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Abstract: Problem statement: For a multivariate normal population with size sheralthan
dimension, n<p, the likelihood ratio tests of thdl mypothesis that the mean vector was zero with a
one-sided alternative were no longer valid bec#lusg involved with sample covariance matrix which
was singular.Approach: The test statistics for one-sided multivariate dtippses with n<p were
proposedResults: The simulation study showed that the proposed tesivided reasonable type |
error rate for one-sided covariance structuresyTdiso give good powers. The application of these
tests was given by testing of one-sided hypotheseBNA micro array dataConclusion: Under that
there have no such other tests available at présetttis kind of hypothesis testing with n<p ytte
proposed tests are good ones. However, the methgylas valid for any one-sided hypotheses
application which involves high-dimensional data.

Key words. DNA micro arrays, multivariate normal, one-sided ltivariate test, Follmann’s test,
power comparison

INTRODUCTION test, the permutation test of Boyett and Shuster{}
and the Tang-Gnecco-Geller test for a known
Suppose one uses a matched-pair design toovariance matrix and for a partially known covada
compare the multivariate responses of two treatsnent matrix, they compared the powers of these testh wit
If the responses are p dimensional and ( 04, 0,,..., Kudo’s test replaced by Shorack's test. For a
0y is the difference, treatment one minus treatmentompletely unknown covariance matrix, Chongcharoen
two, of the mean responses, then one may testute n (2009) studied the power of these one-sided tests f
hypothesis, bt 6,:=6,=...= 6, = 0, to determine if there unknown covariance matrices with equal variances an
is a difference in the two treatments. Furthermdfre, unequal variances as well as tests obtained by
one believes that for each coordinate, the meagombining the Boyett and Shuster (1977) technique t
responses for treatment one are at least as lartfmse  Follmann’s test, the new test, Periman’s test dre t
for treatment two, then the alternative can beTang-Gnecco-Geller test.
constrained by H6;20fori=1, 2,..,p. In some situations, there are no longer data¥gr n
Based on a random sample with n>p from theThat is, when the number n of available observatisn
normal distribution with meaf and covariance matrix smaller than the dimension P of the observed vector
V, Kudo (1963); Shorack (1967) and Perlman (1969)or example, the data come from DNA micro arrays
derived the likelihood ratio test ofyMersus H-H, for where thousands of gene expression levels are
the cases in which Ms known, known up to a measured in relatively few subjects. The one-sided
multiplicative constant and completely unknown, multivariate tests as above are no longer validttfics
respectively. Because the likelihood ratio testshwi kind of data because theqp sample covariance matrix
restricted alternatives are complicated to use,gT@n S is singular with rank n<p,’Sdoes not exist. Since
al. (1989) proposed an approximate likelihood ratistt now there have no one-sided multivariate testdaivai
and Follmann (1996) proposed one-sided modificationfor the data which has the number n of available
of the usuak’ and Hotelling’s Ttests of Hversus ~4  observations is smaller than the dimension p yet,

that are easier to implement. Using exact compriati therefore the proposed tests were the one-sided
and Monte Carlo methods, Chongchareeal. (2002)  multivariate tests for the data with n<p.

compared the performance of Kudo’s test, Follmann’s  Throughout this study, supposa,Xs,....X, is a
test, a new test, which is a modification of Follms random sample from a p-dimensional multivariate
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normal distribution with unknown mean MATERIALSAND METHODS
0=(6,,8,,..8,) and unknown positive definite

covariance matrix V with £p. One may consider The unrestricted alternative test for high
testing the null hypothesis H0 = O versus lHo  dimensional multivariate testss The unrestricted

where H,:860Q, and Qp={X\Xi20;i=1,2..., is the p- alternative test for mean of random samplg, X
dimensional nonnegative orthant. The sample medn anXa,...,Xn With X; ~iidN(6,V) when n<p, that is, the
covariance are Eq. 1: tests with the hypothesis Eq. 4:
% :Zé and  S= z(xi —X)(Xli -X) @ H,:6,=6,=..=6,=0,H, :atleasd # | 4)

= N = n-

when n<p, S is a singular matrix. are proposed by several researchers recently such a

The hypothesesddnd H also arise in the one-way Dempster (1958; 1960) proposed a test for testing
analysis of variance when the means are known tghe mean difference of two independent samples and
satisfy an order restriction. For observations Wwhic developed its approximate distribution. Srivastava
come from k normal populations whose means ar€2007) and Srivastava and Du (2008) gave the one
known to satisfy a simple ordering,i.e., sample version of Dempster’s test statistic whigjkats
Hs:M, < ,<...<p,, Bartholomew (1959; 1961) derived H, as (4) at a significant leval if:
the likelihood ratio test ofy, =p,=..=p, with the
alternative restricted by Hfor the cases of known nX'X
variances and variances known up to a multiplieativ :@> aff] {(n-1)
constant. Suppose the observations of a randomlsamp
are Yj forj=12..,n andi=12..,k and the sample

