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Abstract: The scope of this review article is to present aigtuss various aspects of discrete

nonlinear age- and stage-structured population feodée show that such models cover species which
exhibit a wide range of different life historiesdathat one may use them in order to deduce fairly
general ecological principles with respect to diigband dynamical outcomes. From a mathematical

point of view, we give several examples of the thett the nonstationary dynamics generated by such
maps is indeed rich as a result of different typédifurcations of various nature as well as other

mechanisms like frequency locking and crises theay otcur.
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INTRODUCTION population models by Patten (1976); Boling (19&8&g
also Metz and Diekmann (1986); Halleehal. (1990)

In an influential review article “Simple and Gurneyet al. (1990). Such models are called stage-
mathematical models with very complicated dynamics”structured models and have been applied on several
Sir May (1976) presented an analysis of a firsteord different species as well as being analysed from
nonlinear difference equation often referred totlas  theoretical perspectives. Cushing (1998) and Caswel
logistic equation or the quadratic map. Both in May(2001) the analysis of a wide range of stage-atradt
(1976) as well as in Sarkovskii (1964); Li and Yerk matrix models is included.

(1975); May and Oster (1976); Guckenheinaeral. In this review study focus is mainly on three
(1977); Feigenbaum (1978) and Singer (1978) it waslifferent topics. First we will discuss the modalsd
demonstrated that simple one-dimensional nonlineathe prerequisites they rest upon and together loith
maps of biological relevance could exhibit anof references show how the models may and have been
extraordinary rich dynamical behaviour ranging fromapplied to a large number of cases of ecological
stable fixed points, periodic points to chaotic&&bur.  relevance. In another direction focus is on possibl
An excellent summary of results, in partic_ular tesu nonstationary and chaotic dynamics. Avoiding
from the quadratic map, may be obtained in Thunberg,,ematical details and proofs we present several
(2001), see aiso Jost (2005)' . . . examples involving bifurcations of different typada

.However, from a biological point Of. View thereas. nature as well as other mechanisms like frequency
variety of cases where one-dimensional pc)pm'fjltloqocking and crisis and show that the dynamics foimnd

models are not sufficient modelling tools. A more these multidimensional maps is much richer than we
realistic approach is to apply age-structured nsdel o i map ) X
may find in one-dimensional cases. Finally we déscu

Such matrix models (often referred to as Leslierixat : R )
models) were independently developed in the 1989’ ecologlcal |mpI|cat|(_)ns_. In pa_rtlcular we addrese t
Bernardelli (1941); Lewis (1942) and Leslie (1945;quest|0n whetr_ler it _|s_p055|bl_e to formulate some
1948) but perhaps somewhat strange not Widebgeneral ecol(_)glcal pr|nC|pIe_s with respect t_o ditybi
adopted by ecologists until the 1970’s. Originatlye ~and nonstationary behaviour of populations who
models were linear and various dynamical outcomegossess different life histories.
may be found in Cull and Vogt (1973; 1974) and
Hallam and Levin (1986), Later, density dependent oModels: We start by presenting the age-structured
nonlinear terms were considered too, cf. the adassi model. At time t we split the population into n
papers by Guckenheimet al. (1977) and the striped distinct nonoverlapping age classes=x (X, y,...,%9"
bass fishery model by Levin and Goodyear (1980). Asvhere the total population X is given by X g4+ +
accounted for by Caswell (2001), state variabléemst  x,. The relation between x at two consecutive tine@st
than age (for example size) were introduced inmay be expressed as a map Eq. 1:
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X - AX (1) Desharnais and Liu (1987); Burkey and Stenseth4)199
and Nisbet and Onyiah (1994). References to lots of
where, the Leslie matrix A is on the form Eq. 2: other examples may be found in Caswell (2001).
Guckenheimeet al. (1977); Silva and Hallam (1993)
f, £, - f, and Wikan and Mijolhus (1995; 1996) have paid
b, 0 0 attention to the dynamics of (1) in unstable andotic

parameter regions. Wikan (1997); Davydoea al.
(2003); Mjolhuset al. (2005) and Cushing (2006) focus
is on the dynamics of species who reproduce ontgon
0 P, O at the end of their lifes. Ergodic results may btamed

in Cushing (1988; 1989) and Crowe (1994).

