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ABSTRACT 

Semiparametric additive regression model is a combination of parametric and nonparametric regression 
models. The parametric components are not linear but following a polynomial pattern, while the 
nonparametric components are unknown pattern and assumed to be contained in the Sobolev space. The 
nonparametric components can be approximated by smoothing spline functions. In the development of 
smoothing spline, the classical statistical approach cannot be applied for solving the inference problem such 
as constructing confidence intervals for the regression curve. To construct confidence interval of smoothing 
spline curve in the semiparametric additive regression model, we propose to use Bayesian approach, by 
assuming improper Gaussian distribution for prior distribution in nonparametric components and 
multivariate normal distribution for parametric components. In this study, we obtain parameter estimators 
for parametric component and smoothing spline estimators for the nonparametric component in 
semiparametric additive regression model. Moreover, we also develop a smoothing parameters selection 
method simultaneously using Generalized Maximum Likelihood (GML) and confidence intervals for the 
parameters of the parametric component and the smoothing spline functions of the nonparametric component 
using Bayesian approach. By computing each posterior mean and posterior variance of parametric component 
parameters and smoothing spline functions, confidence intervals can be constructed for the parametric 
component parameters and confidence interval smoothing spline functions for nonparametric components in 
semiparametric additive regression models. We create R-code to implement estimation model and inference 
procedure. Our simulation studies reveal estimation and inference method perform reasonably well. 
 
Keywords:  Bayesian, GML, Confidence Interval, Semiparametric Additive Regression Model, Smoothing 

Spline 

1. INTRODUCTION 

In regression model, there are some components 
which have sufficient information to describe the 
relationship pattern between the predictors and the 
response variables. However, there are also vague or 
nuisance components. Hence, in this study, the 
semiparametric additive regression model is used to 
overcome these difficulties. This model is a combination 
of parametric and nonparametric regression models. The 

parametric components are not linear but follow a 
polynomial pattern while the nonparametric components 
are unknown pattern and assumed to be contained in the 
Sobolev space. The nonparametric component can be 
approximated by using functions such as spline, 
polynomial local or kernel. Among these 
approximations, spline function has high flexibility and 
capability to handle the data with changing behavior in 
certain sub-intervals (Eubank, 1999). It has also been 
pointed out by (Liang, 2006; Aydin, 2008) that compares 
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the smoothing spline technique with kernel in 
semiparametric and nonparametric regression. 

There are three common approaches for estimations 
the regression function by using spline in semiparametric 
regression model i.e., are regression spline (truncated 
spline, cubic spline, B-spline), penalized spline (p-
spline) and smoothing spline. For penalized spline and 
regression spline, we need to be careful in determining 
the number and location of the knots, whereas the 
smoothing spline does not require the selection of knots. 
Furthermore, the performance of smoothing spline in 
semiparametric regression model is better and more flexible 
than the penalized and regression spline (Aydin and 
Tuzemen, 2010). Smoothing spline estimator can be 
obtained by classical approaches such as Penalized Least 
Square (PLS), Penalized Maximum Likelihood or 
Penalized Likelihood. Beside the classical approach, 
these estimators in semiparametric regression can also be 
estimated by Bayesian approach (Wang, 2011). 

Penalized and regression spline research in regression 
model of semiparametric additive with Bayesian 
approach has been developed by many experts. Among 
them, for instance: (Wong and Kohn, 1996; Li, 2000; 
Smith et al., 2000; Kandala et al., 2001; Panagiotelis and 
Smith, 2008; Ryu et al., 2011) were those who use 
regression spline with Bayesian approach, while (Lang and 
Brezger, 2004; Jerak and Wagner, 2006; Nott, 2006; 
Costa, 2008; Marley and Wand, 2010; Shen, 2011) were 
those who use p-spline with Bayesian approach. Wang 
(2011) used a smoothing spline in semiparametric 
regression model whose parametric components are 
linear patterned with Bayesian approach. However 
estimation of regression function by smoothing spline in 
semiparametric additive regression model which 
parametric components are not linear (polynomial) using 
Bayesian approach have not existed yet. 

