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Abstract: Problem statement: Due to the long range nature of interactions ef Bbody systems,
direct computation of the Coulomb potential enemgyolves O(N) operations. To decrease such
complexity, a simple Multilevel Summation method lieen developedpproach: In the frame of the
Multilevel Summation method, the two-body interantis decomposed into two parts: a local part and a
smooth part. The local part vanishes beyond someftdistance; hence, its contribution to the it
energy is calculated in O(N) operations. In comttassome common fast summation methods, the
smooth part is calculated in real space on a segueh grids with increasing meshsize in O(N)
operationsResults: The method is tested on the calculation of the élaty constants of ionic crystals
in one, two and three dimensional cases. For aftutistance equals three times the meshsize of the
ionic crystal, an error less than 0.01% is obtai@mhclusion: In computing the coulomb lattice sums of
charge systems consisting Mfbodies, the Multilevel Summation method decredlsescomplexity to
O(N) operations.
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INTRODUCTION collections of ions are formed, each collectiom inear
element within the crystal. The potential of eagltection
Accurate and fast calculation of the long-rangeis calculated and the summation of all potentialegythe
Coulombic interactions for a large system of chdrge potential of the crystal.
particles is one of the challenging tasks facing th The widely used Ewald summation technique was
computer simulations. The purpose of this calcatati introduced in 1921 to sum the long-range electtimsta
may be Monte Carlo simulation, energy minimization,interactions of a crystalline lattice. Later, it sa
or molecular dynamics. The long-range interactiondncorporated into Monte-Carlo and Molecular
make the computational effort very intensive.Dynamics simulations of N-body systems with perodi
However, these interactions are important and tieere boundary conditions (Rappaport, 1997; Hockney and
no way their presence can be neglected. Calculatingastwood, 1981). Actually, the complexity of the
such interactions is still of great interest andEwald summation method in its traditional form fér
developing an efficient algorithms to reduce thebody systems is O@l Many conventional methods
computer demand for the calculations continues tdiave been proposed as improvements of the Ewald’s
receive considerable attention ahas been the focus technique (Yakub and Ronchi, 2003; Lage and Bethe,
of numerous approaches during the last and th&947; Nijboer and Wette, 1957; Brugh al., 1966;
present centuries (Kolafat al., 2008; Patreet al.,  Sangester and Dixon, 1976; Perratral., 1988; Rhee
2007; Yakub and Ronchi, 2003; Sagui and Dardenet al., 1989; Fincham, 1994; Yakub and Ronchi, 2005;
1999; Gronbech-Jensen, 1997; 1999; Darderml., Hunenburger and McCammon, 1999). Unfortunately
1997; Procacoit al., 1994). the complexity of these methods is not less than O
The first effective summation methods for caldoat  (N*?). To reduce this complexity, several alternative
the long-range part of the Coulomb potential endrag  approaches have been developed in the last and the
been worked out by Madelung (1918) and Ewald (1821) present decades. These approaches are mainly tased
the case of ionic crystals. Their papers do stithain the Particle-Mesh (PM) methods, the tree based
important references. In the Madelung’s methodmethods and the multigrid methods. In the PM
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methods, the Coulomb interaction is decomposed intare demonstrated in many papers (Sagui and Darden,
two parts: a short-range part which is calculatedlotly ~ 2000; Poplaiet al., 2004; Zaslavsky and Schlick, 1998;
within some cut-off distance and a long-range parBernholcet al., 1997; Fattebert and Bernholc, 2000;
which is handled in the reciprocal space through thHirano and Hayash, 2000; Skeelt al., 2002;
Fast Fourier Transform (FFT) computed on a mesh. AmMackbusch, 2010; Trotenbeggal., 2001).
eﬁici_ent computation of Iong-range interaction haitit For the N-body systems, direct calculation of the
Fourier transform can be found in (Tsukerman, 2004)iotal potential energy involves O {Noperations. To
Examples of the PM methods are the Particle-perticl gyoid the slow direct summations, a multilevel
Mesh (P2M) (Hockney and Eastwood, 1981), theygorithm has been developed and presented in this
Particle-particle-particle-Mesh  (P3M) (Hockney andgy,qy. The general Multilevel approach in the cante
:astwooq, 19?1; Pacj)llock ar'1d GIES“' 1596; Ghasﬁrm of general transformation, many-body problem and
., 2007; Neelowt al., 2007; Beckerst al., 1998), the .y multiplication has been initially proposed b

