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ABSTRACT

In this study, the derivation of mathematical moftel the wave modulation through an incompressible
viscous fluid contained in a prestressed thin stedelastic tube is presented. The artery is agbtonbe
incompressible, prestressed thin walled elastie@ tulith a symmetrical stenosis, whereas the blood is
considered to be incompressible and Newtonian.flBidutilizing the nonlinear equations of tube diuid,

the weakly nonlinear wave modulation in such a mediis examined. Employing the reductive
perturbation method and considering the long-way@@imation, we showed that the third-order term i
the perturbation expansion is governed by the mhgisie nonlinear Schrodinger equation with variable
coefficient. Our results shown that this type ofi@ipn admits a downward bell-shape wave propadates
the right as time increases with decreasing wavgitude.
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1. INTRODUCTION Ravindran and Prasad (1979) were the first cortrtbu
to the derivation of mathematical model for the |imzar
Cholesterol is a sterol which serves principallyaas Wwave modulation in an artery. They assumed thedoé

constituent of blood plasma. High concentration of @n compressible inviscid fluid contained in a thialled
cholesterol in the blood will build up plaque oetinner ~ Viscoelastic tube under certain simplifying assuamst
walls of arteries. Over the time, the decompositign ~ BY USing the method of operators of multiple scalesy
plaque causes the arteries become less flexiblethasd ﬁlr(])?wvl\illrnlet:?t tshfh?:(;’ii;n;d e(ﬁlllj_ast;onecq%naggnre?gfmﬁ]tgir
leads to the phenomenon of narrowing of the arerie . L ;
which commoF;ﬂy referred as stenosis '?’he stenodis w mathematical model. The NLS equation is the sintples

. S representative equation describing the self-mouturadf
further cause the artherosclerosys which is haru;ga_nf one-dimensional monochromatic plane waves in
the arteries. The artherosclerosis leads the astédoise dispersive media. It has a balance between the

their elastic properties and the volume of bloodied nonlinearity and dispersion.

through the arteries is reduced. Motivated with the |n a series of works of Demiray (1997; 1998; 2001;
stenosis in the artery, the study of wave propagaiti 2003) and his co-workers (Akgun and Demiray, 2000;
a stenosed artery has been investigated by Kim&200 2001) conducted since 1997, in which they treatesl t
Tayet al. (2007) and Gaik and Demiray (2008). artery as an incompressible, prestressed eitherethstic,
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thick elastic or tapered elastic tube containech vén _ m d2u 1 b
incompressible inviscid or viscous fluid as blodtien by Pe= (A, —f +u] ot Y (A, —1 +U] oA,
employing the reductive perturbation method, the ‘ ‘

modulation of nonlinear waves in the long-wave (_ﬁﬂluj 1)
approximation were studied. They obtained various _ 1 0 0z 0z) 0z
nonlinear evolution equations of the NLS type eiquat N[N —f +u]oz A oA,

In all the works of Demiray (1997; 1998; 2001; 2p@&3
well as Ravindran and Prasad (1979) they treatedrtiery

as circularly cylindrical long tubes without steisos v ov. v op —[é>v 1av v d*v]_ 5
Recently, the studies of nonlinear waves modulation 3 "V "9, ar Vo "Tar 2 o2 | o (2

an incompressible prestressed thin walled elaghie tith

a symmetrical stenosis filled with an incompressibl P ~ 2 2

invieei i i i i _q+vﬂ+ %4-@-?/ M+_la_q+a_q =0 3

inviscid or viscous fluid, where the approximatei@ipns AL e 32 Tar oz (3)

of inviscid and viscous fluids without boundary diion is
used have been carried by Clebwl. (2012) and Kirret al. s s
(2010). By using the reductive perturbation methnahe N V%o 4)
long-wave approximation, they obtained the NLS o [ 02

equation with variable coefficient and dissipatNeS
equation with variable coefficient for the study of

inviscid and viscous fluids, respectively. T oY oV, 0| (du_ .
e e

With the boundary conditions:

Nevertheless, the study of nonlinear wave modulatio ar 3z or
in a prestressed thin elastic tube with a symnadtric
stenosis filled with a viscous fluid, where the non au au
approximate equations of viscous fluid with its bdary v |,:Ae,,(z)+u=—+[—f' +—jq| (5)
conditions are used has not been carried out yet in ot
literatures. Therefore, we assumed the artery as an
incompressible, prestressed, thin walled elasbe twith The definition of each variable in the Equation 1-5
a symmetrical stenosis and the blood as anhas defined by Chost al. (2012). The Equation 1-5 give
incompressible viscous fluid, a mathematical mddel  sufficient relations to determine the field qudsstu, v,
the nonlinear wave modulation in such a compositeq and prespectively.
medium, in the long-wave approximation is developed
Applying the reductive perturbation method, we have 2. MATERIALSAND METHODS
shown that the amplitude modulation of this wave is
governed by the dissipative NLS equation with alga In this, we will investigate the amplitude moduteti
coefficient. The dissipative term in the dissipatiMLS  of weakly non-linear waves in a fluid-filled thirastic
equation with variable coefficient is due to theodgus  tube with a stenosis whose non-dimensional govgrnin
effect. The presence of stenosis leads to the blaria equations are given in Equation 1-5. Considering th
coefficient term in the dissipative NLS equationttwi  dispersion relation of the linearized field equaicand
variable coefficient. Our results reveal that the the nature of the problem of concern, which is a

downward bell-shaped wave propagates to the rigit w poundary-value problem, the following stretched
decreasing wave amplitude as time increases. coordinates can be introduced:

1.1. The Governing Equations E=e(z-Mt), 1=€'z (6)

The derivation of the field equations of a stenosed
elastic tube, which is considered to be a modelafor
artery and a viscous fluid, which is assumed toabe
model for blood has been carried out by Kanal.
(2010). By introducing the non-dimensional quaesti
(Kim et al., 2010) into the field equations of tube and
fluid, one obtains the following non-dimensional i:ﬂ_g;\i, i=i+gi+521 (7)
Equations of tube, Rind fluid as below: ot ot ok 0z 0z 08 ot

where, € is a small parameter measuring the weakness of
nonlinearity and\ is a constant to be determined from the
solution. Introducing the following differentiallegions:
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and assuming that the field quantities may be edipgn

into asymptotic series @fas:
u=gu +e’u, +u+ ...,
v=gv, +ev, +e%v, +..

q=eq +e’g +e'g+ ..

p= po+spl+s p2+s g+
p,—pro+€p,1+€ |qz+s Rt
h(r)=¢g’h, (r)+&%h, (nN+ ....

(8)

where, u,v,q and,pare functions of the slow variables

(§v)as well as the fast variable (z,t).

Introducing (6)-(8) into the Equation 1-8,
following sets of differential Equations are obtdn
O(g) Equations:

_ m %y d%y,
Py = N\, ot? ~% 02>

aVl_'_ap —O aql_'_apl , ﬂ+ﬁ+%: Q
ot or ot 0z or r 0z

(9)

and the boundary conditions:

ou,

Vil =5b R b= R (10)

O(e?) Equations:
m d%u u

A, 0 0o *Bi(u-h)

_2ma o’y 9%y m 9%y

A\, 080t °0Edz A2\, o

_ Bulj _( _cxo] 0%y,
a 211 T | Y 2 +lei
(62 )\9 (11)

LA

1ty

P, =

ov, rq v1+0p2:

ot o0& Yor 0z oOr
ﬂ_)\aql.;. 5(]1 q1%+ﬂ+a_pl:
ot 0¢ Yor 0z 0z 0§
%+ﬁ+%+%:o

a r 9z 98

and the boundary conditions:

ov
u—=+v,
tor

_0u, A6u1+% l
ot 05 0z ~ ™7

r=Ag

12)
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O (% Equations:

p = 62u3_a 0°u,  2m 0%y,
"N, Ot 7 az% A\, 98t
2 2 2 32
_moauza 0%y, 6u1+rr?\al:1
080z 082 0T ) A\, OF

+B,(u-h)- o q[aUZ—ZaulJ

oz
azu1 2 OU(0u, du
n('“b Noe 2 62[62 3¢

2 2
21, - o |y Sl O
)\e o 9z
S a -Gy T gy u
oA, 0z 2
LT [6_UJ
an, tae %2 ) e
20, Q) ,0%U,
—|la,-—L+20 +
( 2 A AgJ 0z* Bai

o3 5
Y 4W%9z) a7

% )\%+V16V2+V2%+ %+ all
ot 0§ or or
%Jr%_v{ﬁ 10v, V1+62V1}:O

0z or o2 rar rF o7

093 499, 6qz+ 60u+q 09, .99
at 08 ‘oar or “oaz “or

99, 9p; , 9p, 0P,
0z 0z 0&% oOr

+q2

+
% a2 ror 9z

Vs Vs, 09, 09, , 00,

o r 0z 0% ot

and the boundary conditions:

1 ,0%, ov ov
=u +(u,—h)—L+u—2+v
{Zlar2 (v )6r Wor *.
ot 0 0z
0q,
u +
[ or qzl_xe

Jou , ou ]
9z 98 |

r=Ag

—| A2 2
_v{a_ou_la_ma_ﬂzo
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b, maw k
2B (u,- )";’1 u, *’AL—Z“ %%}Go[k 2R, e]}
P, =, 0% (14) N .
—=+p, - 2v—= _ ) 1
o P o =he Mo =H w{ onz oMo ga oo
:prs_
_§ - 4kf02Fo+)\_2f0Fo}_ 5% K
Here, the coefficients oftig, 01, a2,B0, B1, B2 Bz and o 0 0
yiare defines by: . {Ba_%}r szlf—gaol(‘+ 3¢
0
a =t O gL 0 1 0% Ao o] 2
N 0N, T 20 0NN, 7 20 OAZON, + 4Et)+co{fo —Kefo—l}+ B,
y=l 02, 1 03 . }
! 2\, a)\z' 0 )\)\Za)\s’ (15) +m1l€+)\_1i||:2\2_)\e[31]
B_lazz By g . 1 0% B 0
gz - oz B N
FOA A NG A ’ A ONG A, ><|:4>\0)f]_ 2)\—+ B+ ) K+ B,
B, = 1 9% _B, 0
3 .
o1 )\ a)\4 )\B +(A)2{)\efoz_)\e_%f0}:|

Equation 15 is defined through series expansion of 2.2 6
. . . fy ———f, — 3+ 4f,FK
the stretch ratios\; andA, which read Equation 16: +[w ° o ° AR+ B,

-1
[31 _ w? w?
e SR o] -ne 1o 5
0z 0z 0% L, )
2y X[wZ{E_EfZJer} 3a,k?
]
z T w1 ) B
+k{?\e Zkf"}':” P AJ}'

A, =g +eu, +€7 U, h[+e u,— h,].
TP p— te-—2f -1l42
Hs “{ oNZ _)‘9[31|: { kA, +2B,

+B +4)\—f + 20 4 Ao,k +8,)

9

By solving the sets of differential Equation 9-ve
obtain the following dissipative nonlinear Schragin
Equation with variable coefficient:

2 B
2 +m2{_f_f2+1}_ 1}’
i%+ul%+uz|u|zu +H:J,]1(T)U+IHAU =0 (17) k)\e 0 0 )\e
2cov[kf0 —)\1}
0
where, the coefficients ,Uzandp, are defined by: He = -
Hafllz; M3 andpy y 2kay+ wz\e (foz _1) 18)
-1
(A)Z
“zoo{mok’L?)‘e{foz_]}} , The group velo city\ is defined as given in the
Equation 19:
ol
2 2 _ 2
K A )\:oo)\s[fo 1]+ 20k 19)
o 46_ NP 2wl .+ mk
2Kk2 © ﬁ_eo_e 0 N,
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And the dispersion relation is read as given in the 3.RESULTS
Equation 20:
In order to observe the wave modulation in thecsted
o, . mw? —ak? —B, =0 (20) tube, one has to know the values of coefficientqup ps
kAN, ° ! and ;. To obtain values of these coefficients, one can

_ _ _ ~ referred Kimet al. (2010). The modulus of the solution of
Refering Equation 18, we have defined the following the dissipative NLS equation with variable coefiti (22)

function as given in the Equation 21: versus space, and travelling wave profile are displayed
in Fig. 1 and 2, respectively.Figure 3 illustrates the
f,= 'o(k)‘e), F= 1o(2kAe ) (21) variations of the radial displacement, U(t,z) wibace z
1, (kAq ) 1,(2kA,) when viscosity of the fluid. V = 100.
Where, h referred as modified bessel’s function of order n. The solution of the dissipative NLS equation with variable coefficient
For the governing NLS type Equation 17, it is Fue t N T T T T T T
governing NLS type Equation 17, it is found thae th
dissipative term, 14U is caused by the viscous effect. 23
Therefore, in the absence of viscous effect, the i
dissipative NLS equation with variable coefficigifr) = R
will be reduced to the NLS equation with variable %
coefficient. Besides, noted that the presence afosis g L5y
causes the variable coefficient tepsh; (t) U in the —;
Equation 17. In other words, without the presente o j Ly
stenosis and viscous effect in the physical motied, g
dissipative NLS equation with variable coefficiemil = s
be reduced to the standard NLS equation. , t
By solving Equation 17, the progressive wave T s J S :} )
solution for the dissipative NLS equation with \ednlie <

.. . . Space (1)
coefficient is obtained as:

v Fig. 1. The modulus of the solution (22) versus spader
_ﬁ] different travelling wave profile atd = 0.30

U(E,T):aoe_gmT tan ( 2
e (5- 2, 1)
K& -1 (22)

x exp |i gt
{Ule - I.J.;,h 1(T) - p'za%e 3 }

The solution of the dissipative NLS equation with variable coefficient
2 : : ! : - .

