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Abstract: Problem statement: Radiation dosimetry features depend on semi-empirical formulas that 
lack a strong mathematical framework. This is due to the fact that the microscopic radiation interaction 
with matter includes energy losses that have never been described properly in quantum mechanics, 
which deals with conserved energy systems. Approach: Using the recent theory of the quantization of 
nonconservative systems using fractional calculus. Results: Most important charged particle 
interaction features and consequences like energy loss, stopping power, range, absorbed dose and 
radiotoxicity are frame-worked mathematically. Conclusion: The results manifest a good agreement 
with experimental and semi-empirical results. 
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INTRODUCTION 

 
 When a charged particle incidents on matter, it 
interacts with the electrons and the nucleus of every 
atom in the lane it passes through. Most of these 
interactions convey only tiny fractions of the charged-
particle’s kinetic energy. So the particle seems to be as 
losing its kinetic energy gradually in a friction-like 
practice, termed “continuous slowing-down 
approximation”. Because of the huge number of 
interactions occured to each charged particle in slowing 
down, its path length tends to approach the expectation 
value that would be observed as an average for a very 
large number of identical particles. This expectation value 
is called the range. The expectation value of the speed of 
energy loss per unit of path length x of a charged 
particle of kinetic energy in a medium of atomic 
number Z, is called the stopping power,  which was 
derived for the first time classically by Bohr, with all 
the fundamental derivation features are classical or 
semiclassical in origin(Ajlouni, 2010). 
 A full quantum-mechanical treatment is 
needed to obtain exact results. A number of people, 
including Bethe and Bloch, have discussed the 
quantum-mechanical derivation of the energy loss from 
the point view of the inelastic-scattering cross section to 
justify quantum-mechanically Bohr’s formula for 
energy loss. Formulas are found semiempirically with 
several correction coefficients. The Bethe-Bloch 

formula remains the starting point (Ajlouni, 2010, 
Foschini et al., 2002).  
 Fractional calculus launches as a very useful tool 
could be used to express the dissipation which is 
associated with, almost, all physical processes in nature 
(Ajlouni, 2011), by having new operators, new criteria 
and new set of subordination theorems could be 
obtained with some earlier results and standard methods 
(Thongwan et al., 2011; AL-Ghonaiem et al., 2010; 
Cansee et al., 2010). The new complexified dynamics 
guides to a new dynamics which may differ totally from 
the classical mechanics cardinally and may bring new 
appealing consequences. Some additional interesting 
results are explored and discussed in some details 
(Rami, 2011). 
 In this study we formulate mathematically the most 
important charged particle interaction features like energy 
loss, stopping power, range and absorbed dose, depending 
on the well frame-worked theory of quantization of 
nonconservative systems using fractional calculus and 
mainly on the canonical quantization of a system of free 
particles in a dissipative medium.  
 

MATERIALS AND METHODS 
 
 According to the theory of the quantization of 
nonconservative systems (Ajlouni et al.,  2012; Ajlouni, 
2010; 2011), the Hamiltonian can be written as follows 
(Ajlouni et al.,  2012; Ajlouni, 2010; 2011): 
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 And the Schrödinger equation reads  (Ajlouni et 
al.,  2012; Ajlouni, 2010; 2011): 
 

HΨ = ih Ψ
t

∂
∂

  (2)  

 
 Consider a free particle moving in a dissipative 
medium where dissipation is proportional to velocity 
(Ajlouni et al.,  2012; Ajlouni, 2010; 2011), i.e: 
 
 1F q= −γ   (3) 

  
where, γ being a positive constant. The potential 
related to this dissipation is (Ajlouni et al.,  2012; 
Ajlouni, 2010; 2011): 
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 The Lagrangian is (Ajlouni et al.,  2012; Ajlouni, 
2010; 2011): 
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Where:  
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 The canonical momenta are (Ajlouni et al.,  2012; 
Ajlouni, 2010; 2011): 
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And: 
 

1 1
2

1

L
p mq

q

∂= =
∂

 (8) 

 
 Making use of Eq. 1, we have for the Hamiltonian  
(Ajlouni et al.,  2012; Ajlouni, 2010; 2011): 
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 Here p0 and p1/2 are the canonical conjugate 
momenta to q0 and q1/2, respectively.  
 Schrdِinger’s equation reads  (Ajlouni et al.,  2012; 
Ajlouni, 2010; 2011): 
 

2 2
h h 1 2

ih Ψ = - + q + γq Ψ1 12 2 22m i q 2iqt 01
2

 
∂ ∂∂  

 
∂∂∂  

 

  (10) 

 
 Which is Schrdِinger’s equation for a dissipated 
free particle, has the following solution (Ajlouni et al.,  
2012; Ajlouni, 2010; 2011): 
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where, Hnare Hermite polynomials.  
 

RESULTS  
 
Energy loss: The dissipative effects result almost 
exclusively from the electric field of the electrons 
inside the matter. Many processes may occur during the 
particle’s passage; however, what concerns us most is 
the overall energy loss of the particle in a slab of matter 
of thickness x>R, R, being the range of the charged 
particle in matter. 
 The dissipative (Coulomb) force is assumed to be 
proportional to the velocity (Ajlouni et al.,  2012; 
Ajlouni, 2010; 2011): 
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 Since the particle is losing its kinetic energy 
gradually in a friction-like process, as has already 
been mentioned. The kinetic energy gained by one 
electron and lost by the charged particle is: 
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 This energy is lost by the charged particle as 
dissipation and appears as a reduction in its velocity; so 
we can write (Ajlouni et al.,  2012; Ajlouni, 2010; 
2011): 
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 Depending on Ajlouni Theory presented in Eq. 2-
17, the Energy expectation value is: 
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Which could be written as: 
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 Using mathematical identities: 
 

3 2E bx ax cx= − −   (17) 

 
So that: 
  

2d E
gx fx c

dx
= − −  (18) 

 
where, a, b, c, f and g are constants. 
 