Particle-Mesh Ewald method (PME) (Darden al., ; : -
1993; Essmanat al., 1995) and the Fast-Fourier PoissonBrand.t (1991). _Performmg the statlcs. computational
tasks in computing cost that rises only linearlytwthe

(FFP) method (York and Yang, 1994). The PM methods : . o
reduce the complexity to O (NlogN). The theory Ofnumber N in the N-body systems is one objectivihef

Ewald summation is described in details by Tosi7()9 multilevel meth(_)d' This goal is performed and iacly
and Kittle (1996). A survey of the Ewald summation presented in this study. Another main goal that inay

techniques is presented by (Toukmaji and Board6)L99 verifieq using thel muI.tiIeveI algorithm is pen_‘onngi
The tree method was first introduced by (Appehdynamlcs_ calcglat|oqs in O (N) operatlons. This ban
1985; Barens anHut, 1986) to calculate the energies done by invoking this algorithm into the Monte-Carl
and forces in a System of N partic]es using aSimula.tion method. The method may also facilitates
hierarchical approach. The complexity of methodsestablishing computational tools for developmecales
based on this approach are not worse than O (NlogNpPy scale, of material description at increasinglgger
The most effective tree based method is the Fasicales (Hardt al., 2009; Brandtt al., 2006; Sandak,
Multipole Method (FMM) (Greengard and Rokhlin, 2001). In the frame of this method, for the N-body
1987). The (FMM) provides an algorithm for the @pi systems, the potential exerted on a particle duallto
evaluation of the long-range electrostatic intemaxd.  pair-wise interactions can be decomposed into two
In the FMM, the pair-wise interactions are divided components: a local and a smooth part. The locdl pa
into two components: the first of which is short- vanishes beyond some cut-off radiyg and due to the
ranged and is directly calculated. The second &tdu nearby particles, it is computed directly. In castrto
the distant particles and approximated by theilsome common fast summation methods, the smooth
multipole expansions. Theoretically, the complexity  hart is calculated in real space on a sequenceids g
the FMM for the N-body systems is O (N). Ewald’s yjth increasing meshsize. The method has potential

summation method and the FMM are combined 10,4 antages over other O (N) and O (NlogN) techrique
create the multipole based Ewald method (Schm|dfn the case of moving particles; it is also beriafito

and Lee, 1991). This mgthod is compared with th arge-scale problems such as molecular statics and
Ewald summation method; the number of particles i . o . .
at which the two methods are equally fast is neacl onte Carlo simulations. Our topic is motivatedoart

by the celebrated problem of Madelung-Sum. More

Alternative approaches to the (FMM) are the . . .
- L details about the multilevel approach in the cdsh-o
multigrid methods. These methods were ongmallybody systems are found in (Suwan, 2006).

proposed to give numerical solutions to partial
differential equations. They are considered agabtest

numerical methods for solving elliptic equationsg(e MATERIALSAND METHODS
Poisson’s equation) (Brandt, 1977) and one of the
fastest methods for other types of partial difféien The total Coulomb potential energy arising from a

equations. The conventional iterative relaxationsystem of Nparticles in a cubic box of size L and their
methods (e.g., Gauss Seidel and Jacobi) are vew sl infinite replicas in periodic boundary conditions i
because they do not take into account effects gt ve given by Eq. 1:
large length scale. The multigrid methods improve
performance by using relaxation at many lengthescal 1 , a4
In 1973, a linear complexity was achieved by those u=—ziszlzn% (1)
methods (Brandt, 1972). Many applications in pacti 2= f =0 —n)|
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where, ¢ is the point charge of the particlef, is its ~m are shown in Table 1. For m=1 ang # 2, Gu(r)

position and n is integer vector. The prime symipol &Nd Gmoox(r) are shown in Fig. 1. o
the summation(¥,) indicates that for n = 0, the Using (2), the energy in (1) can be also splioint

. . . . . two parts Eq. 6:
interaction | = j is omitted. However, atoms doceitatct

with their replica images. The summation in (1) is
conditionally convergent (i.e., the result depeodghe

order of summation (Allen and Tildesley, 1989). For o ,
S Where the contribution to the potential energy of

simplicity, we will use ¥, =7 —-nL throughout this . ) . i
plcty, fn =6 70 g the local, short range interactions is defined by E

u=u + Usmooth’ (6)

loc

study.