Where:

means are Y,Y,...Y,. With known variances,
X = The sample mean vector

0;,03,...0;, Kudo (1963) noted that for p=k-1, 5 - The sample covariance defined as in (1)

X, =Ya-Y, for £=1,2,..,p, X=(X,X,..,X,)' andd

= E(X), the hypotheses qu are equivalent to fand  Tafi][(n-27] IS the (1&) th quintile of the F-distribution
H, above, Bartholomew's and Kudo’s tests are equitale iih degrees of freedorff] and [(n-1)i], where|
If the weightsw, =n, /¢® are equal, then the correlation
matrix for X of simple order restriction is Eq. 2:

3]
denotes the largest integer less than or equaatwa

= =t)— AR T= ?iz e —@ “q= (n_ 13 _ (tr(Sﬁ
(Re), =I(¢=t)-08l(t-¢ =9 for1</,t<p (2) r—péz, A= ) and q-(n_ e 1)2[”(3-) - J

where, | (A) is the indicator of A. Also, Bartholenv _
(195_9;_ 1961) _ cor_15|dered an a\_rbltrary partial orde Under condition  0<lima = Iim(tr(V')) - 3, <
restriction, which includes the simple tree ordes,, poe | pee p

Hy:w <y fori=23...k. For this ordering, one takes -1 5 3 4This test is the uniformly most powerful test
differences,X, =Y..-Y, for¢=12,..,p and with p=k- among all the test which are invariant under
1 and wi as above, the correlation matrix of X=transformationX; - crX; where c#0 and I'T'=1,.

o0

(X1.X2,...,Xp) for simple order tree restriction is EQ. 3:  They compared this version of Dempster’s test with
Bai-Saranadasa’s test and their test which we will
(Ry) = I(=t)+05l(r2t) for 1</,t<p (3) discuss after studying their test.

Bai and Saranadasa (1996) also proposed a test
where, | (A) is the indicator of A as above. Insthi for testing the mean difference of t,WO independer?t
study, we mainly interested in one-sided multiveria Samples. They derived its asymptotic power of their
tests which involved both fand R. So the powers of test. Also they derived the asymptotic power of the
the proposed tests are compared fog &d R classical Hotelling’s T test and Dempster’'s non-

including several other correlation matrices. exact test for a two-sample  problem.
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Table 1: Attained significance level of Demptergstt (D), Bai and Saranadasa’s test (BS) and Sawvasind DU’s test(SD) under the null
hypothesis for correlation matrix0d =Ry, O=R,, with all off-diagonal elements equals to -0.5ledl =R, and