Moreover, fis the average fecundity (number of  Unlike (1), in stage-structured models we do not
daughters born per female) of a member of thage ~ divide the population into nonoverlapping age @ass
class at time t and pnay be interpreted as the (year to Instead, we split the population into stages, f@meple
year) survival probability. In maps like (1) theean ~ One sexual immature stage and one sexual matige. sta
implicit assumption that sexual maturity is linkedage ~ The motivation for doing so is that there may bleeot
or that other properties than age are irrelevanother ~ factors which are more important with respect to
possibility is that if such relevant propertiessexhey ~ Mmaturity than age. As already mentioned, one such
must be highly correlated with age. faptor is body size. Indeed, fpllowmg Caswell (20

The matrix elements may be nonlinear (density’Size dependent demography is probably the ruleerat
dependent) or not. Considering two age classesewhefhan the exception”. Examples which link body siae
members of the oldest age class prey upon members 8€Xual maturity may be found among plants
the youngest class (cannibalism) a natural assompti (Klinkhameret al., 1987a; 1987b), crabs (Campbell and
could be p = p@. In fishery models it is often assumed Eaglis, 1983; Botsford, 1986; 1992). See also &its
that older individuals contribute more than younger'eéferences in Caswell (2001). Among several
individuals to density effects, therefore one mayalternatives we will in this study consider the tstage
suppose (Levin and Goodyear, 1980) f = f(y) where y model, first proposed by Neubert and Caswell (2000)
Xy + - +toX, (@ weighted sum of age classes). A
third possibility is that f (or p) depends on thaat X - Bx 3)
population x. This is a natural choice in this ststhce
one of our main goals is to compare dynamics ofvhere, the transition matrix B is on the form:
species who possess very different life histories.

Frequently used density functions are members of; _ m@a-p) f @)
the Deriso-Schnute family, £ F(1 - ypx)*", p > 0 TH TS
(Bergh and Getz,1988; Tuljapurketral., 1994) but see
Getz (1996) for other examples. Thus, we write the  The meaning of the entries in (4) is as folloys:
fecundity (or and the survival) as a product of aandp, are the fractions of the immature populatign x
constant term jFand a density dependent term (1 -and the mature (adult) populationpnespectively, which
yBx)™. If y = -1 we have the well-known compensatory survive from time t to t + 1. X =,x+ X is the total
Beverton and Holt relation, if — 0 then we arrive at f  population. p is the fraction of the immature p@piain
= F exp(Px) (or p = R exp($x)) which is called the which survives to become adult and f is the fectyndi
overcompensatory Ricker relation inspired by theJust as in (2) the elements of (4) may be nonlimear
seminal study by Ricker (1954). In this review vials  not. Neubert and Caswell (2000) consider several
deal exclusively with the Ricker case. submodels. In one submodel it is assumed ghat p,

The dynamics of a large number of ecologicalexp(-x) while the other parameters are constant. In
populations has been modelled by (1). Linear ageanother, p = p exp(-x) is the only nonlinear temd a0
structured models (constant fecundities and cohstamn. One some occasions it may be convenient toyappl
survivals) have for example been applied on rabbitshree-stage models. Indeed, in the celebrated
(Darwin and Williams, 1964), great tits (Pennycuick collembolan study, Cushing al. (1996); Costantinet
1969) and trout (Beland, 1974). In case of nonlineaal. (1997) and Denniset al. (1997) divided the
models we refer to Cooke and Leon (1976) (birds)population into three stages, larvae L, pupae Paalnit
Longstaff (1977) (beetles), Levin and Gooodyearinsects A and in fact showed that their LPA model
(1980) (striped bass), see also Hastings (1984)ould not only describe but even predict chaotic
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behaviour in laboratory insect populations. Moretlia  functions of the total population both (1) and (3)
model, model as well as properties of other stagepossess a unique nontrivial fixed point. In (1) we
structured models may be found in Cushing (1998) anexpress the fixed point as;(x..,x, ) where x = x; +
regarding permanence, cf. Kehal. (2004). - + ¥ is the total equilibrium population. In (3) we