The kernel G(i.F, 1

‘?I _?jm‘

):

. . l . - -
is singular at the U.oc=522,2nqum4f -1,

)q ()

origin (i.e., when r:‘F| -T,/equals zero); and its

. ) . If ro is chosen comparable to the average inter-particle
smoothness increases with the distance betweefisiance. a direct summation in (7) costs O(N)

particles. A ‘softening’ of such kernel can be afbta operations. The purpose of our algorithm is catinga

by splitting it into two parts Eq. 2: the second part of (6) with linear complexity.
The basic idea of the multilevel algorithm is
G(r) =Gy, (N + Gamoon () 2) performing recursively a sequence of sets of umifor

grid points called coarse levels. By “uniform” weam
a rectangular grid, with constant meshsize in egah
direction. At each coarse level, a set of chargaled
coarse-level charges, are created by aggregatiag t
located charges in the finer level into collections
positioned at the grid points at the coarse levak
Gloc(r):{G(r)_Gsmoom(r)v = G 3) number of grid points at each coarse level is thas
0, ool these of the finer one. The smooth part of the ik
function is also recursively split at each coarseel
The second part is smooth and a suitable choice fgnto local and smooth parts. Consequently, therpiatie
it could be Eq. 4: energy is split into two parts. The recursion peate
until the number of coarse charges is so small tthet
calculation of their potential at that coarse leigehot
0 :{Pm M., =L , (4) expensive comparable with the whole algorithm.
G(r). > Ly The smooth part (4) is nonsingular at r = 0.
Therefore, the self-interaction energysel) can be
added to and subtracted from the last term in (6).
Hence Eg. 8-10:

where, the first (local) part of the kernel is gh@nge,
contains a singularity and it vanishes beyond soate
off radius r = g, This part is defined by Eq. 3:

where, the functiork, (=>"" a{)” is a polynomial

of order 2 m. The function &G(f) and its first m

derivatives are assumed to be continuous at}. So, the

set of unknown coefficients fa;s obtained by solving a Uemoatn =
system of linear equations. Values of the coefiitsida} Where:
can be universalized by changing the variable o int Us :EZNZQ'G (
x=tlre; S0, the values of the coefficients can be ™" 24=ii&un i smo
determined by the above continuity assumption, thist

U, oort U cor (8)

smooth

TI_Ter q; (9)

time, at x=1. This leads to solving the set of Eq. And:
m /2i _ 1 N
;[k)lai =1, (5) User = _anizzl‘, qlz (10)
where, @&k<m and (2‘) is the binomial coefficient. The self-interaction energysk is independent of
k particle locations and calculated once in the piace.

The values of these coefficients for different eswf  Thus, it is not computationally expensive.
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Fig. 1: The Coulomb potential function, the locaftpand the smooth part
Table 1: Coefficients {&in (5)

1 .
1 2 3 4 5 6 UZmoolhzazuanI'Gsmootr(
3/2 15/8 35/16 315/128 693/256 3003/1024

-1/2 -5/4 -35/16 -105/32  -1155/256 -3003/512

3/8 21/16  189/64 693/128 9009/1024 Where, the set of the coarse-level charges {
-5/16 ~ -45/32  -495/128 -2145/256

defined at the coarse level gridpoints by Eq. 13:
35/128  385/256 5005/1024
-63/256  -819/512

231/1024 Q=% ()d

| der t imate the first t in (8). th The fine-to-coarse transformation (13) is called t
N order o approximate he Mrst term in ( ) eadjoint of interpolation, or the anterpolation.
smoothness property of the kernel is used in the

) . The summation (12) can be carried out recursively

the multilevel calculations, a coarse-level grid isany coarse level | > 1, the potential functioh (6 is
introduced and defined by a set of gridpoints}{fhe

ced split into a smooth partG!, () and a local part
meshsize is H_. The val_ue of the .smoo_th pa_rt of theG:OC(r), now on scale H= 2 H and cut-off radius
kernel (2) for given locations of particles i andan be

R\~ R} Q. (12)