0=R,=[p;], p; =-0.5 for j=2i and  =0.7 for elsewhere fot<i,j<p ata =0.05

0=Rq 0=R, 0=R, 0=R,
p n D BS SD D BS SD D BS SD D BS SD
10 5 0.066  0.086 016 0094 0116 0158  0.073 0.1250.081  0.078 0122  0.103
10 0.049  0.058 0.094 0069 0084 0090  0.053 0.0890.050  0.054 0.084  0.058
20 10 0.051  0.055 0.096 0075 0088 0086 0055 960.0 0.038 0052 0088  0.042
20 0.053  0.052 0.072 0061  0.069  0.060  0.045 0.0680.025  0.044 0071  0.029
30 10 0.054  0.056 0.097 0071 0083 0079 0053 880.0 0030 0049 0087  0.035
15 0.053  0.052 0.080 0062 0072 0062  0.047 0.0740.021  0.044 0073  0.023
20 0.055  0.052 0.070 0059 0067 0053  0.046 0.0670.018  0.047 0.074  0.022
30 0.049  0.047 0.060 0.054 0063 0046  0.044 0.0620.015  0.045 0.063  0.018
40 10 0.054  0.057 0.096 0076 0084 0080 0053 9400 0.027 0053 0089  0.030
20 0.056  0.053 0.071 0058 0067 0051  0.047 0.0670.016  0.046 0.072  0.018
30 0.051  0.047 0.062 0054 0062 0043  0.047 0.0640.012  0.048 0.064  0.015
40 0.050  0.045 0.054 0055  0.060 0042  0.048 0.0600.011  0.047 0.060  0.014
50 10 0.057  0.059 0.096 0079 0088 0080 0049 880.0 0023 0052 009  0.024
20 0.056  0.052 0.068 0.065  0.073 0054  0.049 0.069.013  0.050 0.074  0.016
25 0.049  0.046 0.058 0057 0065 0045  0.048 0.0640.013  0.046 0.064  0.014
30 0.049  0.046 0.056 0.058  0.065 0044  0.048 0.0650.012  0.049 0.065  0.014
40 0.052  0.048 0.057 0054 0060 0039  0.049 0.0620.010  0.046 0.060  0.012
50 0.048  0.046 0.050 0051  0.058  0.034  0.047 0.0580.009  0.048 0.062  0.008
60 10 0.054  0.053 0.095 0075 0083 0075 0053 87.0 0022 0052 0085  0.025
20 0.054  0.052 0.066 0.061  0.069 0048  0.048 0.0680.013  0.052 0.073  0.013
30 0.050  0.046 0.057 0054 0062 0038  0.047 0.0630.009  0.046 0.060  0.011
40 0.052  0.050 0.055 0056  0.062 0036  0.045 0.0580.008  0.045 0.059  0.009
50 0.048  0.048 0.050 0056  0.062  0.036  0.049 0.0600.009  0.049 0.058  0.009
60 0.054  0.052 0.056 0.055  0.062 0035  0.050 0.059.008  0.048 0.059  0.009
100 10 0.056  0.054 0.088 0079 0087 0072 0050 08®. 0016 0050 0087  0.017
20 0.053  0.050 0.056 0.064 0072 0046  0.051 0.0700.009  0.051 0.071  0.010
50 0.049  0.047 0.049 0049 0056 0029  0.047 0.0570.005  0.049 0.059  0.005
200 10 0.055  0.056 0.066 0081 0089 0066 0056 0940. 0013 0056 0091  0.012
20 0.051  0.049 0.048 0062 0070 0036  0.051 0.0690.006  0.052 0.071  0.007
50 0.049  0.049 0.045 0050 0056  0.022  0.048 0.0580.002  0.048 0.059  0.003
400 10 0.054  0.055 0.050 0082 0090 0055 0054 0870. 0008 0052 0091  0.008
20 0.053  0.053 0.036 0063 0070 0027  0.054 0.0700.004  0.051 0.070  0.004
50 0.052  0.051 0.040 0053 0059 0015 0049  8.050001 0050 0.059  0.001

They compared their test with Dempster’'s test andovariance form a2 = Ip andZ = (1p)lp + pJp
the classical Hotelling’s “test by a simulation study where Jis a pp matrix with all entries one amul =
shown in Table 1 and 2 in their study which the0.5 for normal case and = 0, 0.3, 0.6and 0.9 for
results showed that both Dempster’'s non-exact teston-normal case.
and their test have higher power than the Hoteling From the fact if the test statistic of the propbse
T2 test when the data dimension is proportionallytest has corrected distribution, then the propaortd
close to the sample size. They claimed that thegpow rejection the null hypothesis under the null
of Dempster’s test and their test are rather clmse  hypothesis is true, or called attained significance
their test has always a higher power than those devel, from the simulation result must close to the
Dempster’s tests. They also claimed that their i®st probability rejecting the null hypothesis when the
still comparatively better than Dempster's testnull hypothesis is true, or called significancedgv
because their test does not rely on the normalityhere isa, which in their study they set the target
assumption. For normal cases and higher dimensiosignificance level asi= 0.5. From Table 1 for non-
the power of Dempster’s test and their test areoatm normal case in their study, the attained signifa=an
the same. The reader should note that theitevel of their test is close ta = 0.05 with the
simulation study showed only on the populationmaximum difference from the target 0.003.
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Table 2: Attained significance level of DF and BSBEnder the null hypothesis when the covariance wegri are
0=R,,0=R;,0=R, and] = R, respectively

