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ABSTRACT

Stochastic processes have many useful applicatmes are taught in several university programmes.
Students often encounter difficulties in learningchastic processes and Markov chains, in particlha
this article we describe a teaching strategy teasuransition diagrams to represent a Markov chaéhto
re-define properties of its states in simple tewhdirected graphs. This strategy utilises the etis!
intuition and makes the learning of complex consetitout Markov chains faster and easier. The meathod
illustrated by worked examples. The described efpatielps students to master properties of finitgkdv
chains, so they have a solid basis for the studyffite Markov chains and other stochastic preess

Keywords: Transition Diagram, Transition Matrix, Markov ChaiRirst Passage Time, Persistent State,
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1. INTRODUCTION these concepts can be defined in terms of transitio
. _ ._diagrams (treated as directed weighted graphs)vend
Stochastic processes are important for modelling

: ccompany this with worked examples. Transition
many natural and social phenomena and have useful. . . .
7 . . . : diagrams provide a good techniques for solving some
applications in computer science, physics, biology,

economics and finance. There are many textbooks Orprpblems about Ma_rkov chains, especially for stesien
stochastic processes, from introductory to advaocexs with poor mathematical background.

(Cinlar, 2013; Grimmett and Stirzaker, 2001; Hs0] @,
Krylov, 2002; Lawler, 2006; Revuz, 2008). Discrete
Markov processes are the simplest and most importan
class of stochastic processes.

There are only few publications on teaching defi
stochastic processes and Markov chains, such asg€ha
Xing (2009), Wang (2001a; 2001b), and Wang and KONy ansition probability from state j to state i.

(2003). "More research needs to be carried outaw to The graphical representation of a Markov chain is
teach stochastic processes to researchers” (Waagap a transition diagram, which is equivalent to its
“While trying to understand Markov chains models, iransition matrix.
students usually encounter many obstacles and  Thetransition diagram of a Markov chain X is a
difficulties” (Wang, 2001b). Many lecturers useuas  single weighted directed graph, where each vertex
displays such as sample paths and transition dizgta  represents a state of the Markov chain and theee is
illustrate  Markov chains. In this article we utdis directed edge from vertex j to vertex i if the tsiion
transition diagrams further for teaching severglomant  probability g >0; this edge has the weight/probability
concepts of Markov chains. We explain in detailsvho of p;.

2. TRANSITION DIAGRAM OF A
MARKOV CHAIN: DEFINITIONS

A homogeneous finite Markov chain is entirely
ned by its initial state distribution and transition
matrix S = [g], where g = P(X =i | X = ) is the
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It equals the probability of getting from stateoj t

3 state i in exactly n steps. It can be calculatedhas
| corresponding element of the matriX"Sbut it is
1 usually easier to find it from the transition diagr as
a sum of the probabilities of all edge sequences of
A length n from j to i.
|4 ! 6 Example 2
In the chain from Example 1, the 3-step transition
0.4 probability from 2 to 1 equals:
Fig. 1. The transition diagram of the Markov chain from Egée 1 pg) =a,+ a,
Example 1 where:
A Markov chain has states 1, 2, 3, 4, 5, 6 and thea, = 0.5x1x0.5 = 0.25 is the probability of the path
following transition matrix: 2321 and
) . % =0.5x0.4=0.08 is the probability of the edge
04 05 0 0 0 ¢ sequence 2111.
0O 0 1 00 O
. 03 05 0 0 0 d These probabilities are easy to find from the diagr
o3 0 o0 0 0 1 in Fig. 1. So:
0O 0O 0100
0 0 0010 PY =025+ 0.08= 03.0

This is its transition diagram.

In the diagram irFig. 1 the probability of each edge 3.2. Probability of Visiting a State for the First

is shown next to it. For example, the loop frontesthto Time
state 1 has probability 0.4 5,p= P(X, =1 | % = 1) and Let us consider a random variable:
the edge from state 2 to state 3 has probabily=-0p;, =
=P =3[X%=2).0 Ti=min{n=>1:X,=i}.
In the graph terminology, aatge sequence of length
n is an ordered sequence of edgf_a%e -+ & where ¢ It represents the number of steps to visit a Stéde
and &, are adjacent edges for alli=1, 2,.~In the first time. It is called théirst passage time of the

_ A path is an edge sequence, where all edges argaie i, Related probabilities are:
distinct. A smple path is a path, where all vertices are

distinct (except possibly the start and end ves)icé
cycle is a simple path there the start vertex and the en (W =P(T=m|%=) andf= B e |X=)
vertex are the same.
In a transition diagram the probability of an edge cjearly:
sequence equals a product of the probabilities @dges.