Although (1) and (3) rest on different prereqaisit denote the fixed point as(x x, ). Stability analysis is
both of them cover species with several life hisgr performed by linearizing about the fixed point whia
Indeed, if F=0,i<nand F>0in (2) orn, — 0in (4)  turn gives birth to amth degree eigenvalue equation.
the population is semelparous (i.e., reproducinty on Provided all eigenvalues are located in the inside of
once). If several &> 0 orpu, — 1 the population is the unit circle in the complex plane the fixed pdm
iteroparous (repeated reproduction). The subclass F stable. If we increase a parameter (in this studywiy
0, k> 0 (two age classes) ap — 0, p— 1 is often restrict the analysis to an increase of the fedyhduch
referred to as precocious semelparity which covershat an eigenvalue leaves the unit circle the figedht
species with rapid development followed by only onebecomes unstable. The parameter value at which this
reproduction, for example biennials and annual tglan takes place may be termed the threshold. As is-well
Delayed semelparity occurs when n is larger B, i <  known, the location where an eigenvalue leavesittie
n, k>0 orp, —» 0 and 0 < p < 1. Typical examples are circle has crucial impact on the nonstationary dyica
periodical cicadas, Behncke (2000) and Davydsia. at parameter values just beyond threshold. Jush as
(2003) and several salmon species that live forymanone-dimensional maps an eigenvalue may leave throug
years before they become mature and reproduce only= 1 orA = -1. If A = 1, the general case is that the
once. We may also divide the iteroparous casetimbo fixed point will undergo a saddle node bifurcatiah
subclasses. The subclassP, i<n (R =0, F>0, 2< threshold. The other possibilities are the pitckfand
i<n)orpu, — 1, p— 1 is classified as precocious the transcritical bifurcationsh = -1 results in a flip
iteroparity and covers several small mammals specig(period doubling) bifurcation. The third possibilits
(small rodent species) which start to reproduggmahg  that a pair of modulus 1 complex valued eigenvalues
age and may survive to reproduce for several yd&is. leave the unit circle at threshold. Then the fixeznt
fourth subclass, delayed iteroparity, is charapéetiby — will go through a Hopf (Neimark Sacker) bifurcatigh
several nonfertile age classes followed by sevagal detailed description of all bifurcations referredatove
classes who are fertile, for example=F0, i< n/2, F >  may be obtained in Devaney (2003) or Guckenheimer
0,n/2 <i<nor0<y<l, 0<p<1.Inthis subclass we and Holmes (1983). We shall now provide several
find humans and other large mammals. examples where focus is on the nonstationary

Finally, we will also like to mention some other dynamics.
model strategies. Difference delay equation modeds
models on the form = g(X, X.t) Wherex is the size Example 1 (Precocious iteroparity): Assuming
of the population and T the time from birth to méju ~ constant fecundities (indicated by capital lettejs; =
Such models may be regarded as aggregated veddionsg, F,= ... = F, > 0 and density dependent survivalsp
(1) where detailed information of the dynamics With p, exp(-ux), o > 0, 0 < P< 1 we may express (1) as:
age classes is neglected, cf. the Baleen modelldnk C
(1976). In case of other species we refer to Badisfo Xy X ) = (BX, +
(1986; 1992); Tuljapurkaet al. (1994) and Higginst p 2
ﬂégﬁiggbgeq:, m;yeal;sc?r mecxoz;r%c;rlzteesa?éfé%@;l@r Now, using the fact th£ is large at instability an
(1993). In wildlife protection studies one oftervides ~ Symptotic argument (Wikan and Mjolhus, 1995
the habitat of a species in a reserve and a haroest ~ ikan, 1998) shows that the solution of thté order
Regarding fish populations several interestingeigenvalue equation (at |nstab|I|iy) is very cldsehe .
properties of such a strategy is discussed in Higsti solution pf the gigenvalue equation when n = 2.sTh|
and Botsford (1999). There are also discrete timdas the immediate consequence that the dynamics of
growth dispersal models, i.e., models where growth the n age class model (5) is maintained alreadién
modelled in discrete time while dispersal is moeeiin ~ two age class case. Hence, in (5), it sufficesotusider
continuous time. Kot and Schaffer (1986); Neutert n = 2. Then X = o In(FP) and whenever F is small
al. (1995) and Lutscher and Lewis (2004) providewe find from }he*Jury criteria (Murray, 2003) thae
excellent examples. fixed point (% ,x; ) is stable. By increasing F we also

increase X and when F = F where F is defined
Analysis and examples: Under the assumption that all through F™ exp[2(1 + )/ Fy] = P the fixed point
density dependent terms are on Ricker form andindergoes a supercritical Hopf bifurcation.
313
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Fig. 1: (&) A quasistationary (almost 4 periodichib (solid line) restricted to an invariant cur¢gashed line).
Parameter valuas= 0.02, P = 0.6 and F = 15. Only the 20 last iters are shown; (b) An exact 4 -periodic
orbit generated by map (5). Parameter values &fginla but F = 20; (c) An exact 8-periodic orlgit= 22;
(d) Map (5) in the chaotic regime. F = 27. Theaattor has been divided into 4 disjoint subsets ki
visited once every fourth iteration