0=Rq 0=R, 0=R, 0=R,
p n DF BSF DF BSF DF BSF DF BSF
10 5 0.056 0.060 0.067 0.069 0.058 0.072 0.063 00.07
10 0.051 0.045 0.056 0.053 0.047 0.051 0.053 0.054
20 10 0.051 0.048 0.056 0.053 0.052 0.055 0.049  530.0
20 0.053 0.048 0.049 0.043 0.050 0.046 0.043 0.041
30 10 0.054 0.051 0.054 0.049 0.051 0.053 0.049  52.0
15 0.052 0.049 0.047 0.043 0.051 0.048 0.045 0.044
20 0.056 0.051 0.047 0.042 0.051 0.044 0.047 0.043
30 0.047 0.041 0.046 0.040 0.047 0.038 0.046 0.040
40 10 0.054 0.053 0.055 0.050 0.052 0.053 0.051  540.0
20 0.055 0.050 0.047 0.041 0.050 0.044 0.046 0.041
30 0.051 0.044 0.047 0.040 0.049 0.041 0.048 0.040
40 0.048 0.042 0.041 0.035 0.046 0.036 0.051 0.041
50 10 0.055 0.052 0.057 0.053 0.051 0.053 0.051  530.0
20 0.051 0.047 0.049 0.044 0.050 0.044 0.049 0.045
25 0.048 0.046 0.044 0.039 0.051 0.042 0.050 0.043
30 0.049 0.045 0.045 0.039 0.050 0.042 0.048 0.039
40 0.050 0.043 0.044 0.038 0.050 0.039 0.048 0.038
50 0.049 0.047 0.040 0.034 0.047 0.038 0.049 0.041
60 10 0.057 0.052 0.057 0.052 0.048 0.049 0051  52.0
20 0.050 0.047 0.050 0.043 0.055 0.047 0.049 0.043
30 0.046 0.046 0.045 0.039 0.050 0.040 0.047 0.038
40 0.051 0.045 0.045 0.039 0.048 0.037 0.049 0.038
50 0.051 0.048 0.044 0.038 0.052 0.042 0.047 0.035
60 0.054 0.051 0.045 0.039 0.051 0.039 0.048 0.037
100 10 0.054 0.051 0.058 0.054 0.053 0.054 0.051  0520.
20 0.049 0.047 0.047 0.041 0.051 0.042 0.050 0.044
50 0.047 0.047 0.043 0.036 0.051 0.040 0.049 0.038
200 10 0.052 0.052 0.059 0.054 0.054 0.055 0.053  0540.
20 0.054 0.051 0.049 0.044 0.052 0.043 0.052 0.046
50 0.049 0.047 0.045 0.039 0.050 0.039 0.050 0.038
400 10 0.052 0.054 0.058 0.053 0.055 0.056 0.051  0510.
20 0.057 0.054 0.050 0.043 0.052 0.042 0.053 0.045
50 0.050 0.050 0.044 0.037 0.052 0.040 0.049 60.03

For normal cases as in Table 2 in their study, thé&Vhere:
attained significance level of their test is nobtsd to

0.05with the minimum difference from the target 0.012 nX'X —tr(S) nX'X - tr(S)
meanwhile the attained significance level of Deragst BS= . = .
test is also close to the target for non-normaé dag it {L}E [Zpé F 2n(n-1) (tr(S) 2
is equal to 0.05 for normal case with olly= Ip. It is n-1 2 (n-2)(n+1)

true that all the attained significance level resul )

showed in their study are within the range 0.0386 a _(wS)y,
mentioned in their study but we may be looking dor n-1

better test which gives the attained significaneeel

closer to the target significance level. From thisand z, is the -5) Th quintile of the standard normal
simulation results, it may possible that both theit L "

and Dempster’s test can be used only some covaiarianéj'Str'bUtIon and under conditions

matrix structure cases and they may need to béestud o< jima = im"V) = 5 <o .i=12,34and for
further. Srivastava (2007) and Srivastava and D0O&2 poe PP

also gave the one sample version of Bai andy -o(p), 0<y<i, where); are the eigenvalues of V.

Saranadasa’s test statistic which rejegtad (4) at a - .
significant leveld if: Under the null hypothesis:

BS>z, or BS<-z (Iipr)n P,(BS< )= (2)
2 7 n,p)—
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This test is also invariant under transformationp; = 0.7for elsewhere. Their estimated significanelev
X; - cIX; wherec#0,IT" =1, as Dempster's test does. are computed by using the Monte Carlo method for:

Srivastava (2007) and Srivastava and Du (2008 =10, n =5, 10; p =20, n =10, 20; p = 30, n 3150

P 0, 30; p =40, n = 10, 20, 30,40; p = 50, n = 1M, 3D,
Fer:tpsc,)tz(teiitii-teﬂ for one sample which is based ®n t40 50: p = 60, n = 10, 20, 30, 40, 50, 60: p =, 108

