
Journal of Mathematics and Statistics 8 (1): 77-81, 2012
ISSN 1549-3644
© 2012 Science Publications

Corresponding Author: Waeleh, N., Department of Mathematics, Faculty of Science, University Putra Malaysia,
 43400 UPM Serdang, Selangor, Malaysia

77

Numerical Solution of Higher Order

Ordinary Differential Equations by Direct Block Code

1Waeleh, N., 2Z.A. Majid, 3F. Ismail and 4M. Suleiman
1,2,3,4Department of Mathematics, Faculty of Science,

2,3,4Institute for Mathematical Research,
University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract: Problem statement: This study is concerned with the development of a code based on 2-
point block method for solving higher order Initial Value Problems (IVPs) of Ordinary Differential
Equations (ODEs) directly. Approach: The block method was developed based on numerical
integration and using interpolation approach which is similarly as Adams Moulton type. Furthermore,
the proposed method is derived in order to solve higher order ODEs in a single code using variable
step size and implemented in a predictor corrector mode. This block method will act as simultaneous
numerical integrator by computing the numerical solution at two steps simultaneously. Results: The
numerical results for the direct block method were superior compared to the existing block method.
Conclusion: It is clearly proved that the code is able to produce good results for solving higher order
ODEs.

Key words: Higher order ODEs, variable step size, predictor corrector, block method

INTRODUCTION

 The mathematical formulation of physical
phenomena in science and engineering often leads to
IVPs of ODEs. This type of problem can be formulated
either in terms of first order ODEs or higher order
ODEs. For instance, this application will often used in
beam theory, electric circuits, control theory,
mechanical system and celestial mechanics. Thus, this
study will concern on solving directly higher order non-
stiff IVPs of ODEs of the form:

d d 1

i
i

y f (x, y, , y),

y (a) , 0 i d 1, x [a,b]

−=
= η ≤ ≤ − ∈

…

 (1)

 The conventional methods of solving higher order
ODEs will reduce such problems to a system of first
order equations. This approach is cumbersome and will
increase computational time as well as consume a lot of
human effort. Thus, several researchers have concerned
themselves with study to solve Eq. 1 directly such as
Awoyemi (2003); Majid (2004); Awoyemi (2005);
Majid and Suleiman (2006); Jator (2010); Jain et al.
(1977) Kayode and Awoyemi (2010). Awoyemi (2005)
has proposed a multiderivative collocation method for
direct solution of fourth order IVPs of ODEs while
Majid and Suleiman (2006) have introduced a direct

integration implicit variable step method for solving
higher order systems of ODEs. Majid (2004) has
developed the 2-point block method for solving first
and second order ODEs using variable step size. It was
noted that Jator (2010) had used the application of a self
starting linear multistep method for solving second
order IVPs directly.
 Block methods for numerical solution of higher
order ODEs have been proposed by several researchers
such as Chu and Hamilton (1987); Fatunla (1991) and
Jator (2010). Chu and Hamilton (1987) have proposed
multi-block methods for parallel solution of ODEs and
Fatunla (1991) has presented a zero stable block method
for second order ODEs. The uniqueness of block
method is that in each application, the solution value
will be computed simultaneously at several distinct
points. There are several existence numerical methods
for handling higher order ODEs directly but those
methods will compute the numerical solutions at one
point sequentially. Henceforth, we need a method that
can give faster solution of the problem.
 In this study, we are going to extend the study done
in Majid (2004) by implemented the 2-point block
method to solve ODEs up to order five in a single code.

MATERIALS AND METHODS

Formulation of the method: In 2-point block method,
the closed finite interval [a,b] is divided into a series of

J. Math. & Stat., 8 (1): 77-81, 2012

78

blocks that contained the interpolation points involved
in the derivation of the block method.
 According to Fig. 1, the method will generate the
numerical solution at two points simultaneously. The
values of yn+1 and yn+2 at the points xn+1 and xn+2
respectively are simultaneously computed in a block
with step size h using the same back values which is the
values at the point xn, xn-1 and xn-2 with step size rh. The
formulae of 2-point block method are derived by
integrating Eq. 1 d times as follows Eq. 2:
 Let xn+v = xn + vh, where v = 1 or 2.

n v

n n n

n v

n n n

x x x d d 1

x x x

x x x d 1

x x x

y (x,y, , y) dxdx dx

f (x, y, , y) dxdx dx

+

+

−

−

=∫ ∫ ∫

∫ ∫ ∫

… … …

… … …

 (2)

which leads to the general formula below:

() () ()
() ()n v

n

k gg 1 xd g k n vd g d 1
n v n x

k 0

vh x x
y y f x, y,..., y dx

k! g 1 !

