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Abstract: Problem statement: For a multivariate normal population with size smaller than 
dimension, n<p, the likelihood ratio tests of the null hypothesis that the mean vector was zero with a 
one-sided alternative were no longer valid because they involved with sample covariance matrix which 
was singular. Approach: The test statistics for one-sided multivariate hypotheses with n<p were 
proposed. Results: The simulation study showed that the proposed tests provided reasonable type I 
error rate for one-sided covariance structures. They also give good powers. The application of these 
tests was given by testing of one-sided hypotheses on DNA micro array data. Conclusion: Under that 
there have no such other tests available at present for this kind of hypothesis testing with n<p yet, the 
proposed tests are good ones. However, the methodology is valid for any one-sided hypotheses 
application which involves high-dimensional data.  
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INTRODUCTION 
 
 Suppose one uses a matched-pair design to 
compare the multivariate responses of two treatments. 
If the responses are p dimensional and θ = ( θ1, θ2,…, 
θp) is the difference, treatment one minus treatment 
two, of the mean responses, then one may test the null 
hypothesis, H0: θ1 = θ2=…= θp = 0, to determine if there 
is a difference in the two treatments. Furthermore, if 
one believes that for each coordinate, the mean 
responses for treatment one are at least as large as those 
for treatment two, then the alternative can be 
constrained by H1: θi ≥ 0 for i = 1, 2,…,p. 
 Based on a random sample with n>p from the 
normal distribution with mean θ and covariance matrix 
V, Kudo (1963); Shorack (1967) and Perlman (1969) 
derived the likelihood ratio test of H0 versus H1-H0 for 
the cases in which V is known, known up to a 
multiplicative constant and completely unknown, 
respectively. Because the likelihood ratio tests with 
restricted alternatives are complicated to use, Tang et 
al. (1989) proposed an approximate likelihood ratio test 
and Follmann (1996) proposed one-sided modifications 
of the usual χ2 and Hotelling’s T2 tests of H0 versus ~H0 

that are easier to implement. Using exact computations 
and Monte Carlo methods, Chongcharoen et al. (2002) 
compared the performance of Kudo’s test, Follmann’s 
test, a new test, which is a modification of Follmann’s 

test, the permutation test of Boyett and Shuster (1977) 
and the Tang-Gnecco-Geller test for a known 
covariance matrix and for a partially known covariance 
matrix, they compared the powers of these tests with 
Kudo’s test replaced by Shorack’s test. For a 
completely unknown covariance matrix, Chongcharoen 
(2009) studied the power of these one-sided tests for 
unknown covariance matrices with equal variances and 
unequal variances as well as tests obtained by 
combining the Boyett and Shuster (1977) technique to 
Follmann’s test, the new test, Perlman’s test and the 
Tang-Gnecco-Geller test. 
 In some situations, there are no longer data for n>p. 
That is, when the number n of available observations is 
smaller than the dimension P of the observed vectors. 
For example, the data come from DNA micro arrays 
where thousands of gene expression levels are 
measured in relatively few subjects. The one-sided 
multivariate tests as above are no longer valid for this 
kind of data because the p×p sample covariance matrix 
S is singular with rank n<p, S-1 does not exist. Since 
now there have no one-sided multivariate tests available 
for the data which has the number n of available 
observations is smaller than the dimension p yet, 
therefore the proposed tests were the one-sided 
multivariate tests for the data with n<p. 
 Throughout this study, suppose X1, X2,…,Xn is a 
random sample from a p-dimensional multivariate 
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normal distribution with unknown mean 

1 2 p( , ,..., )′θ = θ θ θ  and unknown positive definite 

covariance matrix V with n≤p. One may consider 
testing the null hypothesis H0: θ = 0 versus H1-H0 
where 1 pH : θ∈ Ω  and { }p i 1, 20;i ,...,px x =Ω = ≥  is the p-

dimensional nonnegative orthant. The sample mean and 
covariance are Eq. 1: 
 

 
n n

i i i

i 1 i 1

X (X X)(X X)
X      and     S  

n n 1= =

′− −= =
−∑ ∑   (1)  

 
when n<p, S is a singular matrix. 
  The hypotheses H0 and H1 also arise in the one-way 
analysis of variance when the means are known to 
satisfy an order restriction. For observations which 
come from k normal populations whose means are 
known to satisfy a simple ordering, i.e., 

S 1 2 kH : ...µ ≤ µ ≤ ≤ µ , Bartholomew (1959; 1961) derived 

the likelihood ratio test of 1 2 k...µ = µ = = µ  with the 

alternative restricted by Hs for the cases of known 
variances and variances known up to a multiplicative 
constant. Suppose the observations of a random sample 
are Yij for i1,2j ,...,n=  and 1,2i ,...,k=  and the sample 

means are 1 2 kY ,Y , ,Y .…  With known variances, 
2 2 2
1 2 k, ,...,σ σ σ , Kudo (1963) noted that for p=k-1, 

