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Abstract: Problem statement: Many differential systems that appear in practice were special second-
order ordinary differential equations of the form y” = f (x, y). In the past research, there was a 
continuous need for methods for numerically solving these equations. Approach: This study describes 
the derivation and implementation of a pair of embedded explicit hybrid methods for solving non-stiff 
second-order ordinary differential equations y” = f (x, y). Results: It was shown that our method was 
more efficient than the well-known embedded pair of explicit runge-kutta-nystrom methods for solving 
some second-order problems. Conclusion: Our method can be considered as an alternative for the 
numerical solution of y” = f (x, y). 
 
Key words: Ordinary Differential Equations (ODEs), Runge Kutta-Nystrom (RKN), multistep 

methods, numerically solving, hybrid method 
 

INTRODUCTION 
 
 There has been great interest in the research of new 
methods for numerically solving the second-order 
Ordinary Differential Equations (ODEs) Eq. 1: 
  

0 0 0 0" (x, ), (x ) , (x )′ ′= = =y f y y y y y  (1) 

 
 In which the first derivative does not appear 
explicitly and x0 denotes the initial point of 
integration interval. Such problems often arise in 
engineering and applied sciences such as celestial 
mechanics, quantum mechanics, elastodynamics, 
theoretical physics, chemistry and electronics. 
Problems of the form (1) can be reduced to first-
order systems of twice the dimension and solved by 
using Runge Kutta methods (see for example 
Babatola et al., 2008) or second derivative multistep 
methods (Parand and Hojjati, 2008). However, this 
approach is cumbersome and increases 
computational time (Kayode and Awoyemi, 2010). 
Thus, it is more efficient to solve the problems 
directly using Runge Kutta-Nystrom (RKN) 
methods, multistep methods or block methods (Ken 
et al., 2008). Several authors have proposed hybrid 
methods which are obtained from the idea underlying 
both the Runge Kutta and linear multistep methods.  

 The class of explicit hybrid methods derived by 
Franco (2006) ranging from fourth to sixth order are 
applied using a fixed step-size. Such an approach can 
result in gross inefficiency since the small step-size 
which must normally be used in the initial part of 
integration must then be used throughout the 
integration. In this study, based on explicit hybrid 
methods in Franco (2006), our attempt is to derive an 
embedded explicit hybrid method at the cost of five 
function evaluations at each step and with built-in error 
estimation suitable for the numerical integration of non-
stiff second-order problems of the form (1).  
 
Embedded pairs of hybrid methods: For the 
numerical solution of (1), we consider the explicit 
hybrid method: 
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where, fn-1 and fn represent f(xn-1,yn-1) and f(xn,yn) 
respectively. The method requires s-1 function 
evaluations or stages at each step of integration. The 
explicit hybrid method can be represented by the 
Butcher tableau:  
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 An embedded p(q) pair of hybrid methods is based 
on the hybrid method (c, A, b) of order p and another 
hybrid method (c,A,b)  of order q < p, represented by 
the following tableau:  
 

T

T

c A

b

b

 

 
 Embedded pairs of explicit hybrid methods are 
used in variable step-size algorithm because they 
provide cheap error estimation. A local error estimation 
is given by the formula: 
 

n 1 n 1LTE + += −y y  

 
where, yn+1 and n 1+y  are solutions obtained using the 

higher order and the lower order formula respectively. 
The LTE is used to control the step-size of which the 
procedure is given by: 
 
• If  tol/div < LTE < div.tol then hn+1 = hn 
• If LTE ≤ tol/div then hn+1 = 2hn 

• If LTE ≥ div tol then hn+1= n

1
h

2
 and repeat the step 

 
where, from numerical experiments, div is chosen to be 
217 . We do not allow step-size change after each step 
because it would contribute to unnecessary rounding 
errors. If the step is acceptable (i.e., tol/div < LTE < 
div.tol and LTE ≤ tol/div) then we adopt the widely used 
of performing local extrapolation: although the LTE is the 
error estimation for the lower order formula, the solutions 
obtained by using the higher order formula are actually 
accepted at each point.  
 