10, 20, 50; p = 200, n = 10, 20, 50; p = 400, n3 10

oras (N-1) 20,50. Each case is repeated 10,000 times and the
o MXDX )P proportion of rejections record for each test. Afl
Sb= o (R these tests are conducted using the level of sigmife
\/2<“<R T ) a = 0.05. It was found in Table 1 that with theiitical

values, the estimated significance level of thestst
a1 ) . except D test statistic with |Runder all covariance
where, R=D.2SD,? is the sample correlation matrix matrices considered, includingsRand R, are not
and D =diag(s, ,--,§, . is the diagonal matrix with the consistent ina = 0.05. That is, the estimated
diagonal elements of S defined in (1). Under condit ~ Significance level of some tests is too large veiime
stated in their study, whén=0, SD is asymptotically covariance matrices meanwhile the other tests tjiee

distributed as N (0, 1). Then this test will rejéts as estimated significance level too small with the esth
(4) at a significant Iév&k if: covariance structure considered. For instance, the

estimated significance level for D’s test approxiaha
SD>z, or SD<- g close toa = 0.05 very well for each covariance
z 2 structure and each p, n considered, the BS's #& g
) ) the estimated significance level reasonably wellyon
where, z4is the u-Z)th quantile of the standard on the simple order for each p, n and gave the poor
normal distribution. They also showed that thig fes estimated Signiﬁcance level for other forms of
an invariant test under the group of scalarcovariance considered and the SD’s test gave an
transformations; - TX;, where T=daig  %....t)  estimated significance level which do not congistit
and §, &, ,...t, are nonzero constants. They claimed by= 0.05. Since BS’s test and SD’s test gave the poor
simulation that for all the components of the rando estimated significance level for non-diagonal
vector are independent, that is, the covarianceirmat covariance matrix, it is shown that these two tesay
is a diagonal matrix, their test has the attainechot suitable for high-dimensional data with non-
significance level given in Table 1 in their study diagonal covariance matrix. But BS'’s test is atstea
reasonably well in all cases. But we can see inldab well on simple order covariance matrix and also Bai
1 in their study that all attained significance dev and Saranadasa (1996) showed that their test, BS's

values vary from 0.035-0.065. There is a number ofest, has asymptotic powers the same as those ©f D’
attaining significance level values differ from 8.0 test, thus we will investigate the D’s test and 8&st
They also claimed that their test has substantiafurther for one-side alternatives.
better power than Dempters’s test and Bai and
Saranadasa’s test which showed only on diagona
covariance structures. They did not show the athin
significance level of their test for other covadan
structures. One may have questions about the pofver
these tests for other forms of covariance strusture and Q, :{x\xi >0i=12..,4, One may apply
~So, we will investigate these tests, Dumpstesss te (Follmann, 1996) test to both D’s test and BS'd.tes
Bai and Saranadasa’s test and Srivastava and B8tS t \when applied to D’s test which is denoted DF, it
for one sample in the othe_r forms of covariancegjects 1 at levela if:
structures mainly on the covariance from the retstd
alternative hypothesesj,:6=0 versusH, -H, where

po_
H,:80Q, and Q, ={x\xi >0 :1,2...,p} , that is, R and D>F2u$[?]v[(l’\—1)7] and ; %>0

Ry as well as the correlation matrix with all off-
diagonal elements equals to -0.5 callec=R,, and the ~ where,F,, /.4 is the (1-2a)" quantile of the central

correlation matrixd =R, =[p, |, p, =-0.5for j=2i and  F-distribution with [f] and [(n-1)ji] degrees of
278
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freedom. By Theorem 2.1 of Follmann (1996), one hasvhere, Z is the (1e)" quantile of the standard
16=0 and the significance level is approximated by:

PI(D>F

=Pr(D>F,

1
=(2a)x=
(2a) 5

=a

M (17

~2a 1] | (n- 1§

n 1X>0)

> Pr(LX> 0)

normal distribution. It also noted that, after Them
2.1 of Follmann (1996), the significance level bist
test isa.

In Table 2., for every p and n > 5 considered, DF
gives the estimated significance level range from
0.047-0.057 for RS, range from 0.044-0.058 for the
RT, range from 0.047-0.055 for the correlation
matrix 0O=R, and range from 0.043-0.053 for

Also, when applied Follmann's idea to BS's test, ' =Rz and BSF gives the estimated significance
called BSF, one may rejecyldt levela if:
BS>z or B& -7

level range from 0.041-0.054 for RS, range from
0.036-0.054 for the R range from 0.036-0.056 for the
correlation matrixd =R, and range from 0.036-0.054