1  X Y Y+= −ℓ
ℓ ℓ

 for 1,2,...,p=ℓ , 1 2 pX (X ,X ,...,X )′=  and θ 

= E(X), the hypotheses on µ are equivalent to H0 and 
H1 above, Bartholomew’s and Kudo’s tests are equivalent. 
If the weights 2

i i iw n /= σ  are equal, then the correlation 

matrix for X of simple order restriction is Eq. 2: 
  

S t 0.5 1(R ) I( t) I( t )= = − − =
ℓ

ℓ ℓ  for 1 , t p≤ ≤ℓ   (2) 

 
where, I (A) is the indicator of A. Also, Bartholomew 
(1959; 1961) considered an arbitrary partial order 
restriction, which includes the simple tree order, i.e., 

T 1 iH : µ ≤ µ  for 2,3i ,...,k= . For this ordering, one takes 

differences, 1  1X Y Y+= −ℓ
ℓ

 for 1,2,...,p=ℓ  and with p=k-

1 and wi as above, the correlation matrix of X= 
(X1,X2,…,Xp) for simple order tree restriction is Eq. 3: 
  
 T t 0.5(R ) I( t) I( t)= = + ≠

ℓ
ℓ ℓ  for 1 , t p≤ ≤ℓ   (3) 

 
where, I (A) is the indicator of A as above. In this 
study, we mainly interested in one-sided multivariate 
tests which involved both RS and RT. So the powers of 
the proposed tests are compared for RS and RT 
including several other correlation matrices. 

MATERIALS AND METHODS 

 
The unrestricted alternative test for high 
dimensional multivariate tests: The unrestricted 
alternative test for mean of random sample X1, 
X2,…,Xn with iX iid N( ,V)θ∼  when n<p, that is, the 
tests with the hypothesis Eq. 4: 

 
 0 1 2 p 1 iH : ... 0, H :at least 0θ = θ = = θ = θ ≠   (4) 

 
are proposed by several researchers recently such as: 
  Dempster (1958; 1960) proposed a test for testing 
the mean difference of two independent samples and 
developed its approximate distribution. Srivastava 
(2007) and Srivastava and Du (2008) gave the one 
sample version of Dempster’s test statistic which rejects 
H0 as (4) at a significant level α if:  

 

[ ] [ ]ˆ ˆ; r , (n 1)r

nX X
D F

tr(S) α −

′
= >  

 
Where: 
X  = The sample mean vector  
S = The sample covariance defined as in (1) 
 

ˆ ˆ; r , (n 1)rFα −      
 is the (1-α)

 
th quintile of the F-distribution 

with degrees of freedom [ ]r̂  and [ ]ˆ(n 1)r− , where [ ]a  

denotes the largest integer less than or equal to a and: 
 

2 2 2
21

1 2
2

â tr(S) (n 1) 1 (tr(S))
ˆ ˆ ˆr p , a and a tr(S )

â p (n 2)(n 1) p n 1

 −= = = − − + − 
 

 

Under condition 
i

i i0
p p

(tr(V ))
0 lim a lim a ;

p→∞ →∞
< = = < ∞  

i 1,2,3,4.= This test is the uniformly most powerful test 
among all the test which are invariant under 
transformation i iX c X→ Γ  where 0c ≠

 
and pI′ΓΓ = . 

They compared this version of Dempster’s test with 
Bai-Saranadasa’s test and their test which we will 
discuss after studying their test. 

 
 Bai and Saranadasa (1996) also proposed a test 
for testing the mean difference of two independent 
samples. They derived its asymptotic power of their 
test. Also they derived the asymptotic power of the 
classical Hotelling’s T2 test and Dempster’s non-
exact test for a two-sample problem. 
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Table 1: Attained significance level of Dempter’s test (D), Bai and Saranadasa’s test (BS) and Srivastava and DU’s test(SD) under the null 
hypothesis for correlation matrix SRℜ = , TRℜ = , with all off-diagonal elements equals to -0.5 called 1Rℜ =  and 

2 ijR , ℜ = = ρ  ij 0.5ρ = −  for j=2i and pij =0.7 for elsewhere for 1 i, j p≤ ≤  at α =0.05 

  SRℜ =    TRℜ =    1Rℜ =    2Rℜ =  

  -------------------------- ------- -------------------------------- --------------------------------- -------------------------------- 
p n D BS SD D BS SD D BS SD D BS SD 