+
−

− + +− −
+

=

−
= +

−∑ ∫ (3)

where, g is the number of times which Eq. 3 is
integrated over the corresponding interval. Lagrange
interpolation polynomial is used to approximate the
function of ()d 1f x, y,..., y − in Eq. 3 and the interpolation

points involved for the corrector formulae are

() ()n 2 n 2 n 2 n 2x ,f ,..., x ,f .− − + + Let n 2x x
s

h
+−= and dx = hds

will be substitute into Eq. 3. By taking d = 5 in Eq. 1,
the approximate solution of yn+1 and yn+2 will be
obtained by integrating Eq. 1 once, twice, thrice, four
times and five times over the interval []n n 1x ,x + and

[]n n 2x ,x + respectively. Finally, this integral will be

evaluated using MAPLE and the corrector formulae in
terms of r will be obtained.
 The same approaches were employed in the

derivation of the predictor formulae for ()ivy, y , y ,y , y′ ′′ ′′′

at the points xn+1 and xn+2 respectively and the
interpolation points involved are () ()n 3 n 3 n nx ,f ,..., x ,f− − .

Hence, it will produce the predictor formulae in terms
of q and r. For the sake of simplification, the general
corrector formula of 2-point block method is developed
in the manner shown in Eq. 4:

() ()

()

k gg 1 2
d g kd g g

n v n v, j n j
k 0 j 2

vh h
y y f

k! g 1 !

−
− +−

+ +
= =−

= + β
−∑ ∑ (4)

g
v, jβ in Eq. 4 stands for the coefficients of the formulae

and tabulated in Table 1-3 for r = 1, r = 2 and r = 0.5.

Fig. 1: 2-point block method

Table 1: Coefficients when r = 1

r 1= g
1, 2−β g

1, 1−β g
1,0β g

1,1β g
1,2β

1=g
11

720

74

720
−

456

720

346

720

19

720
−

g 2=
11

1440

76

1440
−

582

1440

220

1440

17

1440
−

g 3=
23

10080

162

10080
−

1482

10080

370

10080

33

10080
−

4=g
61

120960

436

120960
−

4638

120960

860

120960

83

120960
−

g 5=
65

725760

470

725760
−

5700

725760

838

725760

85

725760
−

r 1= g
2, 2−β g

2, 1−β g
2,0β g

2,1β g
2,2β

g 1=
1

90
−

4

90

24

90

124

90

29

90

g 2=
1

90

8

90
−

78

90

104

90

5

90

g 3=
9

630

64

630
−

516

630

384

630

5

630
−

g 4=
16

1890

112

1890
−

912

1890

464

1890

20

1890
−

g 5=
80

22680

560

22680
−

4800

22680

1840

22680

112

22680
−

 The order of this developed method is calculated in
a block form as proposed by Fatunla (1991). The 2-
point block method for ODEs can be written in a matrix
differentiation Eq. 5 below:

2 d
m m m mY h Y h Y h F′ ′′α = β + λ + + ξ… (5)

where, α, β, λ and ξ are the coefficients of the 2-point
block method. By applying the formulae for the
constants Cq in Fatunla (1991), the order and error
constant of the method will be obtained and the
formulae are defined by Eq. 6:

()

k

0 j
j 0
k

1 j j
j 0

2k

2 j j j
j 0

C

C j

j
C j

2 !
.
.
.

=

=

=

= α

= α − β

 
= α − β − λ 

 

∑

∑

∑

J. Math. & Stat., 8 (1): 77-81, 2012

79

() ()
q q 1 tk

q j j j
j 0

j j j
C

q ! q 1 ! t 1 !

