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Abstract: Problem statement: Assume that data ({y ti), k = 1,2,..., p; i = 1,2,...,.nwhere R
represents the number of repeated measuremerf object follows multi-response nonparametric
regression model with variances of errors are bstedastic. Nonparametric regression curves are
unknown and assumed to be smooth which are coutameSobolev space. Random Errors are
independent and normally distributed with zero nseamd unequal of variance# pproach:
Smoothing spline can be used to estimate the namgric regression curve by carrying out the
penalized weighted least-squares optimation. Thezefeproducing kernel Hilbert space approach is
applied to carry out the penalized weighted legstases optimationResults: In this study we
consider the heteroscedastic multi-response nonpriz regression model and give a mathematical
statistics method for obtaining the weighted spéismator to estimate heteroscedastic multi-respon
nonparametric regression curvé&onclusion: The reproducing kernel Hilbert space approachgjive
solution of penalized weighted least-squares optimdor estimating heteroscedastic multi-response
nonparametric regression curve which gives the ke spline estimator. The estimator obtained is a
biased estimator for nonparametric regression ciitegvever, the estimator is linear in observation.

Key words: Reproducing Kernel Hilbert Space (RKHS), PenaliY¢eighted Least Squares (PWLS),
sobolev space, heteroscedastic, multi-responseanametric regression

INTRODUCTION models with correlated random errors. Wahba (2000)
introduced some techniques for spline statisticatieh
Smoothing spline can be used to estimate functionbuilding by using reproducing kernel Hilbert spaces
which represent association of two or more dependerCardot et al. (2007) gave asymptotic property of
variables are observed at several values of themoothing splines estimators in functional linear
independent variables, such as at multiple timatgoi regression with errors-in-variables. Let al. (2007)
There are many researchers who have consideret splistudied smoothing spline estimation of variance
estimator for estimating regression curve offunctions. Aydin (2007) showed goodness of spline
nonparametric regression model. Kimeldorf and Wahbastimator rather than kernel estimator in estingatin
(1971); Craven and Wahba (1979) and Wahba (199Monparametric regression model for gross national
used original spline estimator to estimate regoessi product data. All these researchers studied spline
curve of smooth data. Cox (1983); Cox and O’Sufliva estimators in case of single response nonparametric
(1996) proposed M-type spline to overcome outliars regression models only.
nonparametric  regression. Wahba (1983) has In the real cases, we are frequently faced the
constructed confidence interval for original spline problem in which two or more dependent variables ar
model by using Bayesian approach. Wahba (1985pbserved at several values of the independenthlasia
compared between GCV and GML for choosing thesuch as at multiple time points. Multi-response
smoothing parameter in the generalized splinenonparametric regression model provides powerful
smoothing problem. Oehlert (1992) and Koenleal.  tools to model the functions which represent asdioei
(1994) introduced relaxed spline and quantile gplin of these variables. There are many researchers who
respectively. Wang (1998) discussed smoothing splinhave considered nonparametric models for multi-
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response data. Wegman (1981); Miller and Wegman RESULTS
(1987) and Flessler (1991) proposed algorithms for
spline smoothing. Wahba (1992) developed the theoriHeteroscedastic  multi-response  nonparametric
of general smoothing splines using reproducing éern regression model: If the multi-response nonparametric
Hilbert spaces. Gooijest al. (1999) and Fernandez and regression model as shown in (1) is associatedulti-m
Opsomer (2005) proposed methods of estimatingesponse spline problem then for i = 1,2,.,.we will
nonparametric regression models with serially anchave model as follows Eq. 3:
spatially correlated errors, respectively. Wagtgal.
(2000) studied spline smoothing for estimating y, =L, f, +e,
nonparametric functions from bivariate data witle th v =L+,
same correlation of errors. Lestatial. (2009; 2010) °* =2 (3)
studied spline  estimator in  multi-response :
nonparametric regression model with equal cormtati Y, =L.f, +€,
of errors and unequal correlation of errors, regpely.
Yet, aII_ researchers discussed_ r!onparametric reigres where, L, , k = 1,2,..., p, represents bounded linear
model in case of homoscedasticity of variance. e i