MATERIALS AND METHODS 
 
Derivation of the method: The higher order formula is 
based on our five-stage seventh order explicit hybrid 
method EHM7(8,7) which has been derived. In order to 
obtain the four-stage fifth order method, firstly we list 

out the equations of conditions given in Coleman 
(2003) as follows Eq. 2-14:  
 

1 2 3 4 5b b b b b 1+ + + + =  (2) 
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 Then, b in the Eq. 2-14 is replaced byb . Next, 
putting values of the coefficients c3,c4,c5, a31,a32, 
a41,a42,a43,a51,a52,a53 and a54 obtained from the derivation 
of EHM7(8,7) method into the resulting equations and 
solving for b  we get: 
 

1

2

3

4

5

36479 1350
b 5

257748 21479
42535 2500

b 5
57042 28521
28609200 178697500

b 5
3112602559 3112602559
33521 1250

b 5
942252 78521
2200625000000000000000

b
1497229238426516076601

15625000000000000000000

1472292353842

= −

= −

= +

= −

=

+
6516076601

 

 
  The fifth order method has an interval of absolute 
stability (0, 2.643). The phase-lag and the dissipation 
error for this method are respectively given by: 
 

7

9

28451909 269477989
(H) 5 H

169920000000 713664000000

O(H )

 ϕ = − + 
 

+
 

 
and: 
 

6 81266071 20789
d(H) 5 H O(H )

53100000000 18880000
 = − + 
 

 

 
 Thus, the fifth order method has phase-lag of order 
six and is dissipative of order five. The new embedded 
method is denoted by EHM7(5). We cannot get the 7(6) 
pair of hybrid methods due to the limited number of 
coefficients to turn into free parameters. 
 

RESULTS AND DISCUSSION 
 
Problems tested: Our method has been applied to the 
following problems to provide numerical comparisons 
with the well-known embedded 6(4) pair of Runge Kutta 
Nystrom methods derived in Dormand et al. (1987): 
  
Problem 1: 
 

y" 100y 99sin(x),(y)(0) 1, y '(0) 11,x [0,10]= − + = = ∈  
 
Theoretical solution:  
 

y(x) cos(10x) sin(10x) sin(x)= + +  

Problem 2: 
 

" 2 '2
1 1 1 12 2

1 2

" 2 '(1
2 2 2 22 2

1 2

2y
y 4x y , y (0) 1,y (0) 0

y y

2y
y 4x y , y (0) 0,y (0) 0,x [0,5]

y y

= − = =
+

= − + = = ∈
+

 

 
Theoretical solution: 
  

2 2
1 2y (x) cos(x ), y (x) sin(x )= =  

 
Problem 3:  
 

2
1

1 2 12

'
1 1

2
2

1 2 22

'
2 2

d y (x)
13y (x) 12y (x) f (x)

dx

y (0) 1, y (0) 4

d y (x)
12y (x) 13y (x) f (x)

dx

y (0) 0,y (0) 8,x [0,200]

= − + +

= = −

= − +

= = ∈

 

 
with: 
 

1

2

f (x) 9cos(2x) 12sin(2x)

f (x) 12cos(2x) 9sin(2x)

= −

= − +
 

 
Theoretical solution: 
 

1

2

y (x) sin(x) sin(5x) cos(2x)

y (x) sin(x) sin(5x) sin(2x)

= − +

= + +
 

  
Problem 4: 
 

2
2 21

12

'
1 1

2
2 22

22

'
2 2

d y (x)
y (x) f "(x) f (x),

dx

y (0) a f (0),y (0) f '(0)

d y (x)
y (x) f "(x) f (x)

dx

y (0) f (0), y (0) a f '(0),x [0,3 ]

+ λ = + λ

= + =

+ λ = + λ

= = λ + ∈ φ

 

 
Theoretical solution:  
 

1 2y (x) aco(s x) f (x), y (x) asin( x) f (x)= λ + = λ +  
 
 In this research, f(x) is chosen to be e-0.05x and a 
and λ be 0.1 and 20 respectively. 
 