 DISCUSSION 
 
Stopping power and linear energy transfer: Several 
terms are used to describe the changes in energy of a 
particle and the absorbing medium. The stopping 
power, S, is defined as the loss of energy from a 
particle over a path length dx: 
 

d E
S

dx
= −   (19) 

 
 Very often the term mass stopping power is used 
which is defined as: 
 

d E1
S

dx
= −

ρ
  (20) 

where, ρ is the density of the material. Mass stopping 
power is divided into two components: collision and 
radiative stopping power.  
 From Eq. 18 and 19 we get: 
 

2d E
S gx fx c
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= − = − + +  (21) 

 
Range of charged particle inside matter: The range 
or distance that a heavy charged particle will travel in a 
material can be obtained by integrating the energy loss 
rate along the path of the ion. In the approximation that 
the ion follows a straight-line trajectory, then the range 
for a given kinetic energy, R (E), would be given by the 
integral: 
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where, the function d〈E〉/dx is the appropriate function 
for the ion in the material. There are two difficulties in 
applying this simple integral, the ions will suffer a 
different number of collisions with atomic electrons 
and, more importantly, the ions will undergo some 
scattering from the Coulomb fields of the atomic nuclei. 
The multiple Coulomb scattering leads to an effect that 
the ion’s trajectory is not straight but rather is made up 
from a series of straight line segments causing the 
effect of range straggling which is indicated by the 
Gaussian distribution of ranges. For the practicing 
nuclear scientists, range-energy tables or relationships 
are among the most commonly used tools.  
 By means of Eq. 18-22 takes a simple form: 
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 With agreement with the experimental fact that, 
heavy charged particles penetrate uniformly into matter 
with essentially no attenuation in intensity until they are 
nearly at rest; at this point the intensity of moving ions 
rapidly drops to zero as represented in Fig. 1. It is very 
clear from Eq. 23 that the rang depends on E0, thus a 
mono-energetic charged particle beam will have the 
same Rvalue. 
 
Absorbed dose: Charged particles deposit their energy 
in the medium through which they propagate. The total 
energy deposited per unit mass (of the medium) is 
called the dose. It has units of Gy (Gray): 
 
1Gy = 1J/kg = 6.25 ×1012 MeV/kg (24) 
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Fig. 1: Average charged particle energy loss as a 

function of distance through matter 
 
 The dose clearly refers to a flux of particles over a 
specified period of time or to a specified event (e.g., a 
nuclear accident) and given by: 
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 Using Eq. 18-25 becomes: 
 

( )2D gx fx c= −ϕ − −   (26) 

  
 Which is very similar to Eq. 21. 
 
Radiotoxicity: The radiotoxicity, RT, associated with a 
given nuclide is the effective dose (in Sievert, Sv, 
which is the unit of dose equivalents to biological 
systems, especially people) resulting from ingesting or 
inhaling an activity A (in Bq, the unit of radioactivity, 
where 1 Becquerel (Bq)×1 disintegration = s). It can be 
written as: 
 

R eff
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A E
RT

m

ω τ
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Where: 
〈E〉 = The mean energy per decay deposited in the body  
ωR  = The associated risk factor 
 
 Depending on the nucleus in question, the effective 
retention time ιeff can be the nuclear mean life for short-
lived nuclei, the biological retention time for elements 
that are eliminated from the body, or the lifetime of the 
organism itself for long-lived nuclei that can be 
permanently attached to the body parts, e.g., 239Pu in 
bones. The effective mass of the organism, meff, is the 

body mass if one calculates the full-body dose or the 
mass of the organ in which the radioactive material is 
attached if one wishes to calculate the dose received by 
that organ. Referring to Eq. 18-27 is written as: 
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 The radiotoxicity, as Eq. 28 manifests, is larger 
and more effective than the absorbed dose since we 
are speaking about the equivalent dose in body due to 
total amount of energy deposited by the charged 
particle resulting from ingesting or inhaling an 
activity. This explains the fact that radiotoxicity is 
mostly discussed in the context of nuclear accidents 
and nuclear-waste storage.  
 

CONCLUSION 
 
 In this study we treat the problem of energy loss as 
a friction-like problem and give no consideration to 
detailed processes occurring during the interaction of 
charged particles with matter. The energy loss of charge 
particles is expressed as a function of the penetration 
depth. We found that, most of the energy is deposited 
near the stopping point. This is very similar to the fact 
that charged particles deliver a significant fraction of 
their kinetic energy at the end of their range makes 
charged particles useful for radiation therapy. 
 The charged particle range in matter is expressed 
also as a function of depth. We find that mono-
energetic charged particle beam will have the same 
range inside matter, in agreement with the experimental 
facts that the intensity of charged particle beam stays 
constant for some distance and drop drastically to zero 
at the end of the range.  
 The formula of the absorbed dose versus the 
distance traveled inside matter has been derived, 
performing large agreement with experimental results. 
 For small x-values the particle is very fast and the 
interaction probability so the energy loss is small and 
only few ion pairs are formed, thus the absorbed dose, 
is very low; for larger x- values, as the charged particle 
advances inside matter, the particle becomes slower and 
the interaction probability is then very high. So the 
energy loss is large and many ion pairs are formed as a 
result of the passage of the charged particle, thus the 
absorbed dose, is very high. 
 The radiotoxicity is larger and more effective than 
the absorbed dose, since the equivalent dose in body 
due to total amount of energy deposited by the charged 
particle resulting from ingesting or inhaling an activity.  
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