10 5 0.066 0.086 0.16 0.094 0.116 0.158 0.073 0.125 0.081 0.078 0.122 0.103 
 10 0.049 0.058 0.094 0.069 0.084 0.090 0.053 0.089 0.050 0.054 0.084 0.058 
20 10 0.051 0.055 0.096 0.075 0.088 0.086 0.055 0.096 0.038 0.052 0.088 0.042 
 20 0.053 0.052 0.072 0.061 0.069 0.060 0.045 0.068 0.025 0.044 0.071 0.029 
30 10 0.054 0.056 0.097 0.071 0.083 0.079 0.053 0.088 0.030 0.049 0.087 0.035 
 15 0.053 0.052 0.080 0.062 0.072 0.062 0.047 0.074 0.021 0.044 0.073 0.023 
 20 0.055 0.052 0.070 0.059 0.067 0.053 0.046 0.067 0.018 0.047 0.074 0.022 
 30 0.049 0.047 0.060 0.054 0.063 0.046 0.044 0.062 0.015 0.045 0.063 0.018 
40 10 0.054 0.057 0.096 0.076 0.084 0.080 0.053 0.094 0.027 0.053 0.089 0.030 
 20 0.056 0.053 0.071 0.058 0.067 0.051 0.047 0.067 0.016 0.046 0.072 0.018 
 30 0.051 0.047 0.062 0.054 0.062 0.043 0.047 0.064 0.012 0.048 0.064 0.015 
 40 0.050 0.045 0.054 0.055 0.060 0.042 0.048 0.060 0.011 0.047 0.060 0.014 
50 10 0.057 0.059 0.096 0.079 0.088 0.080 0.049 0.088 0.023 0.052 0.090 0.024 
 20 0.056 0.052 0.068 0.065 0.073 0.054 0.049 0.069 0.013 0.050 0.074 0.016 
 25 0.049 0.046 0.058 0.057 0.065 0.045 0.048 0.064 0.013 0.046 0.064 0.014 
 30 0.049 0.046 0.056 0.058 0.065 0.044 0.048 0.065 0.012 0.049 0.065 0.014 
 40 0.052 0.048 0.057 0.054 0.060 0.039 0.049 0.062 0.010 0.046 0.060 0.012 
 50 0.048 0.046 0.050 0.051 0.058 0.034 0.047 0.058 0.009 0.048 0.062 0.008 
60 10 0.054 0.053 0.095 0.075 0.083 0.075 0.053 0.087 0.022 0.052 0.085 0.025 
 20 0.054 0.052 0.066 0.061 0.069 0.048 0.048 0.068 0.013 0.052 0.073 0.013 
 30 0.050 0.046 0.057 0.054 0.062 0.038 0.047 0.063 0.009 0.046 0.060 0.011 
 40 0.052 0.050 0.055 0.056 0.062 0.036 0.045 0.058 0.008 0.045 0.059 0.009 
 50 0.048 0.048 0.050 0.056 0.062 0.036 0.049 0.060 0.009 0.049 0.058 0.009 
 60 0.054 0.052 0.056 0.055 0.062 0.035 0.050 0.059 0.008 0.048 0.059 0.009 
100 10 0.056 0.054 0.088 0.079 0.087 0.072 0.050 0.089 0.016 0.050 0.087 0.017 
 20 0.053 0.050 0.056 0.064 0.072 0.046 0.051 0.070 0.009 0.051 0.071 0.010 
 50 0.049 0.047 0.049 0.049 0.056 0.029 0.047 0.057 0.005 0.049 0.059 0.005 
200 10 0.055 0.056 0.066 0.081 0.089 0.066 0.056 0.094 0.013 0.056 0.091 0.012 
 20 0.051 0.049 0.048 0.062 0.070 0.036 0.051 0.069 0.006 0.052 0.071 0.007 
 50 0.049 0.049 0.045 0.050 0.056 0.022 0.048 0.058 0.002 0.048 0.059 0.003 
400 10 0.054 0.055 0.050 0.082 0.090 0.055 0.054 0.087 0.008 0.052 0.091 0.008 
 20 0.053 0.053 0.036 0.063 0.070 0.027 0.054 0.070 0.004 0.051 0.070 0.004 
  50 0.052 0.051 0.040 0.053 0.059 0.015 0.049 0.058 0.001 0.050 0.059 0.001 

