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Abstract: Problem statement: This study is concerned with the development of a code based on 2-
point block method for solving higher order Initial Value Problems (IVPs) of Ordinary Differential 
Equations (ODEs) directly. Approach: The block method was developed based on numerical 
integration and using interpolation approach which is similarly as Adams Moulton type. Furthermore, 
the proposed method is derived in order to solve higher order ODEs in a single code using variable 
step size and implemented in a predictor corrector mode. This block method will act as simultaneous 
numerical integrator by computing the numerical solution at two steps simultaneously. Results: The 
numerical results for the direct block method were superior compared to the existing block method. 
Conclusion: It is clearly proved that the code is able to produce good results for solving higher order 
ODEs. 
 
Key words: Higher order ODEs, variable step size, predictor corrector, block method 

 
INTRODUCTION 

 
 The mathematical formulation of physical 
phenomena in science and engineering often leads to 
IVPs of ODEs. This type of problem can be formulated 
either in terms of first order ODEs or higher order 
ODEs. For instance, this application will often used in 
beam theory, electric circuits, control theory, 
mechanical system and celestial mechanics. Thus, this 
study will concern on solving directly higher order non-
stiff IVPs of ODEs of the form: 
 

d d 1

i
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 The conventional methods of solving higher order 
ODEs will reduce such problems to a system of first 
order equations. This approach is cumbersome and will 
increase computational time as well as consume a lot of 
human effort. Thus, several researchers have concerned 
themselves with study to solve Eq. 1 directly such as 
Awoyemi (2003); Majid (2004); Awoyemi (2005); 
Majid and Suleiman (2006); Jator (2010); Jain et al. 
(1977) Kayode and Awoyemi (2010). Awoyemi (2005) 
has proposed a multiderivative collocation method for 
direct solution of fourth order IVPs of ODEs while 
Majid and Suleiman (2006) have introduced a direct 

integration implicit variable step method for solving 
higher order systems of ODEs. Majid (2004) has 
developed the 2-point block method for solving first 
and second order ODEs using variable step size. It was 
noted that Jator (2010) had used the application of a self 
starting linear multistep method for solving second 
order IVPs directly.  
 Block methods for numerical solution of higher 
order ODEs have been proposed by several researchers 
such as Chu and Hamilton (1987); Fatunla (1991) and 
Jator (2010). Chu and Hamilton (1987) have proposed 
multi-block methods for parallel solution of ODEs and 
Fatunla (1991) has presented a zero stable block method 
for second order ODEs. The uniqueness of block 
method is that in each application, the solution value 
will be computed simultaneously at several distinct 
points. There are several existence numerical methods 
for handling higher order ODEs directly but those 
methods will compute the numerical solutions at one 
point sequentially. Henceforth, we need a method that 
can give faster solution of the problem.  
 In this study, we are going to extend the study done 
in Majid (2004) by implemented the 2-point block 
method to solve ODEs up to order five in a single code. 
 

MATERIALS AND METHODS 
 
Formulation of the method: In 2-point block method, 
the closed finite interval [a,b] is divided into a series of 
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blocks that contained the interpolation points involved 
in the derivation of the block method. 
 According to Fig. 1, the method will generate the 
numerical solution at two points simultaneously. The 
values of yn+1 and yn+2 at the points xn+1 and xn+2 
respectively are simultaneously computed in a block 
with step size h using the same back values which is the 
values at the point xn, xn-1 and xn-2 with step size rh. The 
formulae of 2-point block method are derived by 
integrating Eq. 1 d times as follows Eq. 2:  
 Let xn+v = xn + vh, where v = 1 or 2. 
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which leads to the general formula below: 
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where, g is the number of times which Eq. 3 is 
integrated over the corresponding interval. Lagrange 
interpolation polynomial is used to approximate the 
function of ( )d 1f x, y,..., y −  in Eq. 3 and the interpolation 

points involved for the corrector formulae are 

( ) ( )n 2 n 2 n 2 n 2x ,f ,..., x ,f .− − + +  Let n 2x x
s

h
+−= and dx = hds 

will be substitute into Eq. 3. By taking d = 5 in Eq. 1, 
the approximate solution of  yn+1 and yn+2 will be 
obtained by integrating Eq. 1 once, twice, thrice, four 
times and five times over the interval [ ]n n 1x ,x +  and 

[ ]n n 2x ,x +  respectively. Finally, this integral will be 

evaluated using MAPLE and the corrector formulae in 
terms of r will be obtained.  
 The same approaches were employed in the 

derivation of the predictor formulae for ( )ivy, y , y ,y , y′ ′′ ′′′  

at the points xn+1 and xn+2 respectively and the 
interpolation points involved are ( ) ( )n 3 n 3 n nx ,f ,..., x ,f− − . 