_Nfm
3. PROPERTIES OF A MARKOQOV CHAIN fy _m;f” :

INTERMSOF TRANSITION DIAGRAMS
These probabilities can be interpreted as follows:

3.1. N-Step Transition Probability
fi,-(m) = the probability to visit i on step m for the sfir

An n-step transition probability is: time starting from j:
N _ _ fj = the probability to visit i in finite number ofegis
P =P(X, =i|X, =)). starting from j.
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In terms of transition diagrams;, équals a sum of
the probabilities of all edge sequences from jtteak do

not include the vertex i between the start and ends

vertices.

fi,-(m) equals a similar sum for the edge sequences of

length m only.

For finite Markov chains these probabilities arsiea
to find from their transition diagrams than withhet
methods.

Example 3

From the transition diagram irFig. 1 we can
calculate the following probabilities:

« £ =1 as the probability of the path 456;
f =0 fornz 2 and § = 1.

» For vertices 1 and 2 we have:
0 =0

21 ’

fz(f) = 0.3 as the probability of the path 132;

f® = 0.4x0.3 = 0.12 as the probability of the path
1132;
and in general, for anyn0, {2 = 0.4'x0.3 as the
probability of the edge sequence.l 32with n

(n+1) times

loops around 1.

So:

) m ) 1
f= D f0) =" 0.4'x0.3=0.3x ,=05. 0
m=1 n=0

3.3. Persistent and Transient States

A state i of a Markov chain is callegkersistent if
fi = 1 andtransient otherwise.

Thus, if the chain starts at a persistent statailit
return to this state almost surely. If the chagrtstat a
transient state, there is a positive probabilitynefver
returning to this state. From the transition diagrae
can evaluate the probability &ind therefore determine
whether the state i is persistent or transient.

Example 4

For each of the states 1 and 4 of the Markov chmin
Example 1 determine whether the state is persigtent
transient.
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Solution

faq = fﬁ) =1 as the probability of the cycle 456. So

the state 4 is persistent.
fl(}) = 0.4 as the probability of the loop around 1.

£2)=0.

£3)= 0.3x1x0.5 = 0.15 as the probability of the
cycle 1321.

More generally, for any & 1, f*) = 0 andf*=

0.3x0.8 as the probability of the edge
sequence32...32 1.
n times
So:
— 2e(m) = NN — 05 _
fia= 2 fi1’ =04+ 03%05" =04+ 03x% =07.
m=1

n=1
Since {1 = 0.7 < 1, the state 1 is transient.

Lemmal

Suppose i and j are two different states of a Marko
chain. If g > 0 and { = 0, then the state i is transient.

This lemma is easily derived from the definition of
fij. The lemma can be rephrased in terms of transition
diagrams: if the chain can reach state j from state
one step (p> 0) but cannot come back; (¥ 0), then
the state i is transient.

Lemma 1 gives a method of finding transient states
from a transition diagram without any calculatiofer
example, fronFig. 1 we can see that,p= 0.3 > 0 and
fi4 = 0 because the chain cannot return from state 4 t
state 1. Therefore by Lemma 1 the state 1 is teamsi
This is consistent with the result of Example 4.

3.4. Mean Recurrence Time
The mean recurrence time of a persistent state i is
defined agy; :me"(m) . If i is a transient statey = « by
m=1

the definition.

Thus,|; is the expected time of returning to the state i
if the chain starts at i.

Example 5

For each of the states 1 and 4 of the Markov chmin
Example 1 find its mean recurrence time.
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Solution Inter-communication is an equivalence relation o t
set Q of all states of a Markov chain. So the sea®

*  Since the state 1 is transiepy,= «. be partitioned into equivalence classes; all states

- For the state 4f) =1 andf{) = 0forany i 3.  one equivalence class share the same properties,
Sop, =3xf® =3x1=3.0 according to Theorem 1.
44 .
3.5. Periodic States Example 7

Theperiod of a state i is the greatest common divisor ~ Let us consider the Markov chain from Example 1
of all n> 1 with p{” >0 and its transition diagram fig. 1.

The state i iperiodic if it iod i ter than 1- Clearly, the states 2 and 3 inter-communicate. Also
€ state 1 1Ieriodic It it period 1S greater than L. 5,1 since R > 0 and 2, since there is a path 132
otherwise it isaperiodic.

In terms of transition diagrams, a state i hasrioge from 1 to 2.

d if every edge sequence from i to i has the lengtfich I;textt, 12’45 butdngt I‘Il_)lt (there is no Ptath from 4 to
is a mulfiple of d. ). States 4, 5 and 6 all inter-communicate.