In the development of smoothing spline, the classical 
statistical approach cannot be applied for solving the 
inference problem such as constructing a confidence 
intervals for the regression curve. Therefore, some 
researchers use Bayesian approach for building such 
confidence intervals for smoothing spline function. 
(Wahba, 1983; Nychka, 1988) have used a Bayesian 
approach to construct confidence intervals of smoothing 
spline on nonparametric model. In this study we 
developed approaches about the smoothing spline in 
semiparametric additive regression models with 
parametric components which are not linear 
(polynomial) by using Bayesian approach. We also 
developed some methods for selecting optimal 
smoothing parameters simultaneously in semiparametric 

additive regression models as well as building 
confidence intervals for the parametric component 
parameters and smoothing spline functions. We proposed 
this method with simulation data.  

2. MATERIALS AND METHODS 

This chapter discusses some theories used for 
building smoothing spline estimators in semiparametric 
additive regression model with Bayesian approach. 

2.1. Semiparametric Additive Regression Model 

Suppose sampling observations (x1j,...,xpj, z1j,...,zqj, yj) 
with yj as response variable and j = 1,2,…,n shows the 
amount of observations. Xij are predictor variables for i = 
1,2,…,p which have not linier patterns to response 
variable but follow the polynomial pattern. zkj are 
predictor variables for k = 1,2,…,q which have 
unknown relationship pattern with response variable. 
The relationship between (x1j,...,xpj), (z1j,...,zqj) and yj 
are modeled by semiparametric additive regression: 
 

p qr
h

j k j
i=1 h=0 k =1

hi ij kjy = γ x + f (z ) + ε
 
 
 

∑ ∑ ∑  (1) 

 
The parameter γhi is parameter vector of the unknown 

parametric components for h = 0,1,2,…,r; i = 1,2,…,p. 
Random error εj 

are assumed mutually independent 
and normally distributed with zero mean and variance 
σ2. According to Wang (2011) the shape of regression 
curve fk is unknown and assumed to be contained in 
the Sobolev space: 
 

{ }
k

k

b
m (m) 2
2 k k k k k k

a

W [a ,b ] = f ; (f (z )) dz <∞∫  

 
The Equation 1 can be written as follow: 

 
p q

T
j i k j

i=1 k=1
ij kjy = x γ + f (z ) + ε∑ ∑  

 
where, γi = (γ0i, γli, γ2i,…, γri)

T and T 2 r
ij ij ij ijx = (1,x ,x ,…,x )

 
for i=1,2,…,p. Nonparametric regression curve fk is 
estimated by PLS method by minimizing: 
 

k

k

bp q qn
-1 T 2 -1 (m) 2

i ij i k kj k k k k
j=1 i=1 k =1 k =1 a

n (y - x γ - f (z )) + λ θ (f (z )) dz∑ ∑ ∑ ∑ ∫  (2) 
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where, the parameter λk = λ/θk, k = 1,2,…,q controls the 
balance between goodness of fit and smoothness 
measure function. 

To get the smoothing spline estimators in 
semiparametric additive regression model, Wang (2011) 
used an extension from Wahba (1990). The form of 
general spline function used is: 
 

q q q n

k k kv kv k kj k k
k=1 k=1 v=1 k=1 j=1,l=1

mk

kj klf (z ) = α (z ) + β θ ψ (z ,z )φ∑ ∑∑ ∑ ∑  (3)  

 Let kmk

T
k k1α = (α ,...,α ) ,  βk = (βk1,…,βkn)