1L8F g

Inserting Equation (6) into Equation (22) yieldseagi

Radial displacement, |U(E, 1)|

in the Equation 23: 0.8 % i
1 ] T1=-6

2, 2, vz 2 . S I % S—1=d ]
U(t,z)=ge?3 ’ tan{(—ﬁJ ge (e zer 0.4t ¥ $ T2
2 : f F—we=n
02 ] % =1

- K? ﬂ ex% (i K( zA )—82 {zul K (23) . : P @ g ; ;
2 -1 0 1 2 3 1 5

Travelling wave profile (§) €———

Fig. 2. The modulus of the solution (22) versus travelling wave

4 2

~LHsEZ
M3 H(Sz }‘Uz 3 e }
profile, & for different spaceg atd = 0.30
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The solution of the dissipative NLS equation with variable coefficient Akgun, G. and H. Demiray, 2001. Interactions of
a T nonlinear acoustic waves in a fluid-filled elastic
tube. Int. J. Eng. Sci, 39: 563-581. DOI:
Sy 1 10.1016/S0020-7225(00)00057-4
. Choy, Y.Y., C.T. Ong and K.G., Tay, 2012. NLS
equation with a variable coefficient in a stenosed
i elastic tube filled with an average inviscid fluid.
. ] Math. J. Univ. Teknol. Malaysia, 28: 1-13.

i Demiray, H., 1997. Nonlinear wave modulation in a
prestressed thin elastic tube filled with an inidsc
fluid. IMA J. Applied Mathem., 59:; 165-18DOl:
10.1093/imamat/59.2.165

Demiray, H., 1998. Nonlinear wave modulation in a
! fluid-filled thick elastic tube. Int. J. Eng. ScBg:
B & e 5 M L o5 DsE E e 1061-1082. DOI: 10.1016/S0020-7225 (98)00008-1
= Space (2) Demiray, H., 2001. Modulation of non-linear wavasai
viscous fluid contained in an elastic tube. Int. J.
Fig. 3. The modulus of the solution (23) versus space, z for Non-Linear Mech., 36: 649-661. DOI:

08} i H

0.4}

Radial displacement |U (L, z)|

- -

02}

-

hoda W= O

-

different time, t ad = 0.30 when v = 100 10.1016/S0020-7462(00)00029-9
Demiray, H., 2003. Contributions of higher ordemms
4. DISCUSSION to nonlinear waves in fluid-filled elastic tubes:

Strongly dispersive case. Int. J.Eng. Sci., 4: 1387
The first and the second graphs reveal the downward  1403. DOI: 10.1016/S0020-7225(03)00039-9

bell-shaped wave travels to the left as travelimave  Gaik, T.K. and H. Demiray, 2008. Forced korteweg-de
profile and space increase, respectively. Notic th vries-burgers equation in an elastic tube fillethve
Fig. 2 due to the viscous effect, the wave propagates  variable viscosity fluid. Chaos, Solitons Fract88;
with decreasing wave amplitude when the space  1134-1145. DOI: 10.1016/j.chaos.2007.02.005
increases. As can be seen from the third figure, th Kim, G.T., 2006. Forced korteweg-de vries equaiion
viscous effect of the fluid causes the downward-bel an elastic tube with an inviscid fluid. Int. J. Eng

shaped wave propagates to the right with decreasing  Sci., 44: 621-632. DOI: 10.1016/.ijengsci.
wave amplitude as time, t increases. The big 2006.04.008

nonlinearity effect leads the solitary wave perferen  Kim, G.T., Y.C. Yaan, T.O. Chee and H. Demiray, @01

narrower downward bell-shaped wave. Dissipative non-linear schrodinger equation with
variable coefficient in a stenosed elastic tubledil
5. CONCLUSION with a viscous fluid. Int. J. Eng. Sci. Technol:, 2
708-723.

We presented the modulation of nonlinear waves in agavindran. R. and P. Prasad. 1979. A mathematical
prestressed thin-walled elastic tube with a symicsdtr analysis of nonlinear waves in a fluid-filled

stenosis filled with the Newtonian fluid. The gowigg viscoelastic tube. Acta Mech., 31: 253-280. DOI:

equation is obtained as the dissipative Nonlinear 19 1007/BF01176853

Schrodinger (NLS) equation with variable coeffidien Tay, K.G., C.T. Ong and M.N.Mohamad, 2007. Forced
Through the model of Newtonian fluid in the sterbse perturbed korteweg-de vries equation in an elastic

artery, it is seen that the wave propagates toighe with tube filled with a viscous fluid. Int. J. Eng. S&5:

decreasing wave amplitude when the time, t incezase 339-349. DOI: 10.1016/j.iiengsci.2007.03.017
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