Hence, it will produce the predictor formulae in terms 
of q and r. For the sake of simplification, the general 
corrector formula of 2-point block method is developed 
in the manner shown in Eq. 4: 
 

( ) ( )
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g
v, jβ  in Eq. 4 stands for the coefficients of the formulae 

and tabulated in Table 1-3 for r = 1, r = 2 and r = 0.5. 

 
 
Fig. 1: 2-point block method 
 
Table 1: Coefficients when r = 1 

r 1=  g
1, 2−β  g

1, 1−β  g
1,0β  g

1,1β  g
1,2β  
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720
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720
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 The order of this developed method is calculated in 
a block form as proposed by Fatunla (1991). The 2-
point block method for ODEs can be written in a matrix 
differentiation Eq. 5 below: 
 

2 d
m m m mY h Y h Y h F′ ′′α = β + λ + + ξ…  (5)  

 
where, α, β, λ and ξ are the coefficients of the 2-point 
block method. By applying the formulae for the 
constants Cq in Fatunla (1991), the order and error 
constant of the method will be obtained and the 
formulae are defined by Eq. 6: 
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Table 2: Coefficients when r = 2 

r 2=  g
1, 2−β  g

1, 1−β  g
1,0β  g

1,1β  g
1,2β  

g 1=  
37

14400
 

335

14400
−  

7455

14400
 

7808

14400
 

565

14400
−  

g 2=  
19

14400
 

175

14400
−  

4965

14400
 

2656

14400
 

265

14400
−  

g 3=  
81

201600
 

755

201600
−  

25995

201600
 

9344

201600
 

1065

201600
−  

g 4=  
109

1209600
 

1025

1209600
−  

41475

1209600
 

11216

1209600

1375

1209600
−  

g 5=  
47

2903040
 

445

2903040
−  

20685

2903040

4480

2903040

575

2903040
−  
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g 3=  
8
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2220

3150
 

2112

3150
 

65

3150
−  

g 4=  
14

9450
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9450
−  

3930

9450
 

2656

9450
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9450
−  
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14

22680
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22680
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22680
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22680
−  

 
Table 3: Coefficients when r=0.5 

r 0.5=  g
1, 2−β  g

1, 1−β  g
1,0β  g

1,1β  g
1,2β  

g 1=  
145

1800
 

704
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−  

1635

1800
 

755

1800
 

31

1800
−  

g 2=  
70

1800
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1800
−  

975

1800
 

220

1800
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1800
−  

g 3=  
285
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1472
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−  

4740

25200
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25200
 

48
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g 4=  
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−  
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362880
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362880
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362880
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225
−  
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71

225
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225
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240
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225
 

g 3=  
220
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1152
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3390
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1740
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2

3150
 

g 4=  
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9450
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6000

9450
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9450
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g 5=  
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22680
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22680
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6240

22680
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22680
 

64
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−  

Table 4: Error constant for corrector formulae when r=1 
D 1 2 3 4 5  

p dC +  
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1
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1
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16
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293
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 
 
 
 

 

 
 The method is of order p if Cq = 0, q = 0(1) p + d-
1, Cp+d ≠ 0. Thus, by implementing this approach to the 
2-point block method, we found that the predictor is of 
order four and corrector is of order five. The error 
constant for the corrector formulae when r = 1 will be 
in matrix form as shown in Table 4. 
 Implementation of the method: A single code of 
the PECE scheme has been implemented with variable 
step size to study the computational time and human 
effort saving in using a direct integration method. The 
developed code starts by calculating the initial step size 
then finding the initial points in the starting block of the 
method. In order to evaluate the initial three starting 
points, the Euler method was adopted in the code as a 
generator of the method. Hence, the Euler method will 
be used only once at the beginning of the code. Once 
the points for starting block are calculated, then the 
block method can be applied until the end of interval. 
 A test for checking the end of the interval is made 
in order to reach the end of the interval precisely and it 
will be functional at each step of integration. The 
strategy is by limiting the choices of the next step size 
to half, double or remains constant as the previous step 
size. At each step of the integration, if the approximated 
solutions fulfilled the desired accuracy, therefore the 
step is called as successive step. 
 Hence, the choices for the next step size will be 
doubled or constant which specified by step size 
controller. Otherwise the step is called failure step and 
the next step size becomes half. 
 The possible ratios for the next constant step size 
are (r = 1, q = 1), (r = 1, q = 2) and (r = 1, q = 0.5). At 
each doubled step size the ratios are (r = 0.5, q = 0.5) 
and (r = 0.5, q = 0.25). In the case of failure step size, 
the ratio is (r = 2, q = 2). A step failure happens due to 
the Local Truncation Error (LTE) exceeding the given 
tolerance. This corrector formulae show that, the code 
consist the formula of y, y ,y , y′ ′′ ′′′  and y(iv). Hence, the 