Thus, if F > | and |F-R| is small the dynamics is Now, returning to our examplé, is close to the
restricted to an attracting invariant curve whichimaginary axis at bifurcation threshold (i.e., argi =
surrounds the unstable fixed point as displaye#lign  n/2. Consequently, close to the bifurcator ¥4 which
la. On such a curve (5) is topological equivalenat is clearly seen in Fig. 1a and if we continue toréase
circle map which means that (5) does nothing buteno F an exact 4-period orbit (frequency locking) is
or rotate points around the curve. Associated with established. This is shown in Fig. 1b. When F bexom
circle map there is also a rotation numieewhich in  even larger we find that the fourth iterate of (5)
this context (see Guckenheimer and Holmes (19838) caundergoes a flip bifurcation which results in apeiod
be expressed as= c + (bd/a)(g-F) where ¢ = arg. If orbit which is illustrated in Fig. 1c. Through foer
o is irrational an orbit of a point is often refedrto as a  enlargement of F new flip bifurcations occur whiekult
quasistationary orbit. 16 = 1/n rational, the dynamic in orbits of period 16, 32 and 64 respectively. rfra
outcome is an orbit of period n. Also, note thatmathematical point of view the dynamics in thist r
whenevers is rational for a given parameter value F =parameter space is similar to what one finds in- one
F; it follows from the implicit function theorem that dimensional maps, see the review papers by May6)197
there exists an open interval about Where the and Thunberg (2001). Eventually the dynamics besome
periodicity is maintained. This phenomenon is knownchaotic as displayed in Fig. 1d. Note that theaattr is
as frequency locking of periodic orbits. divided in 4 disjoint subsets and that each ofsiliesets
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are visited once every fourth iteration so thera lnd F={F, =/ @+ P))exp[(+ 2P)/P] 1/2 R (10b)
of 4 -periodicity preserved even in the chaotidmeg In

Fig. 2 we show a “_4-period“ chaotic attractor gatetl  \here the subscripts F and H refer to a flip artbaf
by (5) in case of n = 3. A detailed analysis oft@y be it rcation respectively. From a mathematical paifit

obtained in Wikan and Mjolhus (1995). view the most interesting interval is %2 < P < 1 amd
Example 2 (Delayed semelparity): A slightly different the bifurcation diagram, Fig. 4, we have summarized

one stable attractor, namely the fixed point ,&s ).
(X4, X5, X5) = (FX5, PX, PX,) (6) When F is increased to 10.036 the third iteraté79f

undergoes a saddle node bifurcation which giveth bir
where, p = P exp(-x). In case of small and “mo@érBt to a stable 3-cycle but also an unstable 3-cyctd (n
values the dynamics of (6) is similar to what wernid visible in the diagram). Thus, if 10.036 < F < 12.2
from (5). Whenever F is small, (%, %) is stable and  there are two stable attractors and the ultimaeedan

when we increase F to a level B supercritical HOPf it depends on the initial condition. At the streld F
bifurcation occurs. Moreoves,~ ¥4 at threshold and here _ 4 g¢ (cf. (10b)) the fixed point undergoes a

too we experience the existence of a fecundityniate

beyond F, where the dynamics is exact 4-periodic. supercritical Hopf bifurcation and an attractingdariant

However, if we continue to increase F the resilt i curve is established. Due to the fact that close to third

not a flip bifurcation which creates an exact Siqer root of unity at bifurcation there is an almost &ipd
orbit. Instead we find that the fourth iterate @) ( orbit restricted to the curve. Hence, in the indi/1.81

undergoes a supercritical Hopf bifurcation at a<F <12.20 a 3-cycle of large amplitude coexisits an
threshold F = F,. Therefore, beyond,k and in case if almost 3-c.ycI|c. attractor qf s_mall amplitude. At=+

IF - Ry| small the dynamics is restricted to 4 disjoint12.20 the invariant curve is hit by the unstableyGle
invariant attracting curves which are visited oegery ~ created at the earlier value 10.036. This makes the
fourth iteration. This is displayed in Fig. 3a. A&  invariant curve disappear, hence when F > 12.2@ tise
continue to increase F the curves become twistédhwh only one attractor, the 3-cycle. At even higherafues
signal that we are on the onset to chaos. In Figw8  successive flip bifurcations take place generatirgts
show the chaotic attractor in case of F = 55. of period 32 k = 1,2,... Eventually the dynamics

S _ _ becomes chaotic. For details and further analyis{3)p
Example 3 (Precociousiter oparity): Next, consider: cf. Wikan and Mjolhus (1996).