T, 

{ }h
i ij

r ,ni

h=0, j=1
X = x ,  k kv kj j=1,v=1

n,mkT = { (z )}φ
 

where 

v-1
kv kj kj(z ) = z (v -1)!,φ  v = 1,2,...,mk and 

n,n
k k k k kj kl j=1,l=1θ V = θ {ψ (z ,z )}

 
with 

k

k

b m-1 m-1
kj + kl +

k kj kl 2
a

(z - u) (z - u)
ψ (z ,z ) = du

[(m -1)!]∫
 

then Equation 3 can 

be written in matrix form fk = Tkαk +θkVkβk for 
k=1,2,...,q and Equation 2 can be solved by minimizing: 
 

p q q
-1 T

i i k k k k k
i=1 k =1 k =1

p q q q
T

i i k k k k k k k k k
i=1 k=1 k=1 k =1

n (y- X γ - T α - θ V β )

×(y- X γ - T α - θ V β ) + λ β θ V β

∑ ∑ ∑

∑ ∑ ∑ ∑
 (4) 

 
If T T Tµ = (γ ,α ) ,

 
T T T
1 pγ = (γ ,...,γ ) ,

 
T T T
1 qα = (α ,...,α ) , β = 

(β1,…,βn)
T, S = (X T), X = (X1,…,Xp), T = (T1,…Tq) 

and 
Vθ = θ1V1+…+θqVq 

then Equation 4 can be written as: 
 

-1 T T
θ θ θ

n (y-Sµ - V β) (y-Sµ - V β) + λβ V β  (5)  
 

By taking partially derivative of Equation 5 with 
respect to µ and β then the results are to be equal to zero, 
we obtain: 
 

( )-1 -1 -1 T -1 -1 T -1ˆ ˆβ = M y-Sµ =(M -M S(S M S) S M )y (6) 
T T T T -1 -1 T -1ˆˆ ˆµ = (γ ,α ) = (S M S) S M y (7) 

 
with I is the identity matrix and M = Vθ + nλI. Based on 
Equation 6 and 7, we obtain estimators for smoothing 
spline in semiparametric multivariabel regression model 

that can be expressed as follows 
q

k θ

k=1

ˆ ˆˆf = Tα + V β∑
 

and 

q

k
k=1

ˆ ˆˆh = Xγ + f∑  or 
θ

ˆ ˆˆˆh = Xγ + Tα + V β.  

3. RESULTS 

3.1. Parameter Estimation 

In Bayesian approach, selection of the prior 
distribution is very important. The prior distribution used 
in this study is restricted to improper Gaussian prior 
distribution for the nonparametric component and 
multivariate normal distribution for parametric 
components. In Bayesian approach case, the point 
estimation is obtained from posterior mean and the 
interval estimation is obtained from its posterior variance.

 Given sampling observation (xij, zkj, yj), j = 1,…n; i = 
1,…,p; k = 1,…,q can be obtained from stochastic 
process {y(x, z), x, z ∈[a,b]} and follows the model (1). 
Prior distribution fk is defined as Equation 8: 
 

1/2 1/2
k k k k

v=1

mk

kv kvα (z ) +η θ g (z )φ∑  (8) 

 
where, α ∼ N(0, τI), τ → ∞, η is positive constant and 

k k k k k{g (z ); z [a ,b ]}∈  is integrated Weiner process with: 

 

( )
( )

zk

ak

m-1

k
k k

z u
g (z )= dW(u)

m 1 !

−
−∫  

 
where, W(u) is Weiner process with zero mean and 
reproducing kernel covariance θkVk. Moreover, α and 
gk(zk) are mutually independent. Hence, {h(x,z),x,z 
∈[a,b]} have prior distribution of improper: 
 

k

p q
T
i i k k

i=1 k=1

mp q q
T 1 2 1 2
i i kv kv k k k k

i=1 k=1 v=1 k=1

h(x,z) = x γ + f (z )

          = x γ + α (z ) +η θ g (z )φ

∑ ∑

∑ ∑∑ ∑
  (9) 

 
where, γ ∼ N(0, δI), δ → ∞, 2

k kηθ = σ λ  and {ε(z)}  is 

Gaussian process with zero mean and Cov(ε(zj),ε(z1)) 
= σ2 for j=l and zero for others. 

 Let y, h and ε given as Gaussian random vector with 
zero mean and follow model (1) in which E(εεT)=σ2I, 

E(hεT) = 0 and 
k h

q
T

k h θ

k=1

E(hh ) =η θ V = ηV∑ .
 