And: for O=R,. It is shown that the estimated
P significance levels of both tests approximate
Zl:Xj >0 reasonably well in all cases considered.
i=
Table 3: Comparison of power of D and DF under tladternative hypothesis when the covariance matrica®
0=R,,0=R;,0=R,and] = R, respectively
0=R, 0=R, O=R, O=R,
p n D DF D DF D DF D DF
10 5 0.552 0.721 0.389 0.475 0.231 0.328 0.166 70.22
10 0.984 0.998 0.635 0.746 0.389 0.593 0.239 0.357
20 10 0.996 0.999 0.563 0.675 0.271 0.423 0.149 630.2
20 1.000 1.000 0.982 0.994 0.824 0.942 0.428 0.603
30 10 1.000 1.000 0.769 0.852 0.440 0.625 0.216 370.3
15 1.000 1.000 0.869 0.932 0.586 0.758 0.283 0.419
20 1.000 1.000 0.968 0.991 0.781 0.939 0.347 0.509
30 1.000 1.000 1.000 1.000 0.982 0.998 0.623 0.784
40 10 1.000 1.000 0.730 0.826 0.387 0.558 0.190 010.3
20 1.000 1.000 0.952 0.983 0.694 0.859 0.322 0.471
30 1.000 1.000 0.996 0.999 0.929 0.988 0.517 0.676
40 1.000 1.000 1.000 1.000 0.969 0.997 0.630 0.776
50 10 1.000 1.000 0.740 0.833 0.390 0.544 0.185 030.3
20 1.000 1.000 0.987 0.996 0.797 0.921 0.407 0.567
25 1.000 1.000 0.999 1.000 0.941 0.988 0.548 0.702
30 1.000 1.000 0.998 0.999 0.913 0.975 0.526 0.679
40 1.000 1.000 1.000 1.000 0.996 1.000 0.745 0.868
50 1.000 1.000 1.000 1.000 0.997 0.999 0.749 0.886
60 10 1.000 1.000 0.744 0.842 0.380 0.556 0.178 860.2
20 1.000 1.000 0.987 0.996 0.780 0.904 0.390 0.549
30 1.000 1.000 0.994 0.999 0.876 0.968 0.446 0.612
40 1.000 1.000 1.000 1.000 0.994 0.999 0.746 0.864
50 1.000 1.000 1.000 1.000 0.998 1.000 0.784 0.894
60 1.000 1.000 1.000 1.000 1.000 1.000 0.890 0.969
100 10 1.000 1.000 0.785 0.871 0.428 0.589 0.216 3280.
20 1.000 1.000 0.975 0.992 0.735 0.872 0.354 0.501
50 1.000 1.000 1.000 1.000 0.999 1.000 0.759 0.886
200 10 1.000 1.000 0.753 0.844 0.391 0.545 0.198 3030.
20 1.000 1.000 0.976 0.993 0.731 0.863 0.357 0.497
50 1.000 1.000 1.000 1.000 0.997 1.000 0.745 0.872
400 10 1.000 1.000 0.768 0.849 0.405 0.56 0.195 990.2
20 1.000 1.000 0.971 0.992 0.699 0.845 0.333 0.475
50 1.000 1.000 1.000 1.000 0.999 1.000 0.787 40.90
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Table 4: Comparison of power of BS and BSF undee thlternative hypothesis when the covariance nestricare
0=R,,0=R;,0=R, and] = R, respectively

