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ABSTRACT

Semiparametric additive regression model is a coattmn of parametric and nonparametric regression
models. The parametric components are not linear following a polynomial pattern, while the
nonparametric components are unknown pattern asgireesi to be contained in the Sobolev space. The
nonparametric components can be approximated bything spline functions. In the development of
smoothing spline, the classical statistical appnazannot be applied for solving the inference probbuch

as constructing confidence intervals for the regjoescurve. To construct confidence interval of sthing
spline curve in the semiparametric additive redogssnodel, we propose to use Bayesian approach, by
assuming improper Gaussian distribution for pridstrbution in nonparametric components and
multivariate normal distribution for parametric cpoments. In this study, we obtain parameter estimat
for parametric component and smoothing spline edtins for the nonparametric component in
semiparametric additive regression model. Moreowar,also develop a smoothing parameters selection
method simultaneously using Generalized Maximuneliffood (GML) and confidence intervals for the
parameters of the parametric component and thethingespline functions of the nonparametric compne
using Bayesian approach. By computing each poster@n and posterior variance of parametric comtone
parameters and smoothing spline functions, condieeimtervals can be constructed for the parametric
component parameters and confidence interval simgp#pline functions for nonparametric components i
semiparametric additive regression models. We erBatode to implement estimation model and infexenc
procedure. Our simulation studies reveal estimaimhinference method perform reasonably well.

Keywords: Bayesian, GML, Confidence Interval, Semiparameftlitive Regression Model, Smoothing
Spline

1. INTRODUCTION parametric components are not linear but follow a
polynomial pattern while the nonparametric compdsien
In regression model, there are some componentsre unknown pattern and assumed to be containgeein
which have sufficient information to describe the Sobolev space. The nonparametric component can be
relationship pattern between the predictors and theapproximated by using functions such as spline,
response variables. However, there are also vague opolynomial local or kernel. Among these
nuisance components. Hence, in this study, theapproximations, spline function has high flexilyilind
semiparametric additive regression model is used tocapability to handle the data with changing behaino
overcome these difficulties. This model is a corakion certain sub-intervals (Eubank, 1999). It has alsenb
of parametric and nonparametric regression moddis.  pointed out by (Liang, 2006; Aydin, 2008) that cargs
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the smoothing spline technique with kernel in additive regression models as well as building

semiparametric and nonparametric regression. confidence intervals for the parametric component
There are three common approaches for estimationparameters and smoothing spline functions. We mego

the regression function by using spline in semipeataic this method with simulation data.

regression model i.e., are regression spline (aieuk

spline, cubic spline, B-spline), penalized spling- ( 2. MATERIALSAND METHODS

spline) and smoothing spline. For penalized spénd

regression spline, we need to be careful in deténgi This chapter discusses some theories used for
the number and location of the knots, whereas thebuilding smoothing spline estimators in semiparaivet
smoothing spline does not require the selectioknots. ~ additive regression model with Bayesian approach.

Furthermore, the performance of smoothing spline in
semiparametric regression model is better and fieodble
than the penalized and regression spline (Aydin and Suppose sampling observationg;,(X, %y, Zij,..., Z;j, ¥;)
Tuzemen, 2010). Smoothing spline estimator can bewith y; as response variable and j = 1,2,...,n shows the
obtained by classical approaches such as Penalea@st  amount of observations.jXre predictor variables for i =
Square (PLS), Penalized Maximum Likelihood or 12 .p which have not linier patterns to response
Penalized Likelihood. Beside the classical approach yariaple but follow the polynomial pattern.; zare
these estimators in semiparametric regressionlearb@  predictor variables for k = 1,2,...,q which have
estimated by Bayesian approach (Wang, 2011). unknown relationship pattern with response variable
Penalized and regression spline research in regress 1 o relationship between x...x,), (z....%) and y

model ~ of ~semiparametric additive with Bayesian 4o mogeled by semiparametric additive regression:
approach has been developed by many experts. Among

them, for instance: (Wong and Kohn, 1996; Li, 2000; o/ ]
Sm!thet al., 2000; Kandalat al., 2001; Panagiotelis and y, = Z(thix{;j+2fk(zkj) +e Q)
Smith, 2008; Ryuet al., 2011) were those who use i=1 k=1