 
They compared their test with Dempster’s test and 
the classical Hotelling’s T2 test by a simulation study 
shown in Table 1 and 2 in their study which the 
results showed that both Dempster’s non-exact test 
and their test have higher power than the Hotelling’s 
T2 test when the data dimension is proportionally 
close to the sample size. They claimed that the power 
of Dempster’s test and their test are rather close but 
their test has always a higher power than those of 
Dempster’s tests. They also claimed that their test is 
still comparatively better than Dempster’s test 
because their test does not rely on the normality 
assumption. For normal cases and higher dimension 
the power of Dempster’s test and their test are almost 
the same. The reader should note that their 
simulation study showed only on the population 

covariance form as Σ = IP and Σ = (1-ρ)IP + ρJP 
where Jp 

is a p×p matrix with all entries one and ρ = 
0.5 for normal case and ρ = 0, 0.3, 0.6

 
and 0.9 for 

non-normal case. 
 From the fact if the test statistic of the proposed 
test has corrected distribution, then the proportion of 
rejection the null hypothesis under the null 
hypothesis is true, or called attained significance 
level, from the simulation result must close to the 
probability rejecting the null hypothesis when the 
null hypothesis is true, or called significance level, 
here is α, which in their study they set the target 
significance level as α= 0.5. From Table 1 for non-
normal case in their study, the attained significance 
level of their test is close to α = 0.05 with the 
maximum difference from the target 0.003. 
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Table 2: Attained significance level of DF and BSF under the null hypothesis when the covariance matrices are 

S T 1 2R , R , R and Rℜ = ℜ = ℜ = ℜ = , respectively 

  SRℜ =   TRℜ =   1Rℜ =   2Rℜ =  

  ---------------------------- ------------------------ ---------------------- ----------------------- 
p n DF BSF DF BSF DF BSF DF BSF  
10 5 0.056 0.060 0.067 0.069 0.058 0.072 0.063 0.070 
 10 0.051 0.045 0.056 0.053 0.047 0.051 0.053 0.054 
20 10 0.051 0.048 0.056 0.053 0.052 0.055 0.049 0.053 
 20 0.053 0.048 0.049 0.043 0.050 0.046 0.043 0.041 
30 10 0.054 0.051 0.054 0.049 0.051 0.053 0.049 0.052 
 15 0.052 0.049 0.047 0.043 0.051 0.048 0.045 0.044 
 20 0.056 0.051 0.047 0.042 0.051 0.044 0.047 0.043 
 30 0.047 0.041 0.046 0.040 0.047 0.038 0.046 0.040 
40 10 0.054 0.053 0.055 0.050 0.052 0.053 0.051 0.054 
 20 0.055 0.050 0.047 0.041 0.050 0.044 0.046 0.041 
 30 0.051 0.044 0.047 0.040 0.049 0.041 0.048 0.040 
 40 0.048 0.042 0.041 0.035 0.046 0.036 0.051 0.041 
50 10 0.055 0.052 0.057 0.053 0.051 0.053 0.051 0.053 
 20 0.051 0.047 0.049 0.044 0.050 0.044 0.049 0.045 
 25 0.048 0.046 0.044 0.039 0.051 0.042 0.050 0.043 
 30 0.049 0.045 0.045 0.039 0.050 0.042 0.048 0.039 
 40 0.050 0.043 0.044 0.038 0.050 0.039 0.048 0.038 
 50 0.049 0.047 0.040 0.034 0.047 0.038 0.049 0.041 
60 10 0.057 0.052 0.057 0.052 0.048 0.049 0.051 0.052 
 20 0.050 0.047 0.050 0.043 0.055 0.047 0.049 0.043 
 30 0.046 0.046 0.045 0.039 0.050 0.040 0.047 0.038 
 40 0.051 0.045 0.045 0.039 0.048 0.037 0.049 0.038 
 50 0.051 0.048 0.044 0.038 0.052 0.042 0.047 0.035 
 60 0.054 0.051 0.045 0.039 0.051 0.039 0.048 0.037 
100 10 0.054 0.051 0.058 0.054 0.053 0.054 0.051 0.052 
 20 0.049 0.047 0.047 0.041 0.051 0.042 0.050 0.044 
 50 0.047 0.047 0.043 0.036 0.051 0.040 0.049 0.038 
200 10 0.052 0.052 0.059 0.054 0.054 0.055 0.053 0.054 
 20 0.054 0.051 0.049 0.044 0.052 0.043 0.052 0.046 
 50 0.049 0.047 0.045 0.039 0.050 0.039 0.050 0.038 
400 10 0.052 0.054 0.058 0.053 0.055 0.056 0.051 0.051 
 20 0.057 0.054 0.050 0.043 0.052 0.042 0.053 0.045 
  50 0.050 0.050 0.044 0.037 0.052 0.040 0.049 0.036 

 
For normal cases as in Table 2 in their study, the 
attained significance level of their test is not close to 
0.05 with the minimum difference from the target 0.012 
meanwhile the attained significance level of Dempster’s 
test is also close to the target for non-normal case but it 
is equal to 0.05 for normal case with only Σ = IP. It is 
true that all the attained significance level results 
showed in their study are within the range 0.0316 as 
mentioned in their study but we may be looking for a 
better test which gives the attained significance level 
closer to the target significance level. From this 
simulation results, it may possible that both their test 
and Dempster’s test can be used only some covariance 
matrix structure cases and they may need to be studied 
further. Srivastava (2007) and Srivastava and Du (2008) 
also gave the one sample version of Bai and 
Saranadasa’s test statistic which reject H0 as (4) at a 
significant level α if:  
 