0=R, 0=R, O=R, 0=R,
p n BS BSF BS BSF BS BSF BS BSF
10 5 0.643 0.718 0.456 0.488 0.368 0.383 0.247 20.25
10 0.991 0.998 0.698 0.737 0.566 0.621 0.332 0.367
20 10 0.996 0.998 0.619 0.663 0.401 0.440 0.229  490.2
20 1.000 1.000 0.989 0.993 0.893 0.929 0.534 0.591
30 10 1.000 1.000 0.813 0.847 0.587 0.638 0.315 49%0.3
15 1.000 1.000 0.897 0.924 0.692 0.743 0.367 0.410
20 1.000 1.000 0.981 0.988 0.877 0.918 0.436 0.485
30 1.000 1.000 1.000 1.000 0.992 0.996 0.701 0.752
40 10 1.000 1.000 0.780 0.816 0.524 0.569 0.282 120.3
20 1.000 1.000 0.968 0.979 0.780 0.829 0.401 0.445
30 1.000 1.000 0.998 0.999 0.958 0.975 0.583 0.635
40 1.000 1.000 1.000 1.000 0.983 0.993 0.683 0.732
50 10 1.000 1.000 0.785 0.823 0.508 0.550 0.280 110.3
20 1.000 1.000 0.993 0.996 0.861 0.897 0.486 0.535
25 1.000 1.000 0.999 1.000 0.968 0.981 0.617 0.668
30 1.000 1.000 0.999 0.999 0.940 0.960 0.588 0.639
40 1.000 1.000 1.000 1.000 0.998 0.999 0.789 0.832
50 1.000 1.000 1.000 1.000 0.999 0.999 0.795 0.839
60 10 1.000 1.000 0.794 0.832 0.518 0.565 0.267 950.2
20 1.000 1.000 0.993 0.995 0.844 0.882 0.462 0.513
30 1.000 1.000 0.998 0.998 0.915 0.946 0.509 0.564
40 1.000 1.000 1.000 1.000 0.997 0.999 0.788 0.828
50 1.000 1.000 1.000 1.000 0.999 1.000 0.820 0.859
60 1.000 1.000 1.000 1.000 1.000 1.000 0.915 0.944
100 10 1.000 1.000 0.830 0.862 0.548 0.594 0.301 3330
20 1.000 1.000 0.984 0.990 0.801 0.845 0.420 0.465
50 1.000 1.000 1.000 1.000 1.000 1.000 0.796 0.840
200 10 1.000 1.000 0.797 0.833 0.505 0.549 0.276 3070.
20 1.000 1.000 0.985 0.991 0.795 0.837 0.417 0.464
50 1.000 1.000 1.000 1.000 0.998 0.999 0.779 0.826
400 10 1.000 1.000 0.806 0.841 0.519 0.561 0.270 3010.
20 1.000 1.000 0.983 0.989 0.769 0.814 0.391 0.438
50 1.000 1.000 1.000 1.000 1.000 1.000 0.815 60.85
RESULTS significancea = 0.05. Monte-Carlo estimated power of

these two tests is given in Table 3-5.

f Table 3 gives the powers of the D’s test and DF’s
rest in all cases considered. It can be seen that Bst
gives at least better powers than D’'s test doeso Al

To compare these two tests, the performances 9
them are studied by Monte Carlo techniques fo

mu![tly ariate ngrmalhd;s_trl?uu?hns ‘.N'thl the dcorred?tth DF's test gives highest power when p, n large are p
matrices B and R, that is for the simple order and the , 't p " Similar to comparison powers between BS's

simple tree order correlations with equal weights aiast and BSF's test shown in Table 4. BSFE's test
well as some other forms of correlation struc_twesh showed substantially higher power than BS's testsdo
as 0=R, and0=R,. Recall, Rand R are given in i, )| cases considered and also gives highest powe
(2) and (3), respectively. The mean vector for thefor Rsin each p and n > 5. To compare the BSF's test
alternative hypothesis is chosen in the non-negativto DF’s test in all cases considered, Table 5 gitieg
orthant as 0=(Vy, VsV, )5 Vy ;= 0 and powers. For the correlation matrices &d R, both
. ) . BSF’s test and DF’s test almost give the same pswer

v, ~iidUnif(0,1),k =1, 2, ..., p/2 so that the tests will . '

2 P and for correlation matrices ag =R, andd =R, for

be rejected. As before, 10,000 iterations are ubed. ogch p DF’s test gives higher power than the BSF's
each iteration, n multivariate normal X's with tbeosen  test when n >10. Therefore, we can conclude that

mean vector and covariance of the formare generated overall both tests, BSF's test and DF's test, gave
and the proportion of rejections for these tests waalmost the same powers in every p and n and every
recorded. All of these tests are conducted usiadgtrel of  covariance matrices structure considered.
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Table 5: Empirical powers of DF and BSF under thdtermative hypothesis when the covariance matricese
0=R,,0=R;,0=R and] = R, respectively.