In this study, we consider the heteroscedastidunctional in Hilbert space H The form of functions
multi-response nonparametric regression model ando kK = 1.2,..., p are .unknown and assumed to be
give a mathematical statistics method for obtairting  SMooth and contained in space. iRandom Errorsy
weighted spline estimator to estimate heterosciedast2’® independent each other and normally distributed

multi-response nonparametric regression curves. with zero means and unequal of variances (i.ecase
of heteroscedasticity of variances). It means that
iid
MATERIALSAND METHODS g, ~ N(0,02). Therefore, it is easy to show that the

We assume that datay(yta), k = 1,2,..., p; i = covariance matrix of random errors is given by £q.

1,2,....n where p represents the number of repeated |\ (g% =diag(W, ., (0 2),...W... © 2))
measurement of "k object follows multi-response et reri e
nonparametric regression model Eq. 1: W, (02) 0 0

Yii :fk(tki) +& (1) 0 Whet,Z(c 22) 0 (4)
Regression curves form, ff,,..., f, are unknown : : . :

and assumed to be smooth which are contained in 0 0 o W @)

Sobolev spaceW,'[a,,b ]. Random errorsg, are -

independent each other and normally distributem v_vit where matrixW,, (0.2, k = 1,2,..., p is given by:

zero means and unequal of variances, i.e., R

iid . - .
€; ~ N(0,02). Covariance matrix of random errors is

C)'2 o e O
i b 2\1-1 =di 2 2 k1 k(1,2) k(Ln )
glven y [Whet(g )] - Iag(Whet,:L(o_ 1 ),...,Whetyp(o p )) .

2
O, o - 0
2y —| Ok k2 K(
Wie i (00) = . . .

2.n)

Estimation of regression curvef_5=(fl,...,fp)T can be

. . . . o] o N
obtained by carrying out Penalized Weighted Least- ke Tke2) K

Squares (PWLS) optimation Eg. 2: Hilbert space Kis decomposed into direct sum of

) LI two space, i.e., spacednd space M So, H can be
Min > )y =f) W (0) x written as:
k=1 ~

f OW3'[ay, by 1.k=1,2,..., (2)

(y—t)+ihkjai*[f;(tk)]ﬂtk} H, =N, OM,

where, N, =M/, k = 1,2,..., p. Suppose that bases of

Reproducing Kernel Hilbert Space (RKHS) approacl‘g ace N is 6.0 6 1and bases of space.N&
will give the solution of (2), i.e., weighted spistimator P WIS {8 Oy O1cd Pace«

that can be used to estimate heteroscedastic restonse (5w &z &l » then for every fll H, k=1,2,..., p can
nonparametric regression curves. be expressed as:
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fe =g, +hy

where, g O N¢ and i O My. Since{8,, 8,,...,6,.} iS

bases of spaceNhen every function g1 Ny can be
written as Eq. 5:

O = Z d.8, = ekT d %)
v=l -

for any constand,, OR. Also, sinCe{&,, & .- &,} IS

bases of Mthen every function i M, can be written
as Eq. 6:

h, :ickizki :EkT G (6)
= - -

for any constant g0 R. Therefore, for every function
fk OH, k=1,2,..., p we have Eq. 7:

fk = devekv + chizki
v=1 i=1
=0,"d, +& ¢ k=121

()

0

7~km

where, ), d = (dgeonsbh)
& = (Ekl""’Ekﬂ)

] and Ci =(Cyreenr o) -

represents bounded linear functional in Hilbertcgpid,
and function {0 H,, k=1,2,..., p then we have Eq. 8:

8, = (B,

T Since L,

Ltmfk =Ltk,(gk +h) =L, (9. +L,, (hy)

_ _ (8)
=0, (ta) + h ()= 1f (&)

Based on (3) and (8), the model as given in (h) ca
be written as follows Eq. 9:

Yir I fit) 1 £

y;nl fl(t.m) S.m

Yo fz(F 2) €2

Voo =1t 4] €2 ©)
You fp(F o) €1
I yp | _fp(t.m])_ I sp |

379

.
Random errors:( J has covariance

o

for  estimating

T T T
€€, ok,

matrix as given in (4) and, :(skl,skz,...,em

1.2,....p.

Weighted spline  estimator

heteroscedastic  multi-response  nonparametric
regresson curve. Recall the heteroscedastic
nonparametric regression model given in (9). By
considering Riesz representation theorem (Wahba,
1992) andL, is bounded linear functional in spacg H

then there exist:), OH, that is to be representer of
L, and satisfies Eq. 10:
le,fk =N Fio) =F (8. Fi OH (10)

where, {.,) represents an inner product. Because of (7)
and by considering inner product properties, weehav

f(ty) = <r]ki'e;; d~k + Ekj C‘j>

=N, 8" do + (N &' 6)
Furthermore, for k = 1 we have:

fi(ty) :<nli,e; q1> +<n1i,E}T ‘31>’ i=1,2,...n
Therefore, for i = 1 we obtain Eq. 11:

fi(ti) =Ny e;qJ} +n 112; (32

dy
- nw(gn 0, - elnﬂ) dzlz +
dip,
Cu (11)
M8 & o Ey)| T
Cin,

=dy(N;1,0,9 +difn 0 3+ .4
dlml<r]11'equ> +CN,€ Q)+

Co(Nyp€ 1y * -t Cmm ml'Elnl>

If the process to be continued for i 5 im the
similar way, we obtain Eq. 12;
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fitiy) =d1N 18,0+ 4N 1,0 Y+ .+ Gk Endd o Endy
Oy, N1y 101y ) + CofN 4 € 2+ (12) v = E&p 12812 (€ 128 3 (14)
Cio(Nyn 1€ 10 + oot N 3y & 1) ! : : : :

EanoBr) Gl Eap

Based on both (11) and (12), vectigft,) can be

represented as Eq. 13:

Similarly, we get: f,(t,)=T,d,+*V,C,,...,

f(t,) =T,d +V . Therefore, regression functidit)

[ty
f(t) = fi(t) can be represented as follows Eq. 15:
1 - :
‘fl(tlnl) [ fl(t ]) Tld 1 Vlc 1
<r]11!911> <r]111912> M ne 1@1> fz(tz) Tzdz V,C,
- (N2:01p  (N1201p (N 1,6 1m> % t(t) =| - =t -
_<r]1nl '911> <r] 1n 'elz> : <r] mie 1m> _ff(t P) Tpd~p Vpc~p
I dll - i 1_
d,, T 0 - 0] -
C e (13) Jom - ofd
dy, T A | (15)
Nwé N (UNRINY Ci - L]
Nz €19 (Ni2& 12 (N 12& 1w || Co2 ]
: : : : : vV, 0 0]l -
_<r]1nlrE,11> <r] 1q1£1z> : <r] 15112 19) Clnl 0 \{2 . 0 TZ
=T,d,+V,c A
11 1 0 o -- Vp_ c,
Where: =Td+Vc
<r]11!911> n 11!912> M ne 1@1> 1 b
T (N12:0,)  (N120.0 (N 120 1 In (15), T is a (Nx M) matrix where N=> n,,
1= . . . k=1
: : : : p )
(N 01 (N1 019+ (N 4,.0 1m>: M= ;mk and d is a (M x 1) vector of parameters
(N80 (N1 (N 1€ 40 which are given by:
V. = <r]12'E-11> M 1212 2 M 122 1p>
17 . . .
: : : : d’
<r]1nluf.11> <r]1qr£1Q ) <r] ml,Em)_ Tl 0 0 ~T
0 T, 0 2
di, Ci T= . . and fj: -
d c ’
~1 = 12 and ? = :12 0 0 Tp de
dlml Ciy )