If m has normal 

multivariate distribution with E(m) = 0, E(mεT) = 0, 
q

T
k

k=1
m θmk

E(mm ) =η θ V = ηV∑
 

and 
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q
T

k m h θk k mh
k=1

E(mh ) =η θ V = ηV∑
 

then joint distribution 

between m and y i.e.: 
 

q q

k k
k =1 k=1

q q
2

k k
k=1 k=1

m m hk k k

h m hk k k

η θ V η θ V
m 0

~ N ,
y 0

η θ V η θ V + σ I

  
  

                
  

∑ ∑

∑ ∑
 

 
Hence, by using a standard result on multivariate normal 

distribution e.g., Johnson and Wichern (2001) (Result 4.6), 
the conditional distribution of m given y and X is normal 
with each of mean and covariance Equation 10 and 11:  
 

-1q q

k k
k=1 k =1

-1

m h hk k k

θ θmh h

E(m | y) = θ V θ V + nλI y

             = V (V + nλI) y,

 
 
 

∑ ∑
  (10) 

 
and: 
 

q q

k k
k=1 k=1

q q
-1

k k
k=1 k=1

m m hk k k

h h mk k k

Var(m | y) =η( θ V - θ V

                    × ( θ V + nλI) θ V )

∑ ∑

∑ ∑
 

 
-1

θ θ θ θm mh h hm
Var(m | y) =η(V - V (V + nλI) V )   (11) 

 
with λ = σ2/nη. 

Equation 9 can be written in matrix form 
q

1 2 1 2
k k k

k=1

h = Xγ+Tα+η θ g (z )∑
 

or 
q

1 2 1 2
k k k

k=1

h = Sµ+η θ g (z )∑  

where µ~N(0,πI),  π .→ ∞  Assumed that µ with gk(zk) 
are mutually independent, then we obtained 

h

q
T

θ k k
k =1

V = ζSS +η θ V∑
 
with ζ = π/η. If we take m=h then 

we obtain 
q

T T T
k k

k=1
θmh

V = ζs S + θ ψ∑
 
and 

q
T

k k
k =1

θm
V = ζs s + θ ψ∑ .

 Using quadratic loss function, we find the estimator 
bayes is the posterior mean h, hence we get: 
 

-1
θ θmh h

E(h | y) = V (V + nλI) y  

 
q q

T T T T -1
k k k k

k=1 k=1

E(h | y) = (ζs S + θ ψ )(ζSS + θ V + nλI) y∑ ∑  

q
T T T -1 T T -1

k k
k=1

E(h | y) =ζs S (ζSS + M) y + θ ψ (ζSS + M) y∑  (12) 

 

with 
q

k k
k =1

M = θ V + nλI.∑  

If the limit of posterior mean value h is taken for 
ζ→∞ we find that: 
 

T T -1 T -1 -1 T -1lim ζS (ζSS + M) y = (S M S) S M y
ζ→∞

 

T -1 -1 -1 T -1 -1 T -1lim (ζSS + M) y = (M - M S(S M S) S M )y
ζ→∞

 

 
by combining this results with Equation 6 and 7, we have 

ˆlim E(h y) =h
ζ→∞

. This result is identical with smoothing 

spline estimator that obtained from PLS approach. Based 
on prior (9) and Equation 12 obtained ˆlim E( | y) =

ζ→∞
γ γ

 
and 

k k
ˆlim E(f | y) = f

ζ→∞
. 

3.2. Smoothing Parameters Selection Method 

Smoothing spline estimators depend on the 
smoothing parameter. Hence, the smoothing parameters 
selection are crucial for the performance of smoothing 
spline function estimates. A selection method of the 
smoothing parameters (λ1,…, λq) for smoothing spline 
estimators in semiparametric additive regression model 
using Bayesian approach, that is Generalized Maximum 
Likelihood (GML) is given as follows. The basic idea of 
using GML method was firstly done by Wahba (1985) in 
a nonparametric regression model. 

