRa®4)

Equation (34):

stabilizing

Xie1 = (1_ hl)(fl(x x)xl,t+"' +f n(x ,)X n,)
Xyu1 = (1= )R X, (34)

Xowr = (A= N)P X gy

where, xis the population located in age class i and x =

contrast to the capabilities of the Beverton andtHo X1+ - + X, is the total population; {x) = F exp(-x) is
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the fecundity (the average number of daughters pern  over in all cases if we use a stage-structured incoe
female) in age class i and B the density independent again this is a matter of future research.
survival probability from age class i-1 to i. W (0,1) is Finally, let us comment on the harvest h in (5) and
the harvest in each age class. the MSY problem. Referring to the catch data of the
Assuming n = 2 and a small survival probability P Northeast Arctic cod stock during the period 1906@
we find from (34) that increased harvest acts agak in Anon (2001) and Eide and Wikan (2010) where a
destabilizing effect while increased h acts in @rg harvest economy model of the cod stock is presemnted
stabilizing fashion whenever, fs large. Indeed, just as find it plausible to assume that h never exceeds O.
in the analysis of (5) we find that increased hsrweay Hence, considering species of commercial interdwmstrey
transfer a population which exhibits chaotic oatidns h<0.4 and referring to our analysis of the MSY peofs
to a state where the fixed point(x,) is stable. If we  (23) and (28) we find it natural to suggest thatsit
increase the number of age classes n it improadilisy indeed possible to obtain the same MSY in case of
properties but now harvest acts destabilizing. ©hky splitting the habitat into a reserve and a harzeske in
way to make it stabilizing in this case is to rigstr contrast to no splitting. Moreover, turning to the
harvest to the older age classes. The use of otheextinction problem, cf. (22), we have also argueat &
fecundity functions, for example the generalized split of the habitat into a reserve and a harvestez
Beverton and Holt functionj(k) = F(1 + X)™* with essentially leads to a better protection of theufatjon.
abruptness parametgrl, Getz (1996), confirms that h =

h; = h, mainly acts stabilizing when n = 2. Also here 5. CONCLUSION

harvest acts destabilizing when n is large bug @ iveak

effect. In fact, depending o there exist regions in In this study we have by use of simple one-
parameter space where h - = h, leads to better population models focused on the role of harvesh wi
stability properties in this case too, cf. WikarD@2). respect to dynamical behaviour and extinction. ©he

Hence, it is natural to suggest that (2), (5) amhole the main findings is that harvest acts as a strong
possess much of the same stability properties 45 (3 stabilizing effect. If we split the habitat of tpepulation
when n is small. I n is large, age specific hatvgsis  into a reserve and a harvest zone we find thataserd
necessary. Note however, that the dynamics beyondnigration between the two patches also acts infaliging
instability threshold of (34) may be very differédm  fashion but not so profound as the effect of harves
the periodic behaviour found from (S) due to the poreover, harvest may drive a population to extimgtbut
presence of Hopf bifurcations at the thresholdschSu 54 \ye show, the inclusion of a reserve clearlyseada
differences of the nonstationary dynamics were Notpeyer nrotection of the population. Our result alhsays

found when we extended (5) by splitting the habiéa that it is possible to obtain the same MSY in thsecwhere
a reserve and a harvest zone, cf. (10a,b). Thesetor S o .
the habitat is split into a reserve and a harvest zas in

more detailed analysis where such phenomena age tak case of no reserve is important from an econoniict
into account is clearly a matter of future research P

Further details of age-structured models may eview. As we see it, it should indeed be includectha
obtained in Wikan (2004). Moreover, we have Planningof reliable harvest strategies.

considered stage-structured population models ig th
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