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ABSTRACT 

Stochastic processes have many useful applications and are taught in several university programmes. 
Students often encounter difficulties in learning stochastic processes and Markov chains, in particular. In 
this article we describe a teaching strategy that uses transition diagrams to represent a Markov chain and to 
re-define properties of its states in simple terms of directed graphs. This strategy utilises the students’ 
intuition and makes the learning of complex concepts about Markov chains faster and easier. The method is 
illustrated by worked examples. The described strategy helps students to master properties of finite Markov 
chains, so they have a solid basis for the study of infinite Markov chains and other stochastic processes. 
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1. INTRODUCTION 

 Stochastic processes are important for modelling 
many natural and social phenomena and have useful 
applications in computer science, physics, biology, 
economics and finance. There are many textbooks on 
stochastic processes, from introductory to advanced ones 
(Cinlar, 2013; Grimmett and Stirzaker, 2001; Hsu, 2010; 
Krylov, 2002; Lawler, 2006; Revuz, 2008). Discrete 
Markov processes are the simplest and most important 
class of stochastic processes.  
 There are only few publications on teaching 
stochastic processes and Markov chains, such as Chang-
Xing (2009), Wang (2001a; 2001b), and Wang and Kon 
(2003). “More research needs to be carried out on how to 
teach stochastic processes to researchers” (Wang, 2001a).  
 “While trying to understand Markov chains models, 
students usually encounter many obstacles and 
difficulties” (Wang, 2001b). Many lecturers use visual 
displays such as sample paths and transition diagrams to 
illustrate Markov chains. In this article we utilise 
transition diagrams further for teaching several important 
concepts of Markov chains. We explain in details how 

these concepts can be defined in terms of transition 
diagrams (treated as directed weighted graphs) and we 
accompany this with worked examples. Transition 
diagrams provide a good techniques for solving some 
problems about Markov chains, especially for students 
with poor mathematical background. 

2. TRANSITION DIAGRAM OF A 
MARKOV CHAIN: DEFINITIONS 

 A homogeneous finite Markov chain is entirely 
defined by its initial state distribution and its transition 
matrix S = [pij], where pij = P(X1 = i | X0 = j) is the 
transition probability from state j to state i. 
 The graphical representation of a Markov chain is 
a transition diagram, which is equivalent to its 
transition matrix. 
 The transition diagram of a Markov chain X is a 
single weighted directed graph, where each vertex 
represents a state of the Markov chain and there is a 
directed edge from vertex j to vertex i if the transition 
probability pij  >0; this edge has the weight/probability 
of pij . 
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Fig. 1. The transition diagram of the Markov chain from Example 1 
 
Example 1 

 A Markov chain has states 1, 2, 3, 4, 5, 6 and the 
following transition matrix: 
 

0.4 0.5 0 0 0 0

0 0 1 0 0 0

0.3 0.5 0 0 0 0
S =

0.3 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

. 

 
 This is its transition diagram. 
 In the diagram in Fig. 1 the probability of each edge 
is shown next to it. For example, the loop from state 1 to 
state 1 has probability 0.4 = p11 = P(X1 = 1 | X0 = 1) and 
the edge from state 2 to state 3 has probability 0.5 = p32 = 
= P(X1 = 3 | X0 = 2). □ 

In the graph terminology, an edge sequence of length 
n is an ordered sequence of edges e1, e2, …, en, where ei 
and ei+1 are adjacent edges for all i = 1, 2,…, n−1. 

A path is an edge sequence, where all edges are 
distinct. A simple path is a path, where all vertices are 
distinct (except possibly the start and end vertices). A 
cycle is a simple path there the start vertex and the end 
vertex are the same. 

In a transition diagram the probability of an edge 
sequence equals a product of the probabilities of its edges. 

3. PROPERTIES OF A MARKOV CHAIN  
IN TERMS OF TRANSITION DIAGRAMS 

3.1. N-Step Transition Probability 
 
 An n-step transition probability is:  
 

( ) ( )n
ij n 0

p = P X = i | X = j .  

It equals the probability of getting from state j to 
state i in exactly n steps. It can be calculated as the 
corresponding element of the matrix S(n) but it is 
usually easier to find it from the transition diagram as 
a sum of the probabilities of all edge sequences of 
length n from j to i. 