regression spline with Bayesian approach, whilegLand

Brezger, 2004; Jerak and Wagner, 2006; Nott, 2006; The parametey, is parameter vector of the unknown
Costa, 2008; Marley and Wand, 2010; Shen, 2011 wer parametric components fér = 0,1,2,...,r; i = 1,2,...,p.
those who use p-spline with Bayesian approach. WangRandom errorg; are assumed mutually independent
(2011) used a smoothing spline in semiparametricand normally distributed with zero mean and var&nc
regression model whose parametric components argy?, According to Wang (2011) the shape of regression

linear patterned with Bayesian approach. Howevercyrye { is unknown and assumed to be contained in
estimation of regression function by smoothingrsplin the Sobolev space:

semiparametric additive regression model which
parametric components are not linear (polynomisipag be
Bayesian approach have not existed yet. W;'la,, b, 1={f, ;j (f™(z,))? dz, <o}
In the development of smoothing spline, the cladsic a
statistical approach cannot be applied for solvihg
inference problem such as constructing a confidence The Equation 1 can be written as follow:
intervals for the regression curve. Therefore, some
researchers use Bayesian approach for building such p q
confidence intervals for smoothing spline function. Y= 2oxam + 2 fzg) +e
(Wahba, 1983; Nychka, 1988) have used a Bayesian = k=
approach to construct confidence intervals of simagt
spline on nonparametric model. In this study we Where,yi = (yoi, Vi, Yz, Ya)' and xJ = (1,% ¢,...x)
developed approaches about the smoothing spline ifor i=1,2,...,p. Nonparametric regression curvg i$

semiparametric ~ additive regression models with estimated by PLS method by minimizing:
parametric components which are not linear

(polynomial) by using Bayesian approach. We also o . 0 b
developed some methods for selecting optimal n*}" (y, -injTyi-ka(zkj))%xZ:aK-lJ' ™z Nndz (2)
smoothing parameters simultaneously in semiparénetr = i=1 k=1 k=1 g

2.1. Semiparametric Additive Regression M odéel

h=0
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where, the parametag = A/6,, k = 1,2,...,gcontrols the

3.RESULTS

balance between goodness of fit and smoothness

measure function.

To get the smoothing spline estimators
semiparametric additive regression model, Wang 1201
used an extension from Wahba (1990). The form o
general spline function used is:

in

q n
Zf (z,)= Zzakv(pkv(zk +Z Z By k\l’k(zkj zy) (3)
k=1v=1 k=1j=1,I=1
Let o, = (akll"'ﬂ'kmk )T , Bk = (Bkl! . ,Bkn)T,
X = {Xi?}:;no,jzll T ={@uZ )} 1o where
(pkv(zkj)zzljj-l/(v'l)!r \ = 1,2,...m and
0.V, = 0, {wy (2.2 Nt 1 with

:bk (ij - U)LWl (Zkl B UI”'l
Wy (ij 14y ) é[ [(m _1)!]2

be written in matrix form f = T, +6,V By for
k=1,2,...,gand Equation 2 can be solved by minimizing:

du then Equation 3 can

3 q q
n-l(y'z Xiv; - ZTkak 'ZekaBK)T
i=1 k=1 k=1

p q q q (4)
X(Y'in"{i -ZTkak -ZekaBk)+)‘ZBl;rekaBk

If u= (yT ,aT)T, y= (ﬂ{I,...,yE)T , o= (aI,...,a;)T B =

(BB, S=(XT),X=(Xg,..., %), T = (Ty,.... Tg) and

Vg =0,V +...+6,V, then Equation 4 can be written as:

nt(y-Su- Voﬁ)T(Y' Sp- V) + MSTVOB %)

By taking partially derivative of Equation 5 with
respect tqt andp then the results are to be equal to zero,
we obtain:

M (y-Sii)=(M*-M 5(STMS)'S' M)y
(’Y &T)T — (ST 1S)-l§ Mly

=M (6)
= (7)

with | is the identity matrix and M = 3+ nAl. Based on
Equation 6 and 7, we obtain estimators for smogthin
spline in semiparametric multivariabel regressioodet

9 . ~

that can be expressed as followsf, =Ta+V,8 and
k=1

A N ~ R R ~

h=Xy+>f, or h=Xy+Ta+V,p.

k=1

163

////4 Science Publications

3.1. Parameter Estimation

In Bayesian approach, selection of the prior

deStrIbutIOI’l is very important. The prior distrilrt used

in this study is restricted to improper Gaussiaforpr
distribution for the nonparametric component and
multivariate  normal  distribution  for  parametric
components. In Bayesian approach case, the point
estimation is obtained from posterior mean and the
interval estimation is obtained from its postekiariance.