−

=

 
= α − β − − ξ  − − 
∑ …

 (6)

Table 2: Coefficients when r = 2

r 2= g
1, 2−β g

1, 1−β g
1,0β g

1,1β g
1,2β

g 1=
37

14400

335

14400
−

7455

14400

7808

14400

565

14400
−

g 2=
19

14400

175

14400
−

4965

14400

2656

14400

265

14400
−

g 3=
81

201600

755

201600
−

25995

201600

9344

201600

1065

201600
−

g 4=
109

1209600

1025

1209600
−

41475

1209600

11216

1209600

1375

1209600
−

g 5=
47

2903040

445

2903040
−

20685

2903040

4480

2903040

575

2903040
−

r 2= g
2, 2−β g

2, 1−β g
2,0β g

2,1β g
2,2β

g 1=
1

900
−

5

900

285

900

1216

900

295

900

g 2=
1

450

10

450
−

345

450

544

450

20

450

g 3=
8

3150

75

3150
−

2220

3150

2112

3150

65

3150
−

g 4=
14

9450

130

9450
−

3930

9450

2656

9450

170

9450
−

g 5=
14

22680

130

22680
−

4170

22680

2176

22680

182

22680
−

Table 3: Coefficients when r=0.5

r 0.5= g
1, 2−β g

1, 1−β g
1,0β g

1,1β g
1,2β

g 1=
145

1800

704

1800
−

1635

1800

755

1800

31

1800
−

g 2=
70

1800

352

1800
−

975

1800

220

1800

13

1800
−

g 3=
285

25200

1472

25200
−

4740

25200

695

25200

48

25200
−

g 4=
185

75600

976

75600
−

3585

75600

385

75600

29

75600
−

g 5=
155

362880

832

362880
− 3435

362880

289

362880

23

362880
−

r 0.5= g
2, 2−β g

2, 1−β g
2,0β g

2,1β g
2,2β

g 1=
20

225
−

64

225

15

225

320

225

71

225

g 2=
10

225

64

225
−

240

225

250

225

14

225

g 3=
220

3150

1152

3150
−

3390

3150

1740

3150

2

3150

g 4=
400

9450

2048

9450
−

6000

9450

2000

9450

52

9450
−

g 5=
400

22680

2048

22680
−

6240

22680

1520

22680

64

22680
−

Table 4: Error constant for corrector formulae when r=1
D 1 2 3 4 5

p dC +

11

1440

1

90

 
 
 
 

− 
 

37

10080

1

315

 
 
 
 
 
 

367

20160

419

302400

16

675

 
 
 
 
 
 

293

302400

188

4725

 
 
 
 
 
 

 The method is of order p if Cq = 0, q = 0(1) p + d-
1, Cp+d ≠ 0. Thus, by implementing this approach to the
2-point block method, we found that the predictor is of
order four and corrector is of order five. The error
constant for the corrector formulae when r = 1 will be
in matrix form as shown in Table 4.
 Implementation of the method: A single code of
the PECE scheme has been implemented with variable
step size to study the computational time and human
effort saving in using a direct integration method. The
developed code starts by calculating the initial step size
then finding the initial points in the starting block of the
method. In order to evaluate the initial three starting
points, the Euler method was adopted in the code as a
generator of the method. Hence, the Euler method will
be used only once at the beginning of the code. Once
the points for starting block are calculated, then the
block method can be applied until the end of interval.
 A test for checking the end of the interval is made
in order to reach the end of the interval precisely and it
will be functional at each step of integration. The
strategy is by limiting the choices of the next step size
to half, double or remains constant as the previous step
size. At each step of the integration, if the approximated
solutions fulfilled the desired accuracy, therefore the
step is called as successive step.
 Hence, the choices for the next step size will be
doubled or constant which specified by step size
controller. Otherwise the step is called failure step and
the next step size becomes half.
 The possible ratios for the next constant step size
are (r = 1, q = 1), (r = 1, q = 2) and (r = 1, q = 0.5). At
each doubled step size the ratios are (r = 0.5, q = 0.5)
and (r = 0.5, q = 0.25). In the case of failure step size,
the ratio is (r = 2, q = 2). A step failure happens due to
the Local Truncation Error (LTE) exceeding the given
tolerance. This corrector formulae show that, the code
consist the formula of y, y ,y , y′ ′′ ′′′ and y(iv). Hence, the

developed algorithm could be use for solving first order
up to fifth order problem of ODEs directly in a single
code. The algorithm was written in C language.
 The approximation value of yn+1 and yn+2 are using
predictor-corrector mode, (PkE) (Ck+1E)u where Pk and
Ck+1 indicate the predictor of order k and corrector of
order k+1 respectively and E indicate the evaluation of

J. Math. & Stat., 8 (1): 77-81, 2012

80

the function. In the code, the corrector will be iterated
until it is converge and the convergence test employed
was Eq. 7:

() ()u u 1
n 2 n 2y y 0.1 TOL−

+ +− < × (7)

where, u is the number of iterations.
 The LTE will be obtained by comparing the
absolute difference of the corrector formula derived of
order k with the similar corrector formula of order k+1
at the point xn+2. If the LTE<TOL, hence the successful
step achieved and the next step size will be obtained
using the step size increment formula as follows Eq. 8:

1

k

new old

TOL
h h

LTE
 = δ × ×  
 

 (8)

Where:
δ = A safety factor
k = The order of the corrector formulae while hnew and

hold are the step size for current and previous block
respectively

 Finally, the errors in the code are calculated by the
difference between an estimation value yn+2 resulting
from using 2-point block method and the exact solution.
The formula was defined as Eq. 9:

()
() ()()

()()
i it t

i t
i t

y y x
e

A B y x

−
=

+
 (9)

where, (yi)t is the t-th component of the approximation
y. A = 1, B = 0 referred to the absolute error test, while
A = 1, B = 1 will be used for mixed error test and A =
0, B = 1 correspond to the relative error test.

RESULTS

 The results of numerical tests will be presented in
order to illustrate the performance of 2-point block
method. The following notations are used in the table:

TOL: Tolerance
MTD: Method used
TS: Total steps taken
FS: Total failure step
FCN: Total function calls
MAXE: Magnitude of maximum error of the

computed solution
TIME: The execution time taken in microseconds

2PRVS: Algorithm of 2-point fully implicit block
method by reducing the problem to first order
ODEs in Majid (2004)

2PDVS: Implementation of 2-point block method in
this study by solving the problem directly

Problem 1:

1 2 2 1

1 1 2 21 1

y y , y y , x [0,10]

1 1
y (0) 0, y (0) , y (0) 1, y (0)

1 e 1 e− −

′′ ′ ′′ ′= − = − ∈

′ ′= = = =
= −

Solution:
x 1 x

1 21 1

1 e 2 e e
y (x) , y (x)

1 e 1 e

− − −

− −

− − −= =
= −

Problem 2:

[]y 4y x, x 0,4

y(0) 0, y (0) 0, y (0) 1

′′′ ′= − + ∈ π
′ ′′= = =

Solution: 23 1
y(x) (1 cos2x) x .

16 8
 = − + 
 

Problem 3:

[](iv) 3 xy xy (8 7x x)e , x 0,20

y(0) 0, y (0) 1, y (0) 0, y (0) 3

= − − + + ∈
′ ′′ ′′′= = = =

Solution: xy(x) x(1 x)e .= −

Problem 4:

(v) (iv) 2 x

(iv)

y 2y y yy y y 8x (x 2x 3)e ,

x [0,2]

y(0) 1, y (0) 1, y (0) 3, y (0) 1, y (0) 1

′ ′′ ′ ′′′= − − − + − −
∈

′ ′′ ′′′= = = = =

Solution: x 2y(x) e x .= +

DISCUSSION

 We are going to compare the numerical results
obtained by solving the tested problems using a direct
integration approach with the results using a reduction
approach. It is clearly shown that the 2PDVS has
superiority in terms of computational time and total
number of steps taken especially as the tolerance
getting smaller. This indicates the major advantage
of direct integration method compared to reduce to d-
th order equation to d sets of first order equations.
Table 5-8 show the maximum error of 2PRVS is
better and comparable compared to 2PDVS.

J. Math. & Stat., 8 (1): 77-81, 2012

81

Table 5: Numerical results for solving Problem 1
TOL MTD TS FS FCN MAXE TIME
 2PRVS 18 0 122 1.7336(-4) 1264

210− 2PDVS 17 0 100 1.0051(-3) 1058
410− 2PDVS 29 0 189 2.3232(-6) 2829
610− 2PRVS 25 0 151 1.2155(-5) 1917
810− 2PRVS 55 0 345 1.3735(-8) 4947

 2PDVS 38 0 235 4.6491(-7) 2839
1010− 2PRVS 114 0 719 1.7562(-10) 9205

 2PDVS 65 0 403 1.3722(-8) 4255
 2PRVS 261 0 1603 2.1100(-12) 18338
 2PDVS 119 0 743 4.1326(-10) 6875

Table 6: Numerical results for solving Problem 2
TOL MTD TS FS FCN MAXE TIME

10−2 2PRVS 63 0 314 3.3578(-3) 2121
10−4 2PDVS 36 0 158 8.3249(-4) 997
 2PRVS 133 0 685 3.8276(-5) 5590
10−6 2PDVS 54 0 251 1.4502(-5) 1865
 2PRVS 319 0 1647 3.7843(-7) 13019
10−8 2PDVS 100 0 425 6.9612(-7) 2884
 2PRVS 446 0 2601 5.9506(-9) 24255
10−10 2PDVS 173 0 767 9.1414(-9) 4525
 2PRVS 1096 0 6423 3.0347(-11) 51681
 2PDVS 289 0 1365 3.3935(-10) 7206