(Xppeees X)) = (X, +-o+ X, PX,, PX, . PX ) @) o 0.15
. 0.1
where, f = F exp(—x) and constant year-to-year isatv )
probabilities P, 0 < & 1. The unique nontrivial fixed 0.05
point is: 0
0.08
-1

oty =[ 2 B Pk ®)

K K K 0.06

n-1 * . .
K=Y Pand x = In(FK) and the eigenvalue equation 0.04

i=0

may be cast in the form: 0.02
@A=X) S Gy nesei
A" - PA"=0 9 0
K Zol 9)

Here, we concentrate on the case n = 2. Then fBjm (
and the Jury criteria we find that,(x,) is stable in i 6
case of F small and will undergo supercritical 8
bifurcations at the thresholds:

Fig. 2: A chaotic attractor generated by (5) inecaf3
F={R=@/@+P)exp[2/(+ P)] & R 1/ (10a) age classes
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0.02 subcritical case such attractors do not exist. Nowg
i shall prove that a Hopf bifurcation which occursan
ik two-dimensional map is super- or subcritical westfir
i write the map on complex form and provided: 1, \*
# 1 (that means we are outside the strong resonance
cases) we may through a series of near identity

G D transformations (normal form calculations) expriess
' ‘ : (Govaerts and Ghaziani, 2006):
0.06 A ,
a z- ze% (+p+ d|A ¥ O(7Z| (11)
0.04
Q and the sign of a = Re(d) will determine the natofre
0.02 _ bifurcation (a < 0 implies supercritical, a > 0
ﬁ subcritical). a is a complicated formulae whiclstfiwas
0 established by Wan (1978). Wikan (1998) it is pbve
0 : that the fixed point of a map like the one consdein
> Example 1 where the density dependent survivals

belong to the Deriso-Schnute family undergoes a

supercritical Hopf bifurcation at instability. Theture
of flip bifurcations in two-dimensional maps can be
studied by first performing a center manifold riesion
and then express the map as:

W —(1+p)w+aw’ + O(w') (12)

where, w is real. Details and stability formulaeaynbe
found in Guckenheimer and Holmes (1983). Finally, i
?’Z’: should also be mentioned that there exist sevaraérical
{ packages designed for studying bifurcation phenamen
; see for example Uett al. (1999); Kuznetsov (2004) and
/ Kuznetsov and Meijer (2005). In particular, confer
Govaerts and Ghaziani (2006) where they use the
MATLAB package CL _MatCont on bifurcation
problems in a stage-structured cannibalism modat. O
experience is that supercritical bifurcations daatenin
age and stage-structured models like (1) and (3).
Next, let us briefly focus on possible routes to
chaos. Referring to Example 1 we have the route:
2 Stable fixed point— Invariant curve, quasiperiodic
orbit (Hopf) — Periodic orbit (frequency locking)»
xl % Periodic orbits where the periods are doubled
() (successive flip bifurcations)> chaos. Hence, once a
periodic orbit is established the route to chaasnslar
Fig. 3: (a) Map (6) after the secondary Hopf biaidten  to what one finds in one-dimensional maps as
(P,F) = (0.6, 48); (b) Map (6) in the chaotic summarized in Thunberg (2001). Another possibility
regime (P,F) = (0.6, 55) that once a periodic orbit is established there bmay
secondary Hopf bifurcation and chaotic behaviouy ma
. . evolve when the disjoint subsets start to get emistf.