Since (n,,&,) =(&,,&,) then V, can be written as

follows Eq. 14:

respectively. Also, V is a (¥ N) matrix andc is a (N

x 1) vector of parameters given by:
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¢’ with constrain Eq. 19:
vV, 0 0 -
T by m
V= 0V, and c= CE L‘ [fk( )(t k)] zdtk <VYu Y« 20 (19)
0 0 -V C.T The weighted optimation (18) with constrain (19)

° is equivalent to solve the PWLS optimation Eq. 20:

respectively. Therefore, the heteroscedastic multi-, DM',V'{” {N ’(y—f)TWhe(Gz)(y—f) +

response nonparametric regression model as given |'le2 P (20)
1) can be written as follows: m

. RN NGRS

y=Td+Vere

where, A, k = 1,2,..., p are smoothing parameters
which control between goodness of fit:

T T
where, yz[y}T,...,yij and gz(s;,...,spTJ . Next, to

N (y=) "Wie(0)(y=T)
obtain estimate regression curvk, we use RKHS

approach by solving the weighted optimation Eq. 16: and penalty:
L NI AT L )
Min <IW,2(c%)e '
K12 0P (16) To obtain the solution of (20), firstly, we
E 2 decompose penalty component as follows:
=fth/IHikn W (07)(y =)
K=1,2,....p -

AP =[P = PP

with constrain Eq. 17: <El .8 1> ¢ €&/)c,
I <Y v 20, k=12, an =l e e
<E»11!E»11> <Ell'Elz> <E»11£1p>
Let H, =W.[a,,b] where Wa,.b ] is a 2% Elw Epfn - Enly |

order Sobolev space given by: : : : :
<Eln1'E'll> <Elq1£1? <E 1Q’E' 1D>

wita, b= [ e ot <o) Cu
) c
Zl=q Ve,
where, a <t <h, k = 12.., p. Based on space | _ S
W)[a,,b ], for every function f, OW]a,,b,] we "
define norm as follows: Consequently, we have Eq. 21:
Bire (m) _ T
I = [ k=12, AT =Ae Ve, &)

Similarly, we obtain:
Therefore, the weighted optimation in (16) with

constrain in (17) can be written as Eq. 18: )\Zj‘bz [FEt )] %dt,=A e,V c,

Min = Min het’
fi OHy ka4k
K=1,2,...,.p k1,2,

(22)

1
Wie*(0 2) g

} (18) )\ka:”[f;’")(tp)]Zdtp:)\pcf,TVc
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Based on (21) and (22), we have the penalty Eq. 23and d and then the results are to be equal to zero.

SN[

= (clT c,’ cij x
M, O 0
0 A, 0
. . . X
: : : (23)
0o o0 Al
c
V, 0 0) -
0 V. 0| ¢
CC ] T Eeave
0 0 v, ) ¢

where, A =diag@, I, A Aply)- The goodness of fit

oy o
in PWLS given in (20) can be written as:

N (y=) "W, (0))(y 1)

=N7(y=Td=Ve) W, (0*)(y-Td- Vo)

Therefore, we have partially derivative Eq. 25:

0Q(c,d)
- - =0
ag

= —2V W, (0%) y+ 2VTW, (0%) T d+
2(V"W,,(0°)V +NAV)c =0 (25)
< _Whet(qz) )~/+ Whet(qz)T q+

[Wiu(0))V +NNc =0

If matrix M =W,_(c*)V +NN
Eq. 26:

then (25) gives

Mc =W, (c*)(y-Td) (26)

If (26) is multiplied from the left hand side by™M
it will give Eq. 27:
= MW, (0%)(y-Td) (27)