S&peeee3

(13)

interpolated from that grid Eq. 11: Re =271, EQ. 14 and 15:
|
Gamoarl|Ts = o) =X Y, @ (1) ) ¢ = Zm (0, : icut (1=2.3) (14)
Gan|R 1~ Ry) 0,(1,)+ 00) O ut
And:

wheregy () are the Lagrange interpolation G (-G (), rsR,,
coefficients ¢ is the error of the interpolation ana is G:oc(r):{o’ o R (15)
the set of indices of the neighborhoods of the pain .
More details about the Lagrange interpolation metho The coefficients of the 2m-order polynomial
can gﬁgg;ﬂgic‘;r;](Efal(rff)igd(g)ogggai’h;az?gé the OrderP‘m(r) is calculated using the continuity of the function

| i 1 i H H |
of the summation yield to Eq. 12: GL.on(r) and its first m derivatives at the point R,
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Since the function . (r) is defined on a their sum vanishes. To illustrate the multileveltinasl,
uniform grid, its values can be stored in athe lattices shown in Fig. 2 are considered.
precalculated table. The charges at the gridpafits The exact analytical expression fog, @an be
level | are anterpolated from the finer-level grid. optained for the one-dimensional system in Figin2.
Continuing recursively splitting the smooth part atthis case, an approximation ofyQlenoted by Ga

each level, we conclude Eq. 16: can be defined by the following direct lattice sum
M, Eq. 18:
G :zelloc (r)+ GM‘smomh(r) (16)
) Cua (L) = 2%( i) (18)
Lut) =~
where, M is the maximum coarse level. MA Heut .
RESULTS where, [...] denotes the integer part of a real numbe

The exact value of gis lim C,,, (), which is 2In(2)

For a periodic identical charge system where. 1 3862944.
charges are placed at sites of some lattice, theoBib
potential energy at any point i where a charge q
located can be defined by (Rappaport, 1997) Eq. 17:

The convergence of the naive summation (18)to C
'?s shown in Fig. 3 and the error versygis presented in
Fig. 4. The convergence of the multilevel appro&ch
shown in Fig. 5 and the error versygis demonstrated in
u=-c,, (17)  Fig.6.
As seen from Fig. 6, only a few neighbor charge

where, G, which is called Madelung constant, is g should be taken into account in the local parthef t
summation over the lattice points and depends only Potential. The same is true for more complicated
the geometry of the crystal. h is the minimum dis& lattices. The obtained Madelung constants for twe,
between neighboring charges and q is the chargeeof and three-dimensional case§ are shown in TablEhe.
ion. Evaluating Uin (1) for the ionic crystal leads to convergence of the Multilevel approach for the
evaluating G in (17). The task is to evaluatg,@ the ~ Madelung constant in two and three-dimensional case
case of lattices with charges of opposite signghsu are shown in Fig. 7 and 8, respectively.

L g . A .
. ¥ .
# e 4
. *
L b e 4
- 3 g . -
* 1 i
L - p * Lk P .
L 4 * S + .
= +# = i + . ¥ - —
. . . . . . . . .

Fig. 2: The lattices for which the Madelung consia calculated
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Fig. 4: The percentage error of the naive calaat
366



Error (%)

J. Math. & Stat., 8 (3): 361-372, 2012

1.7 . . . . :
:':' : : : : m = 1]
|§ - m =2
1.65 g = {1nnm = 3
=
L6 |y ]
]
= 1551 4
= 1
Z 1=
2 1=
S LSry = .
@ | I
E;f 1.45 :E=
= LI
14 = . . i
135 .
13 .
1.25 : :
| I I 1 1 | 1
1 2 3 4 5 6 7 8 9 10
Cut-off distance
Fig. 5: The Multilevel convergence for the one eimsional case
1 T-
10 —m:1
: .. |umim=3
107 =X\ PSPPI : '

H
S
X

10795 e o

nnumnmm\\‘

1

1076 F: : .
I I I I I I I I
1 2 3 4 5 6 7 8
Cut-off distance
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Table 2: Madelung constants obtained by the muétllapproach efficiency. In the one-dimensional case, a comparis
Charge location o between the multilevel results and the exact vafu@y
1D lattice (straight line shape) 1.3862944

2D (square shape) 161554263 shovys how the convergence is fast and how the
3D (NaCl type shape) 1.74756460 Obtained value of f is close to the exact value of the

Madelung constant.