Problem 5: 
 

3y" y y Bcos(vx),y(0) 0.200426728067

y'(0) 0,x [0,20]

= − − + =
= ∈
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where, 
1

B
500

=  and v = 1.01. The exact solution 

computed by the Galerkin method with a precision 10-12 
of the coefficients is given by: 
 

1 3 5

7 9

y(x) A cos(vx) A cos(3vx) A cos(5vx)

A cos(7vx) A cos(9vt)

= + + +

+
 

 
where: 
 

4
1 3

7 10
5 7

9

A 0.200179477536,A 2.46946143.10

A 3.04014.10 ,A 3.74.10

A 0.000000000000.

−

− −

= =

= =

=

 

 
 The following are codes that have been used in the 
comparisons:  
 
• EHM7(5): Embedded explicit hybrid method 7(5) 

pair derived in this study  
• RKN6(4)D: Embedded explicit RKN method 6(4) 

pair with six stages per step derived by Dormand et 
al. (1987) 

 
  Since RKN6(4)D has FSAL (first same as last) 
property, therefore it can be regarded as possessing five 
stages per step. The step-size for RKN6(4)D code is 
controlled by using the similar procedure as for 
EHM7(5) code.  
 Graphs of natural logarithm of maximum global 
error (log (MAXGE)) versus TIME of each code are 
displayed in Fig. 1-5.  

 

 
 

Fig. 1: Log (MAXGE) versus TIME graphs of EHM7 
(5) and RKN6(4)D for Problem 1 

 
 
Fig. 2: Log (MAXGE) versus TIME graphs of EHM7 

(5) and RKN6(4)D for Problem 2 
 

 
 

Fig. 3: Log (MAXGE) versus TIME graphs of EHM7 
(5) and RKN6(4)D for Problem 3 

 

 
 

Fig. 4: Log (MAXGE) versus TIME graphs of EHM7 
(5) and RKN6(4)D for Problem 4 
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Fig. 5: Log (MAXGE) versus TIME graphs of EHM7 
(5) and RKN6(4)D for Problem 5 

 
CONCLUSION 

 
 For Problems 3 and 5, it is clear that EHM7(5) is 
more efficient than RKN6(4)D method while for the 
rest of the problems, EHM7(5) and RKN6(4)D methods 
are both competitive. In conclusion, the new embedded 
explicit hybrid method 7(5) pair is capable for solving 
any physical problems involving system of second-
order ordinary equations of the form y”= f(x,y). All 
codes are designed using Microsoft Visual C++ version 
6.0 in HP computer with Intel (R) Core (TM) 2 Duo 
CPU P8600@2.40GHz.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
  
Babatola, P.O., R.A. Ademiluyi and E.A. Areo, 2008. K-

step rational runge-kutta method for solution of stiff 
system of ordinary differential equations. J. Math. 
Stat., 4: 130-137. DOI: 10.3844/jmssp.2008.130.137 

Coleman, J.P., 2003. Order conditions for a class of 
two-step methods for y” = f(x, y). IMA J. Numer. 
Anal., 23: 197-220. DOI: 10.1093/imanum/23.2.197  

Dormand, J.R., M.E.A. El-Mikkawy and P.J. Prince, 
1987. Families of Runge-Kutta-Nystrom formulae. 
IMA J. Numer. Anal. 7: 235-250. DOI: 
10.1093/imanum/7.2.235 

Franco, J.M. 2006. A class of explicit two-step hybrid 
methods for second-order IVPs. J. Comput. Applied 
Math. 187: 41-57. DOI: 10.1016/j.cam.2005.03.035 

Kayode, S.J. and D.O. Awoyemi. 2010. A 
multiderivative collocation method for 5th order 
ordinary differential equations. J. Math. Stat., 6: 
60-63. DOI: 10.3844/jmssp.2010.60.63 

Ken, Y.L., F. Ismail, M. Suleiman and S.M. Amin. 
2008. Block methods based on Newton 
interpolations for solving special second order 
ordinary differential equations directly. J.Math. 
Stat. 4: 174-180. DOI: 10.3844/jmssp.2008.174.180 

Parand, K. and G. Hojjati. 2008. Solving Volterra's 
population model using new second derivative 
multistep methods. Am. J. Applied Sci., 5: 1019-
1022. DOI: 10.3844/ajassp.2008.1019.1022 