Given sampling observationj(xg, ), j = 1,...n; i =
1,...p; k 1,..,9 can be obtained from stochastic
process {y(x, z), X, ZJ[a,b]} and follows the model (1).
Prior distribution § is defined as Equation 8:

Zk OBy (Z,) + Tlllzeilzgk (z) (8)

where,a O N(O, tl), T - o, n is positive constant and
{9.(z)); z, O[3, ,h, 1} is integrated Weiner process with:

u)m'1
-1)!

where, W(u) is Weiner process with zero mean and
reproducing kernel covariand&Vy. Moreover,a and
ok(zo) are mutually independent. Hence, {h(x,z),x,z
O[a,b]} have prior distribution of improper:

9 (@)= j dw(u)

h(x.2) :i Xy, + ifk @)

—Z X, +ZZ%%(ZK)+11“ZG“QK @)

k=1v=1

©)

where,y ON(0, 3l), & — », n6,=c2/A, and {(2)} is
Gaussian process with zero mean and €@)(g(z,))
= o for j=I and zero for others.

Let y, h ande given as Gaussian random vector with
zero mean and follow model (1) in whicheE{)=0*

q
E(he”) = 0and E(hh") =n)_6,V, =nV, . If m has normal
k=1

multivariate distribution with E(m) = 0, E@h =
q
E(mm') :nZekvmk =0V, and
k=1
IMSS
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9
E(th):”;ekakhk:”VGmh then joint distribution

between mandyi.e.:

Hence, by using a standard result on multivariatenal
distribution e.g., Johnson and Wichern (2001) (Res8),
the conditional distribution of m given y and Xriermal
with each of mean and covariance Equation 10 and 11

-1
9 9

EMIY) =2 0Vin,n, [ZGM.K + nmj y
k=1 k=1

(10)
=Y, (Y, +an’y,
and:
q q
varm|y) =n(3_6,Va, - > 0V
k=1 k=1
q q
X 0V, + M) 8,V )
k=1 k=1
Var(m|y) =n(Vy, - Vo, Vo, #NM)7V, ) (11)

with A = o?/nn.
Equation 9 can be written in

q q
h= XY*'TQ'H]]/ZZegzgk (z) or h= Sﬁﬂwz@fzgk @)
k=1 k=1

where p~N(Oxzl), © —» . Assumed thau with g(zy)
are mutually independent, then we

matrix form

q
V, =SS ) 60,V, with { =1Un. If we take m=h then
k=1

q q
we obtainV, =(s'S +> 0,y andV, ={s's+> 0y, .
k=1 k=1

obtained

E(h]y) =(5'S (SS +M)'y +> 0SS +M)'y  (12)

q
with M =3>"6,V, +nl.
k=1

If the limit of posterior mean value h is taken for
{ - o we find that:

!i[rlgST €SS +My'y=(S M'S) S My
lim (S + M)y = (M* - MS(S M*S)'S M)y

by combining this results with Equation 6 and 7,heee
!im E(h\y)=?1. This result is identical with smoothing

spline estimator that obtained from PLS approacses
on prior (9) and Equation 12 obtain(?'dw E(y|y) =y and

lim E(f, 1Y) =1, .

3.2. Smoothing Par ameter s Selection M ethod

Smoothing spline estimators depend on the
smoothing parameter. Hence, the smoothing parameter
selection are crucial for the performance of smimgth
spline function estimates. A selection method of th
smoothing parameters\((..., Ag) for smoothing spline
estimators in semiparametric additive regressiomeho
using Bayesian approach, that is Generalized Maximu
Likelihood (GML) is given as follows. The basic alef
using GML method was firstly done by Wahba (198b) i
a nonparametric regression model.