If given w1 and w2 with decompotition as follows: 
 

T
1

-1 2 T
2

w F

= y,

w S

  
  
  

   ϕ   

⋯ ⋯  

 

where S is a 
p q

i k
i=1 k=1

(n×( r + m ))∑ ∑
 

matrix and F is a 

p q

i k
i=1 k=1

(n (n- r m ))× −∑ ∑
 

matrix that satisfies FTF = I, FTS = 

0, ϕ=τ/η and h has improper prior distribution (9) then: 
 

T
1w ~ N(0,η(F MF)  

 
and: 
 

T T
2w ~ N(0,η(S S)(S S)) 
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Determining both of these distributions, we found 
that only w1 contain the smoothing parameters λ1,…, λq. 
Based on the distribution of w1, the log likelihood 
function can be obtained as follows: 
 

p q

i k
i=1 k=1

1 q 1

T T T -1
1 1 1

n- r - m
log L(λ ,…,λ ,η w ) = - logη +

2
1 1

              - log F MF - w (F MF) w + K
2 2η

∑ ∑
 

 
The log likelihood function gives the maximum 

likelihood estimator, which is: 
 

T T -1
1 1

p q

i k
i=1 k=1

w (F MF) w
η̂ = .

n- r - m∑ ∑
 

 
By subsitution of ̂η  into log likelihood function, we get: 

 

1 q 1

p q

T T -1i k
1 1i=1 k=1

2
1 -T -1

p q
n- mk

i=1 k=1
ri

log L(λ ,…,λ w ) =

n- r - m
w (F MF) w

- log + K
2

(F MF)

 
 
 
 ∑ ∑ 
 

∑ ∑  

 
with K1 and K2 are constants which not depend on 
λ1,…,λq and η. Maximizing log L(λ1,…,λq|w1) 

is 
equivalent to minimizing: 
 

T T -1
1 1

1 q
1 -T -1

p q
n- mk

i=1 k=1
ri

w (F MF) w
GML(λ ,…,λ ) = .

(F MF) ∑ ∑
 

 
where T

1w = F y . The values of λ1,…,λq are optimal by 

minimizing of GML(λ1,…,λq).  

3.3. Confidence Interval  

One way for constructing confidence intervals for 
semiparametric estimates is bootstrap and Bayesian 
approach. The disadvantage of the bootstrap confidence 
interval is that they are more computationally intensive. 
Hence, to compute the confidence interval of the 
smoothing spline functions fk and the parameter γ in 
semiparametric additive regression model, we can use 
Bayesian approach. Based on the prior (9), Equation 11 
and 12, we obtain: 

ˆlim E( | y) =
ζ→∞

γ γ , k k
ˆlim E(f | y) = f

ζ→∞
 

 
and 
 

q q
T T T T

k k k k
k=1 k=1

q
T -1

k k
k=1

Var(m | y) =η s s + θ ψ - ( s S + θ ψ )

                            ( SS + M) ( Ss + θ ψ ) .


ζ ζ ×



ζ ζ 



∑ ∑

∑
 

 
Let m = h then we have: 
 

q
T 2 T T -1

k k
k=1

q
T T -1 T

k k
k=1

q q
T T -1 T

k k k k
k =1 k =1

Var(h | y) =η θ ψ +s ( I - S ( SS + M) S)s

                        - 2s ( S( SS + M) )θ ψ

                       - θ ψ ( SS + M) θ ψ .


ζ ζ ζ +



ζ ζ +


ζ 



∑

∑

∑ ∑

 

 
 If the limit value of posterior variance h is taken for 
ζ→∞ we find that: 
 

( ) ( )

( )

( )( )

q
-1T T -1

k k
ζ

k=1

q
-1T T -1 T -1

k k
k=1

q q
-1T -1 -1 T -1 T -1

k k k k
k=1 k=1

lim  Var h|y  = η θ ψ +s S M S s +

                          -2s S M S S M θ ψ +

                         - θ ψ M -M S S M S S M θ ψ .