2 2
BS z or BS zα α> < −

 

Where: 
 

1 11
2 222

2

2

nX X tr(S) nX X tr(S)
BS

n 2n(n 1)
ˆ2pa (tr(S )

n 1 (n 2)(n 1)

(tr(S))
)

n 1

′ ′− −= =
−    

    − − +   
 
 −

− 

 

 
and 

2
zα is the 1( )

2
α− Th quintile of the standard normal 

distribution and under conditions 
i

i
p p

(tr(V ))
0 lim a lim

p→∞ →∞
< = =  i0a ,i 1,2,3,4< ∞ =  and for 

i O(p ),γλ =  1
20 ,≤ γ ≤  where λi are the eigenvalues of V. 

Under the null hypothesis: 
 

0
(n,p)
lim P (BS z) (z)

→∞
≤ = Φ  
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 This test is also invariant under transformation 

i iX c X→ Γ  where 0c ≠ , pI′ΓΓ =  as Dempster’s test does. 

 Srivastava (2007) and Srivastava and Du (2008) 
proposed a test for one sample which is based on the 
test statistic: 
 

3
2

1
S

2 2
2

(n 1)
nX D X p

(n 3)
SD

p tr(R )
2(tr(R ) )(1 )

n 1 p

− −′ −
−=

− +
−

 

 

where, 
1 1
2 2

S SR D SD
− −=  is the sample correlation matrix 

and 11 ppD diag(s ,...,s )=  is the diagonal matrix with the 

diagonal elements of S defined in (1). Under conditions 
stated in their study, when 0θ = , SD is asymptotically 
distributed as N (0, 1). Then this test will reject H0 as 
(4) at a significant level α if:  
 

2 2
SD z or SD zα α> < −  

 
where, 

2
zα is the 1( )

2
α− th quantile of the standard 

normal distribution. They also showed that this test is 
an invariant test under the group of scalar 
transformations i iX TX→ , where T=daig (t1, t2,…,tp) 
and t1, t2 ,…tp are nonzero constants. They claimed by 
simulation that for all the components of the random 
vector are independent, that is, the covariance matrix 
is a diagonal matrix, their test has the attained 
significance level given in Table 1 in their study 
reasonably well in all cases. But we can see in Table 
1 in their study that all attained significance level 
values vary from 0.035-0.065. There is a number of 
attaining significance level values differ from 0.05. 
They also claimed that their test has substantial 
better power than Dempters’s test and Bai and 
Saranadasa’s test which showed only on diagonal 
covariance structures. They did not show the attained 
significance level of their test for other covariance 
structures. One may have questions about the power of 
these tests for other forms of covariance structures. 
 So, we will investigate these tests, Dumpster’s test, 
Bai and Saranadasa’s test and Srivastava and Du’s test, 
for one sample in the other forms of covariance 
structures mainly on the covariance from the restricted 
alternative hypotheses, 0H : 0θ =  versus 1 0H H−  where 

1 pH : θ∈ Ω  and { }p i 1, 20;i ,..., px x =Ω = ≥ , that is, RS and 

RT as well as the correlation matrix with all off-
diagonal elements equals to -0.5 called 1R ,ℜ =  and the 

correlation matrix 2 ijR , ℜ = = ρ  ij 0.5ρ = − for j=2i and 

pij = 0.7for elsewhere. Their estimated significant levels 
are computed by using the Monte Carlo method for:  
p =10, n = 5, 10; p =20, n = 10, 20; p = 30, n = 10,15, 
20, 30; p =40, n = 10, 20, 30,40; p = 50, n = 10, 20, 30, 
40 ,50; p = 60, n = 10, 20, 30, 40, 50, 60; p = 100, n = 
10, 20, 50; p = 200, n = 10, 20, 50; p = 400, n= 10, 
20,50. Each case is repeated 10,000 times and the 
proportion of rejections record for each test. All of 
these tests are conducted using the level of significance 
α = 0.05. It was found in Table 1 that with their critical 
values, the estimated significance level of these tests, 
except D test statistic with RS, under all covariance 
matrices considered, including RS and RT, are not 
consistent in α = 0.05. That is, the estimated 
significance level of some tests is too large with some 
covariance matrices meanwhile the other tests give the 
estimated significance level too small with the other 
covariance structure considered. For instance, the 
estimated significance level for D’s test approximately 
close to α = 0.05 very well for each covariance 
structure and each p, n considered, the BS’s test gave 
the estimated significance level reasonably well only 
on the simple order for each p, n and gave the poor 
estimated significance level for other forms of 
covariance considered and the SD’s test gave an 
estimated significance level which do not consist to α 
= 0.05. Since BS’s test and SD’s test gave the poor 
estimated significance level for non-diagonal 
covariance matrix, it is shown that these two tests may 
not suitable for high-dimensional data with non-
diagonal covariance matrix. But BS’s test is at least 
well on simple order covariance matrix and also Bai 
and Saranadasa (1996) showed that their test, BS’s 
test, has asymptotic powers the same as those of D’s 
test, thus we will investigate the D’s test and BS’s test 
further for one-side alternatives. 
 