Example 2 

In the chain from Example 1, the 3-step transition 
probability from 2 to 1 equals: 
 

( )3
12 1 2

p a  a= + , 

 
where: 
a1 = 0.5×1×0.5 = 0.25 is the probability of the path 

2321 and 
a2 = 0.5×0.42 = 0.08 is the probability of the edge 

sequence 2111. 
 

These probabilities are easy to find from the diagram 
in Fig. 1. So: 
 

( )3
12

p 0.25  0.08  0.33= + = .  □ 
 

3.2. Probability of Visiting a State for the First 
Time 

Let us consider a random variable: 
 

Ti = min {n ≥1 : Xn = i}. 
 

It represents the number of steps to visit a state i for 
the first time. It is called the first passage time of the 
state i. Related probabilities are: 
 

( ) ( ) ( )m
ij i 0 ij i 0f P T  m |  X  j  and f  P T   |  X  j= = = = < ∞ = . 

 
Clearly: 
 

( )m
ijij

m 1

ff
∞

=
=∑ . 

 
These probabilities can be interpreted as follows: 

 
( )m
ijf  = the probability to visit i on step m for the first 

time starting from j; 
f ij = the probability to visit i in finite number of steps 

starting from j. 



Farida Kachapova / Journal of Mathematics and Statistics 9 (3): 149-154, 2013 

 
151 Science Publications

 
JMSS 

 In terms of transition diagrams, fij equals a sum of 
the probabilities of all edge sequences from j to i that do 
not include the vertex i between the start and end 
vertices. 

 ( )m
ijf  equals a similar sum for the edge sequences of 

length m only. 
For finite Markov chains these probabilities are easier 

to find from their transition diagrams than with other 
methods.  

Example 3 

From the transition diagram in Fig. 1 we can 
calculate the following probabilities: 

 

• ( )2
64

f  = 1 as the probability of the path 456; 

( )n

64
f  = 0 for n ≠ 2 and f64 = 1. 

• For vertices 1 and 2 we have: 
( )1
21

f  = 0; 

( )2
21

f  = 0.3 as the probability of the path 132; 

( )3
21

f  = 0.4×0.3 = 0.12 as the probability of the path 

1132;  

and in general, for any n ≥ 0, ( )n 2
21

f +  = 0.4n×0.3 as the 

probability of the edge sequence
( )
�

n 1 times

1...1 32
+

with n 

loops around 1.  
 

So: 

( )m n
21 21

m 1 0n

1
f 0.3 0.5f 0.4 0.3

1 0.4

∞ ∞

= =

= = == ××
−∑ ∑ .  □  

3.3. Persistent and Transient States 

A state i of a Markov chain is called persistent if      
f ii = 1 and transient otherwise. 

Thus, if the chain starts at a persistent state, it will 
return to this state almost surely. If the chain starts at a 
transient state, there is a positive probability of never 
returning to this state. From the transition diagram we 
can evaluate the probability fii and therefore determine 
whether the state i is persistent or transient. 

Example 4 

For each of the states 1 and 4 of the Markov chain in 
Example 1 determine whether the state is persistent or 
transient. 

Solution 

• f44 = ( )3
44

f  = 1 as the probability of the cycle 456. So 

the state 4 is persistent. 

• ( )1
11f = 0.4 as the probability of the loop around 1. 

( )2
11f = 0. 

( )3
11f = 0.3×1×0.5 = 0.15 as the probability of the 

cycle 1321.  
 

More generally, for any n ≥ 1, ( )2n
11

f  = 0 and ( )2n 1
11

f + = 

0.3×0.5n as the probability of the edge 
sequence

n times

1 32...32 1
���

. 

So: 
 

( ) .7.0
5.01

5.0
3.04.050.3.04.0ff

1n

n

1m

m
1111 =

−
×+=+== ∑∑

∞

=

∞

=
 

 
Since f11 = 0.7 < 1, the state 1 is transient.  □ 

 
Lemma 1 

Suppose i and j are two different states of a Markov 
chain. If pji  > 0 and fij  = 0, then the state i is transient. □ 

This lemma is easily derived from the definition of 
f ij . The lemma can be rephrased in terms of transition 
diagrams: if the chain can reach state j from state i in 
one step (pji  > 0) but cannot come back (fij  = 0), then 
the state i is transient. 

Lemma 1 gives a method of finding transient states 
from a transition diagram without any calculations. For 
example, from Fig. 1 we can see that p41 = 0.3 > 0 and 
f14 = 0 because the chain cannot return from state 4 to 
state 1. Therefore by Lemma 1 the state 1 is transient. 
This is consistent with the result of Example 4. 