DISCUSSION CONCLUSION

Knowing the value of (4 is important in studying Concluding notess A Multilevel algorithm of fast
both the mechanical stability of the ionic crystaled  symmation of long range potential for N-body system
the microscopic properties of the atoms consisting has been demonstrated in the present work. Theogieth
The more accurate the approximation of the Madelungs tested on the calculation of lattice sums foargk
constant, the more understanding of the ionic sirec  systems with charges of opposite signs, such tueir
is expected. is zero. The convergence of the method is tested,;

It is necessary to define the coarse-level griot. F independently of the dimension, the convergence is
charge displacements, a suitable choice is a rgatan obtained. This convergence becomes faster and the
grid with meshsize H = 2hlong the direction. It is accuracy becomes better by increasing m. In this
convenient at first to anterpolate charges by (IBpn  method, the two-body interaction is decomposed into

as we calculate the potential at a given pointé,will ~ two parts: the local part which vanishes beyond a
have to subtract, in accordance with (8), thedistance 4, and the smooth part which is calculated on

contribution of the charge; grom the coarse-level & Sequence of grids (a coarse-level). For the asom
background. It follows from the symmetry of thetit ~ ©f the smooth part, it is necessary to calculatyy on
that the anterpolation in the case under considerat anterpolated charges_ on these gr|d§ and Interaction
leads to constants and hence zero charaes atzatieso between them. If the dimension of the fine-levehisre

N . S 9 than one, higher-dimensional coarsening can be
level gridpoints. This result is independent of the

i f th level arid I e obtained by one-dimensional coarsening at a time,
position ot the coarse-level gri (as long as| lz€ alternating the coarsening directions. The simjlst f
in each direction is an integer multiple of the

. ) h ._..'© summation algorithm presented in this study allows
corrgspondlng f|r_1e-level meshsize h). Therefores it calculating the energy in real space and a highracy
possible to shift the coarse-level grid so thatisyeached by using small values of the cut-offiuad
calculations will be simplified. A convenient ;  Hence, for the lattice sums, the complexity of the
disposition of the coarse-level grid is so thatoarse  a|gorithm is O (N) To test the method, Madelung
gridpoint is placed at the charge for which thergpe constant in one, two and three dimensional cases ar
has to be calculated. The interpolation of the d9moo calculated. At & =3h, an error less than 0.01% is

part of the potential (12) is also done from thisobtained.
gridpoint with unity weight.

For the evaluation of the total potential ener) ( Future prospects. The present approach is a first step
the coarse-level grid is defined as a first stdper, the towards a general and efficient scheme. The fast
following entire algorithm is performed: calculagimf  summation algorithm can be incorporated into the
the coarse-level charges §Qy the anterpolation using multiple ‘time step’ Monte Carlo algorithms (Hetergy
(13); then, computing the lattice sums at the amars al., 2002; Gelb, 2003). One sweep of this method
level gridpoints using (12). Calculation of (12)nche  consists of two steps: Monte Carlo sweeps withllpaet
carried out recursively for increasingly coarseidgyr of the potential and the following acceptance gggation
Each coarse grid is obtained by omitting every otheof the generated configuration in accordance with t
gridpoints from the finer grid. The recursion prede long-range smooth part of the potential energy. The
until the number of coarse-level charges is solsthal  acceptance rate in this method decreases withasiog
the direct calculation of their potential does most size of the periodicity cell. This obstacle is extee to
very much. The self potential (10) of any partidees  be avoided by calculating the smooth part of themmal
not need any multilevel calculations; this potdnis&a energy and checking the trial configurations sdvera
interpolated to the location of that particle am@rt times during a sweep of the first step. This calboih
subtracted from the potential of the system atplo@tit. ~ can be done by applying the present algorithm.

Evaluating the Madelung constany @r one, two A basic problem which is the incapability of tioedl
and three-dimensional cases are carried out inrdode simulations to move the system from a local minimum
illustrate the Multilevel method and to show its across large-scale energy barriers is expected tmlbed
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using the present fast summation algorithm. Moviea o Brush, S.G., H.L. Sahlin and E. Teller, 1966. Monte

more collective nature comparable with the scal¢hef carlo study of a onreomponent plasma. J. Chem.
energy landscape features can be used. For tigeggjra Phys., 45: 2102-2119. DO10.1063/1.1727895
multilevel Monte Carlo algorithm can be developedi a Darden, T., A. Toukmaji and L. Pedersen, 1997. long
the anterpolated charges can be considered agdnsec range electrostatic effects in biomolecular effects
level variables. J. Chim. Phys. Chim., 94: 1346-1346.
Darden, T., D. York and L. Pederson, 1993. Particle
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