The restricted alternative proposed tests for high 
dimensional multivariate tests: For the tests with 
restricted alternatives, that is, to test the null 
hypothesis 0H : 0θ =  versus 1 0H H−  where 1 pH : θ∈ Ω  

and { }p i 1, 20;i ,..., px x =Ω = ≥ , one may apply 

(Follmann, 1996) test to both D’s test and BS’s test. 
When applied to D’s test which is denoted DF, it 
rejects H0 at level α if:  
 

[ ] [ ]

p

jˆ ˆ2 ; r , (n 1)r
j 1

D F and X 0α −
=

> >∑  

 
where, [ ] [ ]ˆ ˆ2 ; r , (n 1)rF α − is the th(1 2 )− α  quantile of the central 

F–distribution with [ ]r̂  and [ ]ˆ(n 1)r−  degrees of 
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freedom. By Theorem 2.1 of Follmann (1996), one has 
1 0′θ =  and the significance level is approximated by: 
 

[ ] [ ]

[ ] [ ]

ˆ ˆ1 2 , r , (n 1)r

ˆ ˆ1 2 , r , (n 1)r

Pr(D F 1 X 0)

Pr(D F )Pr(1 X 0)

1
(2 )

2

− α −

− α −

′> ∩ >

′= > >

= α ×

= α

 

 
 Also, when applied Follmann’s idea to BS’s test, 
called BSF, one may reject H0 at level α if: 

BS z or BS zα α> < −  
 
And: 
 

p

j
j 1

X 0
=

>∑  

where, Zα is the (1-α)th quantile of the standard 
normal distribution. It also noted that, after Theorem 
2.1 of Follmann (1996), the significance level of this 
test is α. 
 In Table 2., for every p and n > 5 considered, DF 
gives the estimated significance level range from 
0.047-0.057 for RS, range from 0.044-0.058 for the 
RT, range from 0.047-0.055 for the correlation 
matrix 1Rℜ =  and range from 0.043-0.053 for 

2Rℜ =  and BSF gives the estimated significance 
level range from 0.041-0.054 for RS, range from 
0.036-0.054 for the RT, range from 0.036-0.056 for the 
correlation matrix 1Rℜ =  and range from 0.036-0.054 

for 2Rℜ = . It is shown that the estimated 

significance levels of both tests approximate 
reasonably well in all cases considered.

 
Table 3: Comparison of power of D and DF under the alternative hypothesis when the covariance matrices are 

S T 1 2R , R , R and Rℜ = ℜ = ℜ = ℜ = , respectively  

  SRℜ =   TRℜ =   1Rℜ =   2Rℜ =  

  -------------------------- ----------------------- ---------------------- -------------------------- 
p n D DF D DF D DF D DF 
10 5 0.552 0.721 0.389 0.475 0.231 0.328 0.166 0.227 
 10 0.984 0.998 0.635 0.746 0.389 0.593 0.239 0.357 
20 10 0.996 0.999 0.563 0.675 0.271 0.423 0.149 0.263 
 20 1.000 1.000 0.982 0.994 0.824 0.942 0.428 0.603 
30 10 1.000 1.000 0.769 0.852 0.440 0.625 0.216 0.337 
 15 1.000 1.000 0.869 0.932 0.586 0.758 0.283 0.419 
 20 1.000 1.000 0.968 0.991 0.781 0.939 0.347 0.509 
 30 1.000 1.000 1.000 1.000 0.982 0.998 0.623 0.784 
40 10 1.000 1.000 0.730 0.826 0.387 0.558 0.190 0.301 
 20 1.000 1.000 0.952 0.983 0.694 0.859 0.322 0.471 
 30 1.000 1.000 0.996 0.999 0.929 0.988 0.517 0.676 
 40 1.000 1.000 1.000 1.000 0.969 0.997 0.630 0.776 
50 10 1.000 1.000 0.740 0.833 0.390 0.544 0.185 0.303 
 20 1.000 1.000 0.987 0.996 0.797 0.921 0.407 0.567 
 25 1.000 1.000 0.999 1.000 0.941 0.988 0.548 0.702 
 30 1.000 1.000 0.998 0.999 0.913 0.975 0.526 0.679 
 40 1.000 1.000 1.000 1.000 0.996 1.000 0.745 0.868 
 50 1.000 1.000 1.000 1.000 0.997 0.999 0.749 0.886 
60 10 1.000 1.000 0.744 0.842 0.380 0.556 0.178 0.286 
 20 1.000 1.000 0.987 0.996 0.780 0.904 0.390 0.549 
 30 1.000 1.000 0.994 0.999 0.876 0.968 0.446 0.612 
 40 1.000 1.000 1.000 1.000 0.994 0.999 0.746 0.864 
 50 1.000 1.000 1.000 1.000 0.998 1.000 0.784 0.894 
 60 1.000 1.000 1.000 1.000 1.000 1.000 0.890 0.969 
100 10 1.000 1.000 0.785 0.871 0.428 0.589 0.216 0.328 
 20 1.000 1.000 0.975 0.992 0.735 0.872 0.354 0.501 
 50 1.000 1.000 1.000 1.000 0.999 1.000 0.759 0.886 
200 10 1.000 1.000 0.753 0.844 0.391 0.545 0.198 0.303 
 20 1.000 1.000 0.976 0.993 0.731 0.863 0.357 0.497 
 50 1.000 1.000 1.000 1.000 0.997 1.000 0.745 0.872 
400 10 1.000 1.000 0.768 0.849 0.405 0.56 0.195 0.299 
 20 1.000 1.000 0.971 0.992 0.699 0.845 0.333 0.475 
  50 1.000 1.000 1.000 1.000 0.999 1.000 0.787 0.904
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Table 4: Comparison of power of BS and BSF under the alternative hypothesis when the covariance matrices are 