3.4. Mean Recurrence Time 

The mean recurrence time of a persistent state i is 

defined as µi =
( )m
ii

m 1

fm
∞

=
∑ . If i is a transient state, µi = ∞ by 

the definition. 
Thus, µi is the expected time of returning to the state i 

if the chain starts at i. 

Example 5 

For each of the states 1 and 4 of the Markov chain in 
Example 1 find its mean recurrence time. 
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Solution  

• Since the state 1 is transient, µ1 = ∞. 

• For the state 4, ( )3
44

f  = 1 and ( )n

44
f  = 0 for any n ≠ 3. 

So µ4 = 3× ( )3
44

f  = 3×1 = 3.  □ 

3.5. Periodic States 

The period of a state i is the greatest common divisor 

of all n ≥ 1 with ( )n
iip 0> . 

The state i is periodic if its period is greater than 1; 
otherwise it is aperiodic. 

In terms of transition diagrams, a state i has a period 
d if every edge sequence from i to i has the length, which 
is a multiple of d. 

Example 6 

For each of the states 2 and 4 of the Markov chain in 
Example 1 find its period and determine whether the 
state is periodic. 

Solution 

• The transition diagram in Fig. 1 has a cycle 232 of 
length 2 and a cycle 2132 of length 3. The greatest 
common divisor of 2 and 3 equals 1. Therefore the 
period of the state 2 equals 1 and the state is 
aperiodic. 

• Any edge sequence from 4 to 4 is a cycle 456 or its 
repetition, so its length is a multiple of 3. Hence the 
state 4 is periodic with period 3.  □ 

3.6. Communicating States 

State i communicates with state j (notation i→j) if 
( )n
jip > 0 for some n ≥ 0. 

In terms of transition diagrams, a state i 
communicates with state j if there is a path from i to j. 

State i inter-communicates with state j (notation i↔j) 
if the two states communicate with each other. 

Theorem 1  

(Grimmett and Stirzaker, 2001) 

Suppose i and j are two states of a Markov chain and 
i↔j. Then: 

 
• i and j have the same period; 
• i is persistent ⇔ j is persistent; 
• i is transient ⇔ j is transient. □ 

Inter-communication is an equivalence relation on the 
set Q of all states of a Markov chain. So the set Q can 
be partitioned into equivalence classes; all states in 
one equivalence class share the same properties, 
according to Theorem 1. 

Example 7 

Let us consider the Markov chain from Example 1 
and its transition diagram in Fig. 1. 

Clearly, the states 2 and 3 inter-communicate. Also 
2→1, since p12 > 0 and 1→2, since there is a path 132 
from 1 to 2. 

Next, 1→4 but not 4→1 (there is no path from 4 to 
1). States 4, 5 and 6 all inter-communicate. 

Therefore, the equivalence class of 1 is: 
 

[1] = {1, 2, 3} 
 

and the equivalence class of 4 is: 
 

[4] = {4, 5, 6}.  
 

According to Theorem 1 and Examples 4 and 6, the 
states 1, 2 and 3 are all transient and aperiodic; the states 
4, 5 and 6 are all persistent and periodic with period 3.  □ 

4. SECOND EXAMPLE OF TRANSITION 
DIAGRAM 

Next example illustrates that it is easier to partition 
the state set into equivalence classes first and then 
classify the states. 

Example 8 

Use a transition diagram to describe properties of a 
Markov chain with the following transition matrix: 

 
0.5 0.25 0.25 0 0 0

0.5 0.75 0.25 0 0 0

0 0 0.25 0.5 0 0
S

0 0 0.25 0.25 0 0

0 0 0 0 0.5 0.5

0 0 0 0.25 0.5 0.5

 
 
 
 

=  
 
 
 
  

. 

Solution 

This is the chain’s transition diagram: 
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Fig. 2. The transition diagram of the Markov chain from 
Example 8 

 
First we find equivalence classes of inter-

communicating states: 
 

[1] = {1, 2}; 
[3] = {3, 4}; 
[5] = {5, 6}. 

 
The vertices in Fig. 2 corresponding to inter-

communicating states are marked with the same colour. 
Next we find persistent and transient states. 

According to Theorem 1, we just need to check one state 
from each equivalence class. 

 State 1. ( )1
11

f = 0.5 as the probability of the loop 

around 1. 

