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Abstract: Problem statement: Many differential systems that appear in practiege special second-
order ordinary differential equations of the forrh 3 f (X, y). In the past research, there was a
continuous need for methods for numerically solvimgse equationg\pproach: This study describes
the derivation and implementation of a pair of eddesl explicit hybrid methods for solving non-stiff
second-order ordinary differential equations y” &/fy). Results: It was shown that our method was
more efficient than the well-known embedded paiexylicit runge-kutta-nystrom methods for solving
some second-order problen@onclusion: Our method can be considered as an alternativeéhéor
numerical solution of y" = f (X, y).

Key words. Ordinary Differential Equations (ODEs), Runge Ktitgstrom (RKN), multistep
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INTRODUCTION The class of explicit hybrid methods derived by

Franco (2006) ranging from fourth to sixth ordee ar

There has been great interest in the researchvef n @Pplied using a fixed step-size. Such an approach ¢
methods for numerically solving the second-order€Sult in gross inefficiency since the small stege-s

Ordinary Differential Equations (ODES) Eq. 1: which must normally be used in the initial part of
integration must then be used throughout the

integration. In this study, based on explicit hgbri
y =T Y)Y (%) = Yo Y (X0) =YY 1) methods in Franco (2006), our attempt is to desme
embedded explicit hybrid method at the cost of five

In which the first derivative does not appearfunction evaluations at each step and with builsiror
explicitly and x denotes the initial point of e;timation suitable for the numerical integratiémon-
integration interval. Such problems often arise inStiff second-order problems of the form (1).
engineering and applied sciences such as celestial
mechanics, quantum mechanics, elastodynamic§mbedded pairs of hybrid methods: For the
theoretical physics, chemistry and electronics.numerical solution of (1), we consider the explicit
Problems of the form (1) can be reduced to first-hyPrid method:
order systems of twice the dimension and solved by
using Runge Kutta methods (see for exampleY: =Yn2Y2=Y,
Babatolaet al., 2008) or second derivative multistep  _ _ o0 i .
methods (Parand and Hojjati, 2008). However, this " (+6 qyn_1+h§ajf(>g FEMY M B
approach is cumbersome and increases ) s
computational time (Kayode and Awoyemi, 2010). Yr1=2Yn=Yrith {blfmlefnJriZ_;bif(Xn”LCih'Yi )}
Thus, it is more efficient to solve the problems
directly using Runge Kutta-Nystrom (RKN) where, f1 and f represent f(x,yna) and fOuYn)
methods, multistep methods or block methods (Kenespectively. The method requires s-1 function
et al., 2008). Several authors have proposed hybrigyaluations or stages at each step of integrafitie.
methods which are obtained from the idea underlyingxplicit hybrid method can be represented by the
both the Runge Kutta and linear multistep methods. Butcher tableau:
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-1 0 0 O 0 out the equations of conditions given in Coleman
0 0 0 (2003) as follows Eq. 2-14:
c A _ 0 0
b =Cy| Ay &y b, +b,+b,+ b+ b =1 (2)
C| & & " &g C —b, +byc+ b+ hg= (3)
bl bz bs—l bs
.  brbdebdrhésg @
An embedded p(q) pair of hybrid methods is based 6
on the hybrid method (c, A, b) of order p and aroth
hybrid method(c,A,b) of order g< p, represented by P:8a* b:&,*+ ba+ ha+ har bar b )
. ’ 1
the following tableau: +bea, + boa,+ bsasfﬁ
c A
bT _bl + b3(§3+ b4éjl+ héé: 0 (6)
o bc,a + b,Ga,+ Bgat hgatr Bx ¢¢
Embedded pairs of explicit hybrid methods are ., + + + -1 7
used in variable step-size algorithm because they Gt BGat heas Beg 12 )
provide cheap error estimation. A local error eation
is given by the formula: -b,a, - b,a,+ ba,g ha (8)
_ +ba, G+ bia, = 0
LTE:Hyn+1_yn+1H o *
1
where,yn., and v,., are solutions obtained using the % *P.Ca+ biG+ bsé:ﬁ (©)
higher order and the lower order formula respebtive
T:woeceL(;I'uIEreisisusi\ej(ejnt% (.:ontrol the step-size of whicd t p.2a, + b,éa,+ hgar+ bt ar
P genby: bGa.+ bhéa+ hiar hia (10)
- If tolidiv < LTE < div.tol then ., = h, +hca, =~
« IfLTE < tol/div then R, = 2h, 30
i 1
If LTE = div tol then k.= 2hn and repeat the step -b,c,a,- b,c,a,+ bca, - hea
+b + =1 (11)
where, from numerical experiments, div is chosehdo 5Csasa Gyt 1,63, G= 60
2'7 . We do not allow step-size change after each step
becausef ithwould contribute tt,(|) u(nnecesl}se?ry roundingh,&2, + 2b,a,a,+ b+ R+ 2ba ¢
errors. If the step is acceptable (i.e., tol/&iL.TE < |5, + ba+ 2 + b2
div.tol and LTES tol/div) then we adopt the widely used “f“f“; “é‘: ZQ % ai Zb ® (12)
of performing local extrapolation: although the LiERhe st 2033+ 283 & ba
error estimation for the lower order formula, tiéusons  1op 4. 4,+ b éM:L
obtained by using the higher order formula are adigtu 120
accepted at each point.
bsay, + b3, + ba; &+ ha
MATERIALSAND METHODS 1 (13)