0=R, 0=R, 0=R, 0=R,
p n DF BSF DF BSF DF BSF DF BSF
10 5 0.721 0.718 0.475 0.488 0.328 0.383 0.227 20.25
10 0.998 0.998 0.746 0.737 0.593 0.621 0.357 0.367
20 10 0.999 0.998 0.675 0.663 0.423 0.44 0.236 90.24
20 1.000 1.000 0.994 0.993 0.942 0.929 0.603 0.591
30 10 1.000 1.000 0.852 0.847 0.625 0.638 0337 4903
15 1.000 1.000 0.932 0.924 0.758 0.743 0.419 0.410
20 1.000 1.000 0.991 0.988 0.939 0.918 0.509 0.485
30 1.000 1.000 1.000 1.000 0.998 0.996 0.784 0.752
40 10 1.000 1.000 0.826 0.816 0.558 0.569 0301 1203
20 1.000 1.000 0.983 0.979 0.859 0.829 0.471 0.445
30 1.000 1.000 0.999 0.999 0.988 0.975 0.676 0.635
40 1.000 1.000 1.000 1.000 0.997 0.993 0.776 0.732
50 10 1.000 1.000 0.833 0.823 0.544 0.550 0303 1103
20 1.000 1.000 0.996 0.996 0.921 0.897 0.567 0.535
25 1.000 1.000 1.000 1.000 0.988 0.981 0.702 0.668
30 1.000 1.000 0.999 0.999 0.975 0.960 0.679 0.639
40 1.000 1.000 1.000 1.000 1.000 0.999 0.868 0.832
50 1.000 1.000 1.000 1.000 0.999 0.999 0.886 0.839
60 10 1.000 1.000 0.842 0.832 0.556 0.565 0.286  950.2
20 1.000 1.000 0.996 0.995 0.904 0.884 0.549 0.513
30 1.000 1.000 0.999 0.998 0.968 0.946 0.612 0.564
40 1.000 1.000 1.000 1.000 0.999 0.999 0.864 0.828
50 1.000 1.000 1.000 1.000 1.000 1.000 0.894 0.859
60 1.000 1.000 1.000 1.000 1.000 1.000 0.969 0.944
100 10 1.000 1.000 0.871 0.862 0.589 0.594 0.328  33%.
20 1.000 1.000 0.992 0.990 0.872 0.845 0.501 0.465
50 1.000 1.000 1.000 1.000 1.000 1.000 0.886 0.840
200 10 1.000 1.000 0.844 0.833 0.545 0.549 0.303  3070.
20 1.000 1.000 0.993 0.991 0.863 0.837 0.497 0.464
50 1.000 1.000 1.000 1.000 1.000 0.999 0.872 0.826
400 10 1.000 1.000 0.849 0.841 0.560 0.561 0.299  3010.
20 1.000 1.000 0.992 0.989 0.845 0.814 0.475 0.438
50 1.000 1.000 1.000 1.000 1.000 1.000 0.904 60.85

Table 6: Observed p-values for testing the chairggene expression  The results of using these two tests are showralsiel

after treatment for leukemia data 6. The p-values of DF's test and BSF's test eqaal t

_ b il 0.0129, 0.0000 respectively. Thus, all two testsl [eo
L eukemia data S . .
Statistic 115.733 10.7072 the rejection of the hypothesis that the gene esgioes
Average sum 438022 438022 after treatment have the same level as beforanesdt
p-values 0.0129 0.0000

DISCUSSION
Therefore, for protection some gains of using these
tests, we recommend these tests for high dimerisiona At present, there have no such other tests
data when 220 and n > 10 for one-side alternatives.  available for this kind of hypothesis testing oyt
dimensional data yet, the proposed test shoulchbe t
An example: The proposed tests are applied to anpest one available though it works well on some
example of DNA micro array data which the data areconditions or under the circumstances considered in
8280 (p) gene expression information on 110this study. Hopefully, there will be some other
childhoods suffering from acute Iymphoblastic researchers interested in it.
leukemia. To see the changes in gene expressien aft
treatment, the data were cleaned and then obtaireed CONCLUSION
difference of gene expression from before and after
treatment of 50 children in 254 (p) gene expression Since for the data with the number n of available
(http://www.ailab.si/supp/bi-cancer/projectionstinf observations is smaller than the dimension g i), the
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proposed one-sided multivariate tests, DF’'s test anChongcharoen, S., 2009. Powers of some one-sided
BSF's test, have power larger than the tests with multivariate tests with unknown population
unrestricted multivariate alternative tests. This covariance matrix. Songklanakarin J. Sci. Technol.,
comparing the two treatments of data with the — 31:351-359. ) _ )

dimension p larger than the number n of availabl®empster, A.P., 1958. A high dimensional two sample
observations that one believes that for each coateli E%T!ffgqgii/e;gmps\?lni7'\7/|$(t)%438,;at., 29: 995-1010.
the mean responses for treatment one are at lsast e o

large as those for treatment to which at preseereth Bempster, A.P., 1960. A significance test for the

. o separation of two highly multivariate small
have no such other tests available for this kind of samples. Biometrics, 16: 41-50.

hypothesis testing yet, we recommended the proposgemann, ., 1996. A simple multivariate test tore-

tests, DF’s test and BSF's test forz20 and n > 10 sided alternatives. J. Am. Stat. Assoc., 91: 854-
under the circumstances considered in this study. 861.DOI: 10.2307/2291680
Kudo, A., 1963. A multivariate analogue of the one-
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