If given wy and w with decompotition as follows:

w, F
= . y,

w,) oY’

p q
where S is a (nx(Q_r+>'m)) matrix and F is a

i=1 k=1

P q
(nx(n-Yr->"m,)) matrix that satisfies ¥ = I, F'S =
k=1

i=1

Using quadratic loss function, we find the estimato 0, ¢=1/n and hhas improper prior distribution (9) then:

bayes is the posterior mean h, hence we get:

E(1y)=V,, (4, +m)y

E(1Y) = €5'S +Y00T)ESS +30,V, + iy
k=1 k=1
////4 Science Publications
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Determining both of these distributions, we found lim E(y|y) =¥, lim E(fk|y):fk
. . [N o
that only w contain the smoothing parametass..., A,
Based on the distribution of ;wthe log likelihood d
function can be obtained as follows: an
q q
SR Var(mIY)=n{ZSTS+ 0¥, - (€SS +D0,y5) x
n_Zri_me kz:; kY ; kY
log LAy, ..., A gum|W,) = -—=L—<<—Jogn +

2

2 Ss +M)( séekwk)}.
1 1 - k=1

Let m = h then we have:
The log likelihood function gives the maximum

likelihood estimator, which is: var(h | y) =H{Zq:9kwk +s'@Q1-2°S €SS +M) S)s
k=1
_ 9
f= W (FMFY W, -3s7( B( 85 +MDJo,uy +
P q k=1
AP ; :
2 0y, ((SS + M)lzekwl}-
k=1 k=1

By subsitution ofq into log likelihood function, we get:
If the limit value of posterior varianceis taken for
{ - o we find that:

P q
2 m Wl (FTMF)w,

) ~f gl
%n-ir-imk e k=1
(G N

+ K

2 i .
2{ 'S M)S TS 0,v,+
k=1

with K; and K are constants which not depend on E“:e \VT(M-l_M-S(STM.ls)-l g M-l)zq:e v
A,...Aq and n. Maximizing log LQy,...Agwy) is =i =i
equivalent to minimizing:

Hence:
w] (F'MF)*w
GML(A,,....A,) = it 2 - lim Var(yly) =mA..
Ny h-ym [ i
‘(FTMF)'l ' &
P
) where, A; is a matrix corresponds to rows 1 }dr,, +1
where w, =F'y. The values of,...,Aq are optimal by w=1
. . .. p R

minimizing of GMLQs,... Ag). and coloms 1 t6y r, +1 of matrix (S'M'S)", and:

3.3. Confidence Interval v

One way for constructing confidence intervals for lim Var(f,ly) =n{6,v, +¢} B0, -2¢'C, +
semiparametric estimates is bootstrap and Bayesian a ]
approach. The disadvantage of the bootstrap candfele Zekw[(M'l-M ’JS(STM‘ls)
interval is that they are more computationally insige. k=t

1

q
s M-l) zeka}
P=)

Hence, to compute the confidence interval of the 1
smoothing spline functions, fand the parametey in where, B, is a matrix corresponds to rows m, +1 to
semiparametric additive regression model, we can us w=1

Bayesian approach. Based on the prior (9), Equdtion zk:mw and columns imw +1 to zk:mw of matrix
and 12, we obtain: et

w=1 w=1

////4 Science Publications 165 IMSS
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-1

(s’ms) and Cc, is a subvector of

R 9 k-1
(S'M*Y)" S M*Y 0,y with elements fromy m, +1 to
k=1

w=1

k
>m,.
w=1

y and the 95% confidence interval of the parametric
component appropriate can be seen fitable 2.

Figure 1 shows the estimation of smoothing spline
function as well as the 95% confidence interval dox
0.9. The rounded lines are the true functionsdsilies
represent the smoothing spline curves with optimal

Therefore, by calculating each posterior mean andsmoothing parameter and the dashed lines denote the

posterior variance of parameters and f,, we can

construct confidence intervals for the parametessnd
confidence intervals for smoothing spline functidpsin

semiparametric additive regression model.
3.4. Simulation Study

confidence interval for lower and upper smoothing
spline. If we compare it with the smoothing spline
function estimates as well as the 95% confidentrval

for 0 = 1.0 ando = 0.6 inFig. 2, it is seen that the
smoothing spline function estimation far = 0.6 is
closer to the true function and also the perform