For n ≥ 0, ( )n 2
11

f + = 0.5×0.75n×0.25 = 0.125×0.75n as 

the probability of the edge sequence 
( )
�

n 1 times

1 2...2 1
+

. So: 

 

( )

.1
75.01

1
125.05.0

750.125.05.0ff
0n

n

1m

m
1111

=
−

×+=

=+== ∑∑
∞

=

∞

=  

 
Therefore the state 1 is persistent and so is the state 2. 
State 4. p64 = 0.25 > 0 and f46 = 0. So by Lemma 1 the 

state 4 is transient and so is the state 3. 

State 5. ( )1
55

f = 0.5 as the probability of the loop around 5. 

For n ≥ 0, ( )n 2
55

f + = 0.5×0.5n×0.5 = 0.25×0.5n as the 

probability of the edge sequence 
( )
�

n 1 times

5 6...6 5
+

. 

n
55

0n

1
So f 0.5 0.25 5 0.5 0.25 10.

1 0.5

∞

=

= + = + × =
−∑ . 

Therefore the state 5 is persistent and so is the state 6. 
Each state i has a loop around it corresponding to a 

path of length 1 from i to i. Therefore each state is 
aperiodic. 

Next we calculate the mean recurrence time for each 
state. 

 

( ) ( )

( )
.3

750.-1

1
2

750.-1

750.
125.05.0

750.2750.n125.05.0

750.0.1252n5.01fm

2

0n

n

0n

n

0n

n

1m

m
111

=











++=

=






 ++=

=×++×==µ

∑∑

∑∑

∞

=

∞

=

∞

=

∞

=

 

 

Here we used the formula 
( )

n
2

n 0

r
nr

1 r

∞

=

=
−

∑ . 

For state 2, ( )1
22

f = 0.75 and for n ≥ 0, ( )n 2
22

f + =  

= 0.125×0.5n. So:  
 

( )

( )
.

2

3

50.-1

1
2

50.-1

50.
125.075.0

50.250.n125.075.0

50.0.1252n75.01

2

0n

n

0n

n

0n

n
2

=











++=

=






 ++=

=×++×=µ

∑∑

∑

∞

=

∞

=

∞

=

 

 
Since states 3 and 4 are transient, µ3 = µ4 = ∞. 

 
For state 5: 

 

( )

( )
.2

50.-1

1
2

50.-1

50.
25.05.0

50.250.n25.05.0

50.0.252n5.01

2

0n

n

0n

n

0n

n
5

=











++=

=






 ++=

=×++×=µ

∑∑

∑

∞

=

∞

=

∞

=

 

 
Similarly, µ6 = 2. 

From the values of µi calculated above, we can see 
that unlike other properties, the mean recurrence time 
can be different for inter-communicating states.  
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Let us consider vector 
i

1 
π =  µ 

 made of reciprocals 

of the mean recurrence times. Clearly, in this case 
2

4

01

06

3

3

 
 
 
 

π =  
 
 
 
  

. Multiplying it by the transition matrix S we 

can easily check that π is a stationary distribution of the 
Markov chain:  

 
S π= π . 

 
Thus, if π  is the initial state distribution, then the 

chain has this distribution at every step. In other words, 
π  is the equilibrium distribution.   

With the distribution π  the probability of each state 
is inversely proportional to its mean recurrence time. In 
other words, when the chain is in the equilibrium, it has a 
lower chance of being in a state i if it takes longer on 
average to make a return trip from i to i.  □ 

5. CONCLUSION 

In this article the transition diagram of a finite 
Markov chain is treated as a directed weighted graph. 
Several properties of the chain’s states are re-defined in 
terms of the transition diagram, which makes these 
properties more intuitive and easy to understand. The 
author has been using the described teaching strategy in 
a course on stochastic processes in the Auckland 
University of Technology, New Zealand, for several 
years. Case studies show that transition diagrams help 
the students to master important concepts on finite 
Markov chains, so they have a solid basis for the studies 
of infinite Markov chains and other stochastic processes. 

This teaching strategy re-inforces the intial 
mathematical definitions; it uses the graphical 
representation of a Markov chain to make the complex 
concepts clearer and easier to assimilate, since “there is a 
need to make an introductory course in Markov chains as 
simple as possible” (Wang, 2001b). With transition 
diagrams the students can classify the states of a Markov 
chains with minimal calculations and even use their 
intuition, which is not often possible in the studies of 
probability and stochastic processes. 
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