S T 1 2R , R , R and Rℜ = ℜ = ℜ = ℜ = , respectively 

  SRℜ =    TRℜ =    1Rℜ =    2Rℜ =  

  ---------------------------- -------------------------- ------------------------ --------------------- 
p n BS BSF BS BSF BS BSF BS BSF 
10 5 0.643 0.718 0.456 0.488 0.368 0.383 0.247 0.252 
 10 0.991 0.998 0.698 0.737 0.566 0.621 0.332 0.367 
20 10 0.996 0.998 0.619 0.663 0.401 0.440 0.229 0.249 
 20 1.000 1.000 0.989 0.993 0.893 0.929 0.534 0.591 
30 10 1.000 1.000 0.813 0.847 0.587 0.638 0.315 0.349 
 15 1.000 1.000 0.897 0.924 0.692 0.743 0.367 0.410 
 20 1.000 1.000 0.981 0.988 0.877 0.918 0.436 0.485 
 30 1.000 1.000 1.000 1.000 0.992 0.996 0.701 0.752 
40 10 1.000 1.000 0.780 0.816 0.524 0.569 0.282 0.312 
 20 1.000 1.000 0.968 0.979 0.780 0.829 0.401 0.445 
 30 1.000 1.000 0.998 0.999 0.958 0.975 0.583 0.635 
 40 1.000 1.000 1.000 1.000 0.983 0.993 0.683 0.732 
50 10 1.000 1.000 0.785 0.823 0.508 0.550 0.280 0.311 
 20 1.000 1.000 0.993 0.996 0.861 0.897 0.486 0.535 
 25 1.000 1.000 0.999 1.000 0.968 0.981 0.617 0.668 
 30 1.000 1.000 0.999 0.999 0.940 0.960 0.588 0.639 
 40 1.000 1.000 1.000 1.000 0.998 0.999 0.789 0.832 
 50 1.000 1.000 1.000 1.000 0.999 0.999 0.795 0.839 
60 10 1.000 1.000 0.794 0.832 0.518 0.565 0.267 0.295 
 20 1.000 1.000 0.993 0.995 0.844 0.882 0.462 0.513 
 30 1.000 1.000 0.998 0.998 0.915 0.946 0.509 0.564 
 40 1.000 1.000 1.000 1.000 0.997 0.999 0.788 0.828 
 50 1.000 1.000 1.000 1.000 0.999 1.000 0.820 0.859 
 60 1.000 1.000 1.000 1.000 1.000 1.000 0.915 0.944 
100 10 1.000 1.000 0.830 0.862 0.548 0.594 0.301 0.333 
 20 1.000 1.000 0.984 0.990 0.801 0.845 0.420 0.465 
 50 1.000 1.000 1.000 1.000 1.000 1.000 0.796 0.840 
200 10 1.000 1.000 0.797 0.833 0.505 0.549 0.276 0.307 
 20 1.000 1.000 0.985 0.991 0.795 0.837 0.417 0.464 
 50 1.000 1.000 1.000 1.000 0.998 0.999 0.779 0.826 
400 10 1.000 1.000 0.806 0.841 0.519 0.561 0.270 0.301 
 20 1.000 1.000 0.983 0.989 0.769 0.814 0.391 0.438 
  50 1.000 1.000 1.000 1.000 1.000 1.000 0.815 0.856 