→∞









∑

∑

∑ ∑

 

 
Hence: 
 

ii
ζ
lim  Var(γ|y) = ηA .

→∞
  

where, iiA  is a matrix corresponds to rows 1 to 
p

w
w=1

r 1+∑  

and coloms 1 to 
p

w
w=1

r 1+∑
 

of matrix ( )-1T -1S M S , and: 

 

{

( )( )
T T

k k k  k kk  k  k k

q q
-1T -1 -1 T -1 T -1

k k k k
k=1 k=1

ζ
lim  Var(f |y) = η θ ψ + B -2 C +

                        - θ ψ M -M S S M S S M θ ψ

→∞
φ φ φ





∑ ∑
 

 

 

where, kkB  is a matrix corresponds to rows 
k-1

w
w=1

m +1∑
 

to 

k

w
w=1

m∑
 

and columns 
k-1

w
w=1

m +1∑
 

to 
k

w
w=1

m∑  of matrix 
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( )-1T -1S M S  and kC  is a subvector of

 
( )

q
-1T -1 T -1

k k
k=1

S M S S M θ ψ∑
 

with elements from 
k-1

w
w=1

m +1∑
 

to 

k

w
w=1

m∑ . 

Therefore, by calculating each posterior mean and 
posterior variance of parameters γ  and kf , we can 

construct confidence intervals for the parameters γ and 
confidence intervals for smoothing spline functions kf  in 

semiparametric additive regression model. 

3.4. Simulation Study 

In the simulations, we generated our data from the 
semiparametric additive regression model in (1) with n = 
100, p = 4, r = 2, q = 2 and m = 2. For the parametric 
part, we set parameter of γ = (0.0, 1.0, 0.8, 1.4, 0.6, 1.2, 
0.9, 1.1, 1.2)T. The xi’s were generated from the 
multivariate normal distribution with zero mean and 
Cov(xij, xik) = 0.5|j−k| . For the nonparametric part, the 
true functions were set to be: 
 

f1(z1) = −2 sin(2πz1) 
 
and 
 

f2(z2) = 2
28.03 9 exp( (z 0.3) )− + − −  

 
 The zik’s were generated independently from the 
uniform distribution on [0, 1]. The random errors εj were 
generated from the normal distribution with zero mean 
and standard deviation σ = 0.9. 
 Based on GML method, we create R-code for 
choosing smoothing parameters simultaneously. The 
optimum smoothing parameter is used to obtain 
parameter estimator for parametric components and 
smoothing spline estimator for the nonparametric 
component in semiparametric additive regression 
model. The GML values with a number of different 
smoothing parameters for the simulation data is 
depicted in Table 1. We can see the changing of GML 
values from small (line 1) to large smoothing 
parameter (line 8). According to the eight smoothing 
parameters combination that are applied in the model, 
the optimal smoothing parameters are λ1 = 2.083E-05 
and λ2 = 5.000E-05 having the smallest GML value of 
48.01812 (line 4). Next, using the optimal smoothing 
parameter, the estimation of the parametric component 

γ and the 95% confidence interval of the parametric 
component appropriate can be seen from Table 2. 

Figure 1 shows the estimation of smoothing spline 
function as well as the 95% confidence interval for σ = 
0.9. The rounded lines are the true functions, solid lines 
represent the smoothing spline curves with optimal 
smoothing parameter and the dashed lines denote the 
confidence interval for lower and upper smoothing 
spline. If we compare it with the smoothing spline 
function estimates as well as the 95% confidence interval 
for σ = 1.0 and σ = 0.6 in Fig. 2, it is seen that the 
smoothing spline function estimation for σ = 0.6 is 
closer to the true function and also the perform 
reasonably well. It can also be seen from the Mean 
Square Error (MSE) for for three different error standar 
deviation is used in Table 3. 
 