developed algorithm could be use for solving first order 
up to fifth order problem of ODEs directly in a single 
code. The algorithm was written in C language. 
 The approximation value of  yn+1 and yn+2 are using 
predictor-corrector mode, (PkE) (Ck+1E)u where Pk and 
Ck+1 indicate the predictor of order k and corrector of 
order k+1 respectively and E indicate the evaluation of 
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the function. In the code, the corrector will be iterated 
until it is converge and the convergence test employed 
was Eq. 7:  
 

( ) ( )u u 1
n 2 n 2y y 0.1  TOL−

+ +− < ×  (7)  

 
where, u is the number of iterations. 
 The LTE will be obtained by comparing the 
absolute difference of the corrector formula derived of 
order k with the similar corrector formula of order k+1 
at the point xn+2. If the LTE<TOL, hence the successful 
step achieved and the next step size will be obtained 
using the step size increment formula as follows Eq. 8:  
 

1

k

new old

TOL
h h

LTE
 = δ × ×  
 

 (8)  

 
Where: 
δ = A safety factor 
k = The order of the corrector formulae while hnew and 

hold are the step size for current and previous block 
respectively 

 
 Finally, the errors in the code are calculated by the 
difference between an estimation value yn+2 resulting 
from using 2-point block method and the exact solution. 
The formula was defined as Eq. 9: 
 

( )
( ) ( )( )

( )( )
i it t

i t
i t

y y x
e

A B y x

−
=

+
 (9)  

 
where, (yi)t is the t-th component of the approximation 
y. A = 1, B = 0 referred to the absolute error test, while 
A = 1, B = 1 will be used for mixed error test and A = 
0, B = 1 correspond to the relative error test. 
  

RESULTS 
 
 The results of numerical tests will be presented in 
order to illustrate the performance of 2-point block 
method. The following notations are used in the table:  
 
TOL: Tolerance  
MTD: Method used 
TS: Total steps taken 
FS: Total failure step 
FCN: Total function calls 
MAXE: Magnitude of maximum error of the 

computed solution 
TIME: The execution time taken in microseconds 

2PRVS: Algorithm of 2-point fully implicit block 
method by reducing the problem to first order 
ODEs in Majid (2004) 

2PDVS: Implementation of 2-point block method in 
this study by solving the problem directly 

 
Problem 1: 
 

1 2 2 1

1 1 2 21 1

y y , y y , x [0,10]

1 1
y (0) 0, y (0) , y (0) 1, y (0)

1 e 1 e− −

′′ ′ ′′ ′= − = − ∈

′ ′= = = =
= −

 

 

Solution: 
x 1 x

1 21 1

1 e 2 e e
y (x) , y (x)

1 e 1 e

− − −

− −

− − −= =
= −

 

 
Problem 2: 
 

[ ]y 4y x, x 0,4

y(0) 0, y (0) 0, y (0) 1

′′′ ′= − + ∈ π
′ ′′= = =

 

 

Solution: 23 1
y(x) (1 cos2x) x .