Derivation of the method: The higher order formula is
based on our five-stage seventh order explicit idybr
method EHM7(8,7) which has been derived. In order t
obtain the four-stage fifth order method, firstly wist
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Then, b in the Eq. 2-14 is replacedthyNext,  Problem2:
putting values of the coefficientss ,Cs, 81,80
11,842, 43, 851,352,853 and @, obtained from the derivation C_ e 2V, PRI
of EHM7(8,7) method into the resulting equations! an Yo =Y, [yZ+y2 W O)=1y%0)= 0
solving for b we get:

. 2y, , :
Y, = —4x°y, +——=—y,(0)= 0,); (0)= 0,0 [0,5
_ VY1 tYys
b, = 36479 1350\/?_)
257748 21479 _ _
5 42535 2500 Theoretical solution:
> 57042 28521 .
o __28609200 178697500 ¥ (x) =cos(xX'),y, (x)= sin(X )
® 3112602559 3112602559
_ Problem 3:
b, = 33521 1250\/?_)
942252 78521 ,
T _ 2200625000000000000000 I - 13y (x)+ 12y, (x)+ £, ()
°  1497229238426516076601 dx ,
. 15625000000000000000000 ¥1(0) =1y, (0)=-4
147229235384@516076601 d?y, (x
Y09 -1y, (- 13 (9 £ (%)
The fifth order method has an interval of absolut y,(0) = 0,y, (0)= 8,x1 [0,200]
stability (0, 2.643). The phase-lag and the digsipa
error for this method are respectively given by: with:
o(H) = [_ 28451909 = 269477989})H7 f, (x) =9cos(2x)- 12sin(2x)
169920000000 713664000000 f,(x) =-12cos(2x)}+ 9sin(2x
+O(H®%)
Theoretical solution:
and: Yy, (X) = sin(x) - sin(5x)+ cos(2x
d(H)_[ 1266071 1= _ 207893 He+ O(H) Y2(x) = sin(x)+ sin(5xy+ sin(2x)
53100000000 18880000
Problem 4:
Thus, the fifth order method has phase-lag of orde &
six and is dissipative of order five. The new enuext w+)\2yl(x) =f"(x) +AF(x),
method is denoted by EHM7(5). We cannot get thg 7(6 dx ,
pair of hybrid methods due to the limited number of y1(0) = a+ £(0),y, (0)= f(0)
coefficients to turn into free parameters. d?y, (x)

> F APy, (x) =F(x) + AT (x)
dx

RESULTSAND DISCUSSION : .
y,(0) = (0),y,(0)=Aa+ f(0),x1 [0,%
Problems tested: Our method has been applied to the ] .
following problems to provide numerical comparisons T heoretical solution:
with the well-known embedded 6(4) pair of Runget&ut B o .
Nystrom methods derived in Dormaetdil. (1987): y1(x) =aco(3 x)t f(x).y (x)= asik xy f(x

Problem 1: In this research, f(x) is chosen to b&% and a
andX be 0.1 and 20 respectively.
y" = =100y + 99sin(x),(y)(OF 1,y'(0¥ 11,%1 [0,L(
Problem 5:
Theoretical solution:
y" = -y —y* +Bcos(vx),y(0)= 0.2004267280¢
y(X) = cos(LOx}+ sin(10x¥ sin(x y'(0) = 0,x0[0,20]
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where, B=i and v =
500

computed by the Galerkin method with a precisiof?10

of the coefficients is given by:

J. Math. & Sat., 8 (2):

1.01. The exact solution

y(x) = A, cos(vx)+ A, cos(3vx)+ A cos(bvxy

A, cos(7vx)+ A, cos(9vt)

where:

A, =0.200179477536,A= 2.469461431
A, =3.04014.10 ,A= 3.74.10°

A, =0.000000000000.
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Fig. 2:

The following are codes that have been used in the

comparisons:
Log (MAXGE)

« EHMT7(5): Embedded explicit hybrid method 7(5) 1

pair derived in this study
 RKN6(4)D: Embedded explicit RKN method 6(4) \ "

pair with six stages per step derived by Dormeind 1

al. (1987) ; \

Since RKN6(4)D has FSAL (first same as last) 5 \o
property, therefore it can be regarded as possefism . \\
stages per step. The step-size for RKN6(4)D code is Y

controlled by using the similar procedure as for

EHM7(5) code.

Graphs of natural logarithm of maximum global

—@ EHM 7(5)

—k= REN6(4) D

Log (MAXGE) versus TIME graphs of EHM7
(5) and RKN6(4)D for Problem 2

—@- EHM 7(3)
- REN6(3) D|

error (log (MAXGE)) versus TIME of each code are

displayed in Fig. 1-5.
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Fig. 3: Log (MAXGE) versus TIME graphs of EHM7
(5) and RKN6(4)D for Problem 3
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Fig. 1: Log (MAXGE) versus TIME graphs of EHM7 Fig. 4: Log (MAXGE) versus TIME graphs of EHM7
(5) and RKN6(4)D for Problem 1

(5) and RKN6(4)D for Problem 4
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Fig. 5: Log (MAXGE) versus TIME graphs of EHM7
(5) and RKN6(4)D for Problem 5

CONCLUSION

For Problems 3 and 5, it is clear that EHM7(5) is

more efficient than RKN6(4)D method while for the

rest of the problems, EHM7(5) and RKN6(4)D methods

are both competitive. In conclusion, the new emieedd
explicit hybrid method 7(5) pair is capable for\éog

any physical problems involving system of second-

order ordinary equations of the forgi= f(x,y). All
codes are designed using Microsoft Visual C++ wersi
6.0 in HP computer with Intel (R) Core (TM) 2 Duo
CPU P8600@2.40GHz.
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