Table 1. The smoothing parameter and GML value 

λ1 λ2 GML(λ1, λ2) 

2.083E-02 5.000E-02 126.66030 
2.083E-03 5.000E-03 116.24130 
2.083E-04 5.000E-04 78.30659 
2.083E-05 5.000E-05 48.01812 
2.083E-06 5.000E-06 48.21623 
2.083E-07 5.000E-07 48.37583 
2.083E-08 5.000E-08 68.51872 
2.083E-09 5.000E-09 123.57630 

 
Table 2. Estimation parameters and 95% confidence intervals 

for parametric component 
Parameter Estimated value 95% Confidence Interval  

γ0 0.250197 (-0.134254, 0.634648) 
γ11 1.030157 (0.822267, 1.238047) 
γ21 0.772059 (0.654121, 0.889997) 
γ12 1.324766 (1.062530, 1.587002) 
γ22 0.533844 (0.407727, 0.659960) 
γ13 1.344948 (1.103840, 1.586056) 
γ23 0.861096 (0.716370, 1.005822) 
γ14 1.165267 (0.925958, 1.404576) 
γ24 1.180716 (1.016211, 1.345222) 

 
Table 3. Mean coverage of 95% confidence interval and MSE 
 Mean Coverage 
 --------------------------- 
n = 100 f1(z1) f2(z2) MSE 

σ = 0.6 1.00 1.00 0,21858 
σ = 0.9 1.00 1.00 0,48275 
σ = 1.0 0,98 1.00 0,59420 
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Fig. 1. Estimation for nonparametric components and its 95% confidence interval for σ = 0.9  
 

 
 

Fig. 2. Estimation for nonparametric components and its 95% confidence interval for σ = 0.6  
 

 

4. DISCUSSION 

The prior distributions used in the model in this 
study are improper Gaussian distribution for 
nonparametric components and multivariate normal 
distribution for parametric components. The 
smoothing spline estimators were obtained by using 
Bayesian approach. Our result is identical to 
smoothing spline estimator obtained by the PLS 
approach. The confidence intervals for the parameters 
of the parametric component and confidence intervals 
for smoothing spline functions of nonparametric 
component in semiparametric additive regression 
model can be constructed through Bayesian approach. 
By using the Bayesian approach, we obtain the GML 
method for selecting optimal smoothing parameters 
simultaneously where the shape of the smoothing 
parameters is fixed.  

5. CONCLUSION 

The smoothing spline in semiparametric additive 
regression model with Bayesian approach is a 
development of Bayesian smoothing spline for 

nonparametric component. Using Bayesian approach we 
obtain parametric component parameter estimators and 
smoothing spline estimators for nonparametric 
components and smoothing parameters selection method 
simultaneously with GML in semiparametric additive 
regression model. In addition, by computing each 
posterior mean and posterior variance of parameters γ̂  
and kf̂  the confidence intervals can be constructed for 

the parametric component parameters and confidence 
interval smoothing spline functions for nonparametric 
components in semiparametric additive regression 
models. Numerical example shows that estimation and 
inference method can be applied well using simulation 
data. The problem remaining is to apply this model in 
real life problem. The further study may consider to 
estimate the smoothing parameters simultaneously 
through Markov Chain Monte Carlo (MCMC) and to use 
other prior distribution in semiparametric additive 
regression models. 

6. ACKNOWLEDGEMENT 

 The first research would like to thanks The 
Indonesian Central Bureau of Statistics (BPS) Indonesia 



Rita Diana et al. / Journal of Mathematics and Statistics 9 (3): 161-168, 2013 

 
168 Science Publications

 
JMSS 

for the Ph.D. grant through Human Resources 
Development Project in cooperation with Institut 
Teknologi Sepuluh Nopember (ITS), Indonesia with 
contract number: 19/KS/01-VII/2010. 

7. REFERENCES 

Aydin, D. and M.S. Tuzemen, 2010. Estimation in semi-
parametric and additive regression using smoothing 
and regression spline. Proceedings of the 2nd 
International Conference on Computer Research and 
Development, May 7-10, IEEE Xplore Press, Kuala 
Lumpur, pp: 465-469. DOI: 
10.1109/ICCRD.2010.101 

Aydin, D., 2008. A comparison of the nonparametric 
regression models using smoothing spline and 
kernel regression. Int. J. Math., Phys. Eng. Sci., 2: 
75-79.  