Table 7: Numerical results for solving Problem 3
TOL MTD TS FS FCN MAXE TIME

10−2 2PRVS 120 0 492 2.0093(-4) 4014
 2PDVS 48 0 204 1.2153(-4) 1228
10−4 2PRVS 288 0 1167 2.9049(-6) 12263
 2PDVS 83 0 345 8.2525(-7) 2510
10−6 2PRVS 704 0 2841 3.5053(-8) 31563
 2PDVS 145 0 593 1.7508(-7) 4365
10−8 2PRVS 1742 0 7033 3.5724(-10) 78949
 2PDVS 234 0 949 4.3465(-9) 6969
10−10 2PRVS 4333 0 17501 1.7159(-11) 196775
 2PDVS 457 0 1841 4.3459(-10) 11820

Table 8: Numerical results for solving Problem 4
TOL MTD TS FS FCN MAXE TIME

10−2 2PRVS 17 0 76 4.4178(-4) 1165
 2PDVS 12 0 60 4.3851(-6) 844
10−4 2PRVS 29 0 125 1.9629(-6) 2594
 2PDVS 17 0 81 4.0341(-6) 1543
10−6 2PRVS 57 0 237 1.4320(-8) 4590
 2PDVS 22 0 103 1.7326(-6) 2067
10−8 2PRVS 122 0 497 1.5090(-10) 8545
 2PDVS 26 0 121 4.7280(-7) 3025
10−10 2PRVS 283 0 1141 1.5924(-12) 17440
 2PDVS 40 0 173 7.5175(-9) 3742

Nevertheless, 2PDVS is still able to obtain the desired
accuracy within the given tolerance. Furthermore,
2PDVS is economical to be implemented than 2PRVS
since the number of functions to be evaluated by
2PDVS is much lesser than 2PRVS especially at finer
tolerance. Therefore, by solving higher order ODEs
directly will reduce the computational cost and will
inevitable effects on the execution time.

CONCLUSION

 In this study, we have shown the efficiency of the
developed two point block method presented as in the
form of Adams Moulton method using variable step
size which is suitable for solving higher order ODEs
directly.

ACKNOWLEDGMENT

 The researchers would like to thank the Ministry of
Science, Technology and Innovation (MOSTI) for their
National Science Fellowship (NSF) scholarship.

REFERENCES

Awoyemi, D.O., 2003. A P-stable linear multistep

method for solving general third order ordinary
differential equations. Int. J. Comput. Math., 80:
985-991. DOI: 10.1080/0020716031000079572

Awoyemi, D.O., 2005. Algorithmic collocation
approach for direct solution of fourth-order initial-
value problems of ordinary differential equations.
Int. J. Comput. Math., 82: 321-329. DOI:
10.1080/00207160412331296634

Chu, M.T. and H. Hamilton, 1987. Parallel solution of
ODE’s by multiblock methods. SIAM J. Sci. Stat.
Comput., 8: 342-353. DOI: 10.1137/0908039

Fatunla, S.O., 1991. Block methods for second order
ODEs. Int. J. Comput. Math., 41: 55-63. DOI:
10.1080/00207169108804026

Jain, M.K., S.R.K. Iyengar and J.S.V. Saldanha, 1977.
Numerical solution of a fourth-order ordinary
differential equation. J. Eng. Math., 11: 373-380.
DOI: 10.1007/BF01537095

Jator, S.N., 2010. Solving second order initial value
problems by a hybrid multistep method without
predictor. Applied Math. Comput., 217: 4036-
4046. DOI: 10.1016/j.amc.2010.10.010

Kayode, S.J. and D.O. Awoyemi, 2010. A
multiderivative collocation method for 5th order
ordinary differential equations. J. Math. Stat., 6:
60-63. DOI: 10.3844/jmssp.2010.60.63

Majid, Z.A., 2004. Parallel block methods for solving
ordinary differential equations. Ph.D. Thesis,
University Putra Malaysia.

Majid, Z.A. and M.B. Suleiman, 2006. Direct
integration implicit variable steps method for
solving higher order systems of ordinary
differential equations directly. Sains Malaysiana,
35: 63-68.