16 8
 = − + 
 

 

 
Problem 3: 
 

[ ](iv) 3 xy xy (8 7x x )e , x 0,20

y(0) 0, y (0) 1, y (0) 0, y (0) 3

= − − + + ∈
′ ′′ ′′′= = = =

 

 
Solution: xy(x) x(1 x)e .= −  
 
Problem 4: 
 

(v) (iv) 2 x

(iv)

y 2y y yy y y 8x (x 2x 3)e ,

x [0,2]

y(0) 1, y (0) 1, y (0) 3, y (0) 1, y (0) 1

′ ′′ ′ ′′′= − − − + − −
∈

′ ′′ ′′′= = = = =
 

 
Solution: x 2y(x) e x .= +  
 

DISCUSSION 
 
 We are going to compare the numerical results 
obtained by solving the tested problems using a direct 
integration approach with the results using a reduction 
approach. It is clearly shown that the 2PDVS has 
superiority in terms of computational time and total 
number of steps taken especially as the tolerance 
getting smaller. This indicates the major advantage 
of direct integration method compared to reduce to d-
th order equation to d sets of first order equations. 
Table 5-8 show the maximum error of 2PRVS is 
better   and    comparable    compared     to   2PDVS.  
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Table 5: Numerical results for solving Problem 1 
TOL MTD TS FS FCN MAXE TIME 
 2PRVS 18 0 122 1.7336(-4) 1264 

210−  2PDVS 17 0 100 1.0051(-3) 1058 
410−  2PDVS 29 0 189 2.3232(-6) 2829 
610−  2PRVS 25 0 151 1.2155(-5) 1917 
810−  2PRVS 55 0 345 1.3735(-8) 4947 

 2PDVS 38 0 235 4.6491(-7) 2839 
1010−  2PRVS 114 0 719 1.7562(-10) 9205 

 2PDVS 65 0 403 1.3722(-8) 4255 
 2PRVS 261 0 1603 2.1100(-12) 18338 
 2PDVS 119 0 743 4.1326(-10) 6875 
 
Table 6: Numerical results for solving Problem 2 
TOL MTD TS FS FCN MAXE TIME 

10−2 2PRVS 63 0 314 3.3578(-3) 2121 
10−4 2PDVS 36 0 158 8.3249(-4) 997 
 2PRVS 133 0 685 3.8276(-5) 5590 
10−6 2PDVS 54 0 251 1.4502(-5) 1865 
 2PRVS 319 0 1647 3.7843(-7) 13019 
10−8 2PDVS 100 0 425 6.9612(-7) 2884 
 2PRVS 446 0 2601 5.9506(-9) 24255 
10−10 2PDVS 173 0 767 9.1414(-9) 4525 
 2PRVS 1096 0 6423 3.0347(-11) 51681 
 2PDVS 289 0 1365 3.3935(-10) 7206 
 
Table 7: Numerical results for solving Problem 3 
TOL MTD TS FS FCN MAXE TIME 

10−2 2PRVS 120 0 492 2.0093(-4) 4014 
 2PDVS 48 0 204 1.2153(-4) 1228 
10−4 2PRVS 288 0 1167 2.9049(-6) 12263 
 2PDVS 83 0 345 8.2525(-7) 2510 
10−6 2PRVS 704 0 2841 3.5053(-8) 31563 
 2PDVS 145 0 593 1.7508(-7) 4365 
10−8 2PRVS 1742 0 7033 3.5724(-10) 78949 
 2PDVS 234 0 949 4.3465(-9) 6969 
10−10 2PRVS 4333 0 17501 1.7159(-11) 196775 
 2PDVS 457 0 1841 4.3459(-10) 11820 
 
Table 8: Numerical results for solving Problem 4 
TOL MTD TS FS FCN MAXE TIME 

10−2 2PRVS 17 0 76 4.4178(-4) 1165 
 2PDVS 12 0 60 4.3851(-6) 844 
10−4 2PRVS 29 0 125 1.9629(-6) 2594 
 2PDVS 17 0 81 4.0341(-6) 1543 
10−6 2PRVS 57 0 237 1.4320(-8) 4590 
 2PDVS 22 0 103 1.7326(-6) 2067 
10−8 2PRVS 122 0 497 1.5090(-10) 8545 
 2PDVS 26 0 121 4.7280(-7) 3025 
10−10 2PRVS 283 0 1141 1.5924(-12) 17440 
 2PDVS 40 0 173 7.5175(-9) 3742 
 
Nevertheless, 2PDVS is still able to obtain the desired 
accuracy within the given tolerance. Furthermore, 
2PDVS is economical to be implemented than 2PRVS 
since the number of functions to be evaluated by 
2PDVS is much lesser than 2PRVS especially at finer 
tolerance. Therefore, by solving higher order ODEs 
directly will reduce the computational cost and will 
inevitable effects on the execution time.  

CONCLUSION 
 
 In this study, we have shown the efficiency of the 
developed two point block method presented as in the 
form of Adams Moulton method using variable step 
size which is suitable for solving higher order ODEs 
directly. 
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