Costa, M.J., 2008. Penalized spline models and 
applications. Ph.D. Thesis, University of Warwick. 

Eubank, R.L., 1999. Nonparametric regression and 
spline smoothing. 

Jerak, A. and S. Wagner, 2006. Modeling probabilities of 
patent oppositions in a Bayesian semiparametric 
regression framework. Empirical Econ., 31: 513-
533. DOI: 10.1007/s00181 -005-0047-0 

Johnson, R.A. and D.W. Wichern, 2001. Applied 
Multivariate Statistical Analysis. 5th Edn., Prentice 
Hall, Upper Saddle, New Jersey, ISBN-10: 
0130925535, pp: 767. 

Kandala, N.B., S. Lang and S. Klasen, 2001. 
Semiparametric Analysis of Childhood 
Undernutrition in Developing Countries. University 
of Munich.  

Lang, S. and A. Brezger, 2004. Bayesian P-splines. J. 
Comput. Grap. Statist., 13: 183-212. DOI: 

10.1198/1061860043010 
Li, Q., 2000. Efficient estimation of additive partially 

linear models. Int. Econ. Rev., 41: 1073-1092.  
Liang, H., 2006. Estimation in partially linear models 

and numerical comparisons. Comput. Stat. Data 
Anal., 50: 675-687. DOI: 
10.1016/J.CSDA.2004.10.007. 

 
 
 
 
 

Marley, J.K. and M.P. Wand, 2010. Non-standard 
semiparametric regression via brugs. J. Statist. 
Software, 37: 1-28. 

Nott, D., 2006. Semiparametric estimation of mean and 
variance functions for non-Gaussian data. Comput. 
Statist., 21: 603-620. DOI: 10.1007/s00180-006-
0017-9 

Nychka, D., 1988. Bayesian confidence intervals for 
smoothing splines. J. Am. Statist. Assoc., 83: 1134-
1143.  

Panagiotelis, A. and M. Smith, 2008. Bayesian 
identification, selection and estimation of 
semiparametric functions in high-dimensional 
additive models. J. Econ., 143: 291-316. DOI: 
10.1016/J.JECONOM.2007.10.003 

Ryu, D., B.K. Mallick and E. Li, 2011. Bayesian 
nonparametric regression analysis of data with 
random effects covariates from longitudinal 
measurements. Biometrics, 67: 454-466. DOI: 
10.1111/j.1541-0420.2010.01489.x 

Shen, J., 2011. Additive Mixed Modeling of HIV Patient 
Outcomes Across Multiple Studies. University of 
California.  

Smith, M., R. Kohn and S.K. Mathur, 2000. Bayesian 
semiparametric regression: An exposition and 
application to print advertising data. J. Bus. Res., 49: 
229-244. DOI: 10.1016/S0148-2963(99)00055-7 

Wahba, G., 1983. Bayesian “confidence intervals” for 
the cross-validated smoothing spline. J. Royal 
Statist. Soc., Seri. B, 45: 133-150.  

Wahba, G., 1985. A comparison of GCV and GML for 
choosing the smoothing parameter in generalized 
spline smoothing problem. Ann. Statist., 13: 1378-
1402. DOI: 10.1214/aos/117649743 

Wahba, G., 1990. Spline Models for Observational Data. 
1st Edn., SIAM, Philadelphia, ISBN-10: 
0898712440, pp: 180. 

Wang, Y., 2011. Smoothing Splines: Methods and 
Applications. 1st Edn., CRC Press Inc, ISBN-10: 
1420077554, pp: 384. 

Wong, C. and R. Kohn, 1996. A Bayesian approach to 
additive semiparametric regression. J. Econ., 74: 
209-235. DOI: 10.1016/0304-4076(95)01743-7. 