As we have seen bifurcations can be of botheyample 2 and Fig. 3b. A third scenario is that one
supercritical and subcn_tl_cal nature. I_f a fixedimo  fom the periodic orbit may return to quasiperidtyic
undergoes a supercritical bifurcation when theagain as the bifurcation parameter increases. alss
parameterp is increased to a valugo there is possible to go directly from quasiperiodicity (imieant
established an attracting orbit (stable 2-cycléhm flip curve) to chaos. This may happen as the invariamviec
case, a quasiperiodic orbit restricted to an immri starts to break up. An example may be found in Wika
attracting curve in the Hopf case) abomg In the (2012) by use of the Neubert and Caswell map (3)
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(density dependent; values). We may also face the model analysed by Davydowt al. (2003). Turning to
situation that the invariant curve becomes kinked s delayed semelparity we consider:
that it is not topologically equivalent to a circle

anymore (see Wikan (1998) by use of small posifive (x .. x)_ (i, Px...,Px, ,)

15
values in the Deriso-Schnute model). A comprehensiv (12)

study of crises (collisions of attractors and ubista
periodic orbits) in Leslie matrix models may beaibéd

in Ugarcovici and Weiss (2004) (see also Example 3)

Crises as well as subcritical bifurcations may l¢ad
large and discontinuous population changes.

Example 4 (Precocious and delayed semelparity): First
we consider the precocious case where both fegusmait
survival probability is density dependent, i.e.:

(lexz) - (fX zrpx1) (13)

where, f = F exp@x) and p = P expfx). The model
possesses a unique nontrivial fixed point, &) and it
is stable provided:

(B-o)[L-PexptB X )X > 0 (14a)

2-(Bx, +ax,)>0 (14b)

(Wikan, 2012). Now, if8 > a it is obvious that (x,x,)

is stable in case of small equilibrium populations
Regarding the nonstationary dynamigs;> o gives the
same qualitative picture as accounted for in Exenipl
3-periodic dynamics is also a possibility 8 a andp-

a small we detect quasistationary orbits. Next, s
< a. Then the left hand side of (14a) is always negati
(or equal to zero ip = a). Consequently, the nontrivial
fixed point is always unstable. Since (14a) is eisded
with the possibility that (x,x,) shall undergo a flip
bifurcation at instability threshold it is natural seek
for a stable 2-cycle in case of gmall. Indeed, such a
stable 2-cycle exists and the points in the cymeoa the
form (%,,%,) = (A,0) or (0,B) which implies that only one
age class is populated at each timeo(H 1 andp = 0

where, f = F exp(—x), see Mjolhwet al. (2005). The
only dynamics we find in case of x In(FP"™%) small is
an attracting n-cycle of SYC form:

(P"x’,0,..,0),.. ,(0,.. ,0,P" x,0,. ,0) (0, ,0,x(16)

Assuming n even, as becomes larger successive
flip bifurcations create stable SYC cycles of pdrin.

Also in the chaotic regime we only find SYC dynamic
When n is odd much of the same picture emerges. The
only difference is that in case of intermediateueal of

X there may exist small parameter windows where the
fixed point is stable, cf. Mjolhugt al. (2005).

However, note that SYC dynamics is not a very
likely outcome in stage-structured models, see the
discussion in Kon (2005). Indeed, Neubert and Chswe
(2000) present by use of (3) an interesting analg$i
the precocious semelparous cage 0.1, p = 0.9. They
found a stable nontrivial equilibrium in case o$iall
and when F was increased (they considered F vakies
large as 10 the dynamics alternated between stable
orbits of low period and chaotic regions in the ssen
that prior to a chaotic region the period of anitonas
g and after the region the period was found to belq
This phenomenon is known as period adding cyclés an
may also be found in the age-structured model by
Guckenheimeret al. (1977). (We urge the reader to
extend the bifurcation diagram in Fig. 4 and sethéf
same happens there t00).

then A = P* In(FP) and B = In(FP)). Dynamics in which
only one age class is populated at each time has be
referred to as SYC (Single Year Class) dynamics, cf
Mjolhus et al. (2005). It has also been termed
synchronization, see Bulmer (1977). As far as wavkn
Bulmer (1977) appears to be the first to have edtic =
SYC dynamics in theoretical models, see also Wi i
Mijolhus (1996); Behncke (2000); Mjolhwes al. (2005)
and Cushing (2006). Precise results of conditiohghv
lead to SYC dynamics and conditions where age e$ass Fig. 4: Bifurcation diagram generated by (7). n arl
can coexist may also be obtained in a slightlyedfiit P=0.9
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1977; Stenseth and Antonsen, 1988; Burkey and
Stenseth, 1994). Especially among lemmings, cf.
Stenseth and Ims (1993) this is the case. Lemming
cycles are not very well understood. Thereforeriod
(Stensethet al., 1977; Stenseth and Antonsen, 1988;
Burkey and Stenseth, 1994). Especially among
lemmings, cf. Stenseth and Ims (1993) this is teec

Lemming cycles are not very well understood.