In the simulations, we generated our data from thereasonably well. It can also be seen from the Mean

semiparametric additive regression model in (1jhwit=
100, p=4,r=2,q =2 and m = 2. For the paramet
part, we set parameter pf= (0.0, 1.0, 0.8, 1.4, 0.6, 1.2,
0.9, 1.1, 1.2). The xs were generated from the
multivariate normal distribution with zero mean and
Cov(x;, xk) = 0.9 . For the nonparametric part, the
true functions were set to be:

fl(Zl) =-2 Sin(2521)
and

fa(zo) = —8.03+ 9 expf (z- 0.3)

The z’'s were generated independently from the
uniform distribution on [0, 1]. The random err@jsvere
generated from the normal distribution with zeroame
and standard deviatiam= 0.9.

Square Error (MSE) for for three different erroarsdar
deviation is used ifable 3.

Table 1. The smoothing parameter and GML value

A1 A2 GML(A1, Ay)

2.083E-02 5.000E-02 126.66030
2.083E-03 5.000E-03 116.24130
2.083E-04 5.000E-04 78.30659
2.083E-05 5.000E-05 48.01812
2.083E-06 5.000E-06 48.21623
2.083E-07 5.000E-07 48.37583
2.083E-08 5.000E-08 68.51872
2.083E-09 5.000E-09 123.57630

Table 2. Estimation parameters and 95% confidence intervals
for parametric component

Parameter Estimated value 95% Confidence Interval

Ba_sed on GML method, we create R-code for z‘zl gzgggig; (igzéggggi’, g:ggggi%
choosing smoothing parameters simultaneously. The, 0.772059 (0.654121, 0.889997)
optimum smoothing parameter is used to obtainy,, 1.324766 (1.062530, 1.587002)
parameter estimator for parametric components and,, 0.533844 (0.407727, 0.659960)
smoothing spline estimator for the nonparametric y; 1.344948 (1.103840, 1.586056)
component in semiparametric additive regressiony.s 0.861096 (0.716370, 1.005822)
model. The GML values with a number of different Yis 1.165267 (0.925958, 1.404576)
smoothing parameters for the simulation data isYzs 1.180716 (1.016211, 1.345222)

depicted inTable 1. We can see the changing of GML
values from small (line 1) to

large smoothing Table3. Mean coverage of 95% confidence interval and MSE

parameter (line 8). According to the eight smooghin
parameters combination that are applied in the ode

Mean Coverage

the optimal smoothing parameters are= 2.083E-05 n =100 f(z0) f2(2,) MSE
andA, = 5.000E-05 having the smallest GML value of 5=0¢ 1.00 1.00 0,21858
48.01812 (line 4). Next, using the optimal smoothin 5 =0.9 1.00 1.00 0,48275
parameter, the estimation of the parametric compbne 5=19 0,98 1.00 0,59420
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0o 0.2 04 06 R} 10 oo 02 0.4 1] 0s 1.0

z1 =2

Fig. 2. Estimation for nonparametric components and i¢é @6nfidence interval for = 0.6

4. DISCUSSION nonparametric component. Using Bayesian approach we
obtain parametric component parameter estimatods an
The prior distributions used in the model in this smoothing spline estimators for nonparametric
study are improper Gaussian distribution for components and smoothing parameters selection thetho
nonparametric components and multivariate normalSimultaneously with GML in semiparametric additive
distribution for parametric components. The regression model. In addition, by computing each
smoothing spline estimators were obtained by usingposterior mean and posterior variance of paramejers
Bayesian approach. Our result is identical to and f, the confidence intervals can be constructed for
smoothing spline estimator obtained by the PLS e parametric component parameters and confidence
approach. The confidence intervals for the pararsete jyieryal smoothing spline functions for nonparaigetr
of the parametric component and confidence interval components in semiparametric additive regression
for smoothing spline functions of nonparametric models. Numerical example shows that estimation and
component in semiparametric additive regressionjnference method can be applied well using simoitati
model can be constructed through Bayesian approachgata. The problem remaining is to apply this madel
By using the Bayesian approach, we obtain the GMLreal life problem. The further study may consider t
method for selecting optimal smoothing parametersestimate the smoothing parameters simultaneously
simultaneously where the shape of the smoothingthrough Markov Chain Monte Carlo (MCMC) and to use
parameters is fixed. other prior distribution in semiparametric additive
regression models.
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