Therefore, the equivalence class of 1 is:

Example 6

For each of the states 2 and 4 of the Markov cimain [1] =41 2, 3}
Example 1 find its period and determine whether the ) )
state is periodic. and the equivalence class of 4 is:
Solution [4] = {4, 5, 6}.

e The transition diagram ifig. 1 has a cycle 232 of .
length 2 and a cycle 2132 of length 3. The greatest According to Theorem 1 and Examples 4 and 6, the
common divisor of 2 and 3 equals 1. Therefore thestates 1, 2 and 3 are all transient and aperititcstates
period of the state 2 equals 1 and the state is4, 5and 6 are all persistent and periodic witliqae8. o

aperiodic.
+ Any edge sequence from 4 to 4 is a cycle 456 or its 4. SECOND EXAMPLE OF TRANSITION
repetition, so its length is a multiple of 3. Herhe DIAGRAM

state 4 is periodic with period 3

Next example illustrates that it is easier to piani
the state set into equivalence classes first amdh th

State icommunicates with state j (notation-bj) if classify the states.
pl) > 0 for some z 0.

3.6. Communicating States

Example 8
In terms of transition diagrams, a state i - _ _ .
communicates with state j if there is a path froto j. Use a transition diagram to describe properties of
State iinter-communicates with state j (notation. j) Markov chain with the following transition matrix:
if the two states communicate with each other.
[05 0.25 025 O 0 O
Theorem 1 05 075 025 0 0 O
(Grimmett and Stirzaker, 2001) 5= 0 0 025 05 0 O
Suppose i and j are two states of a Markov chaih an 0 0 02502 0 0
. . 0 0 0 0 05 05
i -]. Then:
|0 0 0 025 05 05
© gndj hgve the.s_ame pgnod; Solution
» iis persistent= jis persistent;
* iistransient= jis transiento This is the chain’s transition diagram:
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Fig. 2. The transition diagram of the Markov chain from
Example 8

First we find equivalence classes of inter-

communicating states:

(1] ={1, 2};
(3] = {3, 4};
[5] = {5, 6}.

The vertices inFig. 2 corresponding to inter-
communicating states are marked with the same colou

Next we find persistent and transient states.

According to Theorem 1, we just need to check daies
from each equivalence class.

Sate 1. f¥= 0.5 as the probability of the loop
around 1.

For n> 0, f"?= 0.5x0.75x0.25 = 0.125x0.75as
the probability of the edge sequerice2...2 1. So:

(n+1) times

fu= Y11 = 05+01255075 =
m=1 n=0

=05+0.125x 1 =1
75

Therefore the state 1 is persistent and so istttie 2.
Sate 4. pss = 0.25 > 0 and;§ = 0. So by Lemma 1 the
state 4 is transient and so is the state 3.

Sate 5. f{ = 0.5 as the probability of the loop around 5.

For n> 0, f{"*?= 0.5x0.5x0.5 = 0.25x0.% as the
probability of the edge sequenge 6...6 5.

(n+1) times

Sof,=0.5+ 0.25°0. 5= 0.5 0261 =
% =~ 1-0.5
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Therefore the state 5 is persistent and so istttie 6.

Each state i has a loop around it corresponding to
path of length 1 from i to i. Therefore each stae
aperiodic.

Next we calculate the mean recurrence time for each
state.

w= Y mfM =1x05+ 3 (n+2)0.125¢0.75" =

m=1 n=0

=05+ 0.125[ > n0.75" + 220.75”} =
n=0 n=0

=o.5+o.125{ 075 ,, 1 }:3.

(1-075?% 1-075

Here we used the formuly nr" =

n=0 (l— r)2 '
For state 2f{) = 0.75 and for ® 0, f{*? =

=0.125%0.5. So:

W, =1x 075+ Y (n+2)0.125¢05" =

n=0

= 075+ O.125[Zn0.5” + 220.5”} =

n=0 n=0

(-057 1-05] 2

20.75+O.125{ 05 +2 1 } 3

Since states 3 and 4 are transiggts [y = .

For state 5:

[

Hs =1x 05+ Y (n+2)0.25x05" =
n=0

=05+ 025[2n0.5” +220.5”} =
n=0 n=0

=05+025) 2242 1 |-
(L-05¢ 1-05

Similarly, pg = 2.

From the values ofy; calculated above, we can see
that unlike other properties, the mean recurremoe t
can be different for inter-communicating states.

JMSS



Farida Kachapova / Journal of Mathematics and Siedi9 (3): 149-154, 2013

Let us consider vecton:{l} made of reciprocals

i

of the mean recurrence times. Clearly, in this case

S

ol
1
W w oo hr~N

. Multiplying it by the transition matrix S we

can easily check thatis astationary distribution of the
Markov chain:
STI=Tt.

Thus, if T is the initial state distribution, then the
chain has this distribution at every step. In oterds,
7t is theequilibrium distribution.

With the distributionTt the probability of each state
is inversely proportional to its mean recurrenceeti In
other words, when the chain is in the equilibriiinmas a

lower chance of being in a state i if it takes lengn
average to make a return trip from i todi.

5. CONCLUSION

In this article the transition diagram of a finite
Markov chain is treated as a directed weighted lyrap
Several properties of the chain’s states are rmei@fin
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