Furthermore, we also have partially derivative:

Next, if we combine between goodness of fit and

penalty, we get PWLS optimation as follows Eq. 24:

Min Ny =) W adly ) +

AR DED:

PE

= Min{(y -Td -V c) 'W,(0?) x
e

(y-=Td-Ve)+ C_T NAVc}

= Min{(y "W 0)y -2d "T'W, (") y +
dORP™

—2¢" VW, (09 y+d" T'W,(0*)Td+

(24)

d~T T’ Whel(of)VcE+ Cj VTWhet(of)Tq+
¢ (VW (0)V +NAV) ¢
= Min{Q(c, )}

cORP" - -

dORP™

The solution of optimation (24) can be obtained by
taking partially derivative ofQ(c,d) with respect toc

382

0Q(c.d)
~-"=0

0
hnd TTWhet(qz)y+ TTWhet(qz)Tq+

T'W,(c*)Vc =0
Because of (27), we obtain Eg. 28:

_TTWhet(qz) y+ TTWhet(qz)T q+

_ (28)
T'[W,o(0)VM W ( 63(y -Td) =0

Since M =W, (c*)V +NN then
V =[W, (0] +(M -NN) . Consequently, we have

Eq. 29:

VM =W, (03] (M -N M

) ] (29)
= W01 +(1 -NAM

If (29) is multiplied from the left hand side by
Wi(a%) , it will give Eq. 30:
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W, (G)VM =1 -NAM (30)

If we substitute (30) into (28), we get:
_TTWhet(qz) y+ TTWhet(qz)T q+

T =NAM W ( a)(y -Td) =0

Therefore, we obtain:

NAT™M W, (0*)Td =NaT'™™M "W (c?)y

If two sides of the equation above is multiplied

from the left hand side by ' and then by
simplifying it, we will have Eq. 31:

d=(TTM W, (6)T) " T™M W, (0 )y (31)
By substituting (31) into (27), it gives:
E=MW, (0l -T(T MW (o)T) 'x
3 i (32)

™M '1VVhel(q2)])i

Based on (31) and (32), we obtain weighted spline

estimator for estimating heteroscedastic multi-oesg

nonparametric regression curve that can be exptesse

follows Eq. 33 and 34:

f1,A1

~ fz,xz

f,=| =" |=Td+vé

={T(T™M W ( an) MW 0} +
VM _]\Nhez(qz)[l -T(T ™MW qu) X
TIM W, (07

=AY

(33)

Where:

AQ) =T(TM™W,(G)T) 7T M ~x
Whet(cz) +VM _:\N he(cz) x

- . (34)
[ =T(T ™MW, (0)T)

T'M™W, (%)

DISCUSSION

Estimating of nonparametric regression curvees th
main problem in heteroscedastic multi-response
nonparametric regression. For this objective, we
determine weighted spline estimator by using
Reproducing Kernel Hilbert Space (RKHS) approach to
solve Penalized Weighted Least-Squares (PWLS)
optimation (2). So that, we have weighted spline

estimator f, as given in (33). Furthermore, the

weighted spline estimatdt has properties as follows:

The weighted spline estimatof, is linear in

observation. This estimator is very useful to deriv
statistical inference for regression curve

« The weighted spline estimatof, is a biased

estimator for nonparametric regression cufveln

other word, if we take expected value of (33), we

will have:

fu (1) E(y)
. £, (t) E(y,)
EGA)=E = |=A0)|
foa () E(Y,)

fi(t) ) (f{t)

f(t) | |fAt)

aal%) I B

ft) | |4t

CONCLUSION

The reproducing kernel Hilbert space approach
gives solution of penalized weighted least-squares
optimation for estimating heteroscedastic multi-
response nonparametric regression curve which gives
the weighted spline estimator. The estimator isaadul
estimator for nonparametric regression curve. Harev
the estimator is linear in observation.
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