N Therefore, an interesting and challenging task cde
) \ to apply some of the density dependent survival efeod
— presented here on small rodent populations.
T ‘ R Next, consider precocious iteroparous species
02 04 0.6 0.8 under the assumption of density dependent fecundity

terms. From Example 3 we found that (x, ) is stable
Fig. 5: The equilibrium population x* (map (3)) at in case of X small. Regarding the nonstationary
instability threshold. Upper curve corresponds todynamics there were two scenaria, if 0 < P < % an
u2 = 0.9, middle curvg2 = 0.5 and bottom curve increase of x(or F) leads to the period doubling route
p2 = 0.1. The stable region is below the curves  to chaos. If 12 < & 1 the result is given through Fig. 4.
Now, following Wikan and Mjolhus (1996) or Wikan

Ecological implications: We start by considering (2012) assuming an odd number of age classessn it i
density dependent survivals. The asymptotic argamerpossible to show that the value of at instability
referred to in the beginning of Example 1 showsd thathreshold is an increasing function of both n andnP
precocious iteroparous species possess qualitativel particular, if P = 1 then x= n + 1 at threshold.
same dynamics independent of number of age class@onstationary dynamics is introduced wher= -1.
both with respect to the size of the stability cegand  Hence, for all 0 < P < 1 the dynamics beyond iriftgb
nonstationary behaviour. Additionally, we may alsothreshold is in many respects similar to what wentb
argue that precocious iteroparous species on tlidewh i the 0 < P < % case when n = 2. When n is even an
show much of the same dynamics as precociougmall, X is not an increasing function of P at instability
semelparous species. Moreover, see Example 2, Qyt as n becomes larger ¥n8) the dynamics becomes
performing a rigorous analysis of (6) we may codelu  gjmijar to what we find when n is odd. These firgin
that Species with Qelay_ed _semelp_arous as _\_/veII aélearly suggest that in case of large or moderate P
delayed iteroparous life histories exhibit poor@bdity a1 es an increase of n acts stabilizing. See lagsin
(eroparous of semelparous) e histories. Howeas. 1 Goodyear (1980); Vincent and Skowronski (1981)
P P ’ e .and Bergh and Getz (1988). Delayed iteroparous

is shown by Neubert and Caswell (2000), the analysi . . .
of the stag)el-structured model (3), é " e2<p(—x) and y species may be studied through the map (Wikan, 2012

all other parameters constant) does only suppots pa

the findings reported above. Indeed, they concthde  (X,....,X,) —» (Fx; +---+fX ,PX;,PX,,.. ,PX_ ., 17)
there are no qualitative differences between pajouis

with precocious or delayed life histories with respto  \yhere, i = (n + 1)/2 in case ofn3, n odd and i = n/2 +
stability. On the other hand, regarding the nor®taty ;1 in case of > 4 and n even.; f= F exp(-x). By
dynamics, pronounced 4-periodic behaviour has bee@Omparing the ;ze of the stable parameter regiand

detected by use of (3) in species which posses : : S _
precocious semelparous life histories and thereaks@ i(i)smal(vlvg/;/vg&gﬂirﬁ;efhoecggIZ;étgigzg (7) we fithat

several examples of 4-periodicity in the delayed .
semelparous case. Therefore, beyond instability —Neubert and Caswell (2000) support the findings
threshold there is an excellent agreement between t @0ove by use of (3) (f = F exp(-x) and all other
outcomes of (1) and (3). Hence, these observation@arameters constant). In Fig. 5 we show=xx (p) in
seem to imply that it is a fairly general ecologica the casesu, = 0.9 (upper curve)u, = 0.5 (middle
principle that density dependent growth,)(in the  curve) andi, = 0.1 (bottom curve). The stable region is
stage-structured model which in the age-structuredelow the curves. Hence, the combined findings from
model corresponds to density dependent year-to-yedhe age-structured models and the stage-structured
survival leads to periodic behaviour of low peridgd. model (largeut,) makes it natural to propose that it is a
nature one may find several examples of species whfairly general principle that species with precaosio
possess cyclic behaviour of low period (Stensetl.,  iteroparous life histories are more stable tharcigge

318



J. Math. & Stat., 8 (2): 311-322, 2012
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