 
RESULTS 

 
 To compare these two tests, the performances of 
them are studied by Monte Carlo techniques for 
multivariate normal distributions with the correlation 
matrices RS and RT, that is for the simple order and the 
simple tree order correlations with equal weights as 
well as some other forms of correlation structures such 
as 1Rℜ =  and 2Rℜ = . Recall, RS and RT are given in 

(2) and (3), respectively. The mean vector for the 
alternative hypothesis is chosen in the non-negative 
orthant as 1 2 p 2k 1(v ,v ,..., v ) ; v 0−′θ = =  and 

2kv iid Unif (0,1),∼ k =1, 2, …, p/2 so that the tests will 

be rejected. As before, 10,000 iterations are used. In 
each iteration, n multivariate normal X’s with the chosen 
mean vector and covariance of the form ℜ  are generated 
and the proportion of rejections for these tests was 
recorded. All of these tests are conducted using the level of 

significance α = 0.05. Monte-Carlo estimated power of 
these two tests is given in Table 3-5.  
 Table 3 gives the powers of the D’s test and DF’s 
test in all cases considered. It can be seen that DF’s test 
gives at least better powers than D’s test does. Also 
DF’s test gives highest power when p, n large and p>> 
n for RS. Similar to comparison powers between BS’s 
test and BSF’s test, shown in Table 4. BSF’s test 
showed substantially higher power than BS’s test does 
in all cases considered and also gives highest power 
for RS in each p and n > 5. To compare the BSF’s test 
to DF’s test in all cases considered, Table 5 gives their 
powers. For the correlation matrices RS and RT, both 
BSF’s test and DF’s test almost give the same powers 
and for correlation matrices as 1Rℜ =  and 2Rℜ = , for 
each p DF’s test gives higher power than the BSF’s 
test when n >10. Therefore, we can conclude that 
overall both tests, BSF’s test and DF’s test, gave 
almost the same powers in every p and n and every 
covariance matrices structure considered.  
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Table 5: Empirical powers of DF and BSF under the alternative hypothesis when the covariance matrices are 

S T 1 2R , R , R and Rℜ = ℜ = ℜ = ℜ = , respectively. 

  SRℜ =    TRℜ =    1Rℜ =   2Rℜ =  

  -------------------------- ------------------------ ----------------------- ---------------------- 
p n DF BSF DF BSF DF BSF DF BSF 
10 5 0.721 0.718 0.475 0.488 0.328 0.383 0.227 0.252 
 10 0.998 0.998 0.746 0.737 0.593 0.621 0.357 0.367 
20 10 0.999 0.998 0.675 0.663 0.423 0.44 0.236 0.249 
 20 1.000 1.000 0.994 0.993 0.942 0.929 0.603 0.591 
30 10 1.000 1.000 0.852 0.847 0.625 0.638 0.337 0.349 
 15 1.000 1.000 0.932 0.924 0.758 0.743 0.419 0.410 
 20 1.000 1.000 0.991 0.988 0.939 0.918 0.509 0.485 
 30 1.000 1.000 1.000 1.000 0.998 0.996 0.784 0.752 
40 10 1.000 1.000 0.826 0.816 0.558 0.569 0.301 0.312 
 20 1.000 1.000 0.983 0.979 0.859 0.829 0.471 0.445 
 30 1.000 1.000 0.999 0.999 0.988 0.975 0.676 0.635 
 40 1.000 1.000 1.000 1.000 0.997 0.993 0.776 0.732 
50 10 1.000 1.000 0.833 0.823 0.544 0.550 0.303 0.311 
 20 1.000 1.000 0.996 0.996 0.921 0.897 0.567 0.535 
 25 1.000 1.000 1.000 1.000 0.988 0.981 0.702 0.668 
 30 1.000 1.000 0.999 0.999 0.975 0.960 0.679 0.639 
 40 1.000 1.000 1.000 1.000 1.000 0.999 0.868 0.832 
 50 1.000 1.000 1.000 1.000 0.999 0.999 0.886 0.839 
60 10 1.000 1.000 0.842 0.832 0.556 0.565 0.286 0.295 
 20 1.000 1.000 0.996 0.995 0.904 0.884 0.549 0.513 
 30 1.000 1.000 0.999 0.998 0.968 0.946 0.612 0.564 
 40 1.000 1.000 1.000 1.000 0.999 0.999 0.864 0.828 
 50 1.000 1.000 1.000 1.000 1.000 1.000 0.894 0.859 
 60 1.000 1.000 1.000 1.000 1.000 1.000 0.969 0.944 
100 10 1.000 1.000 0.871 0.862 0.589 0.594 0.328 0.333 
 20 1.000 1.000 0.992 0.990 0.872 0.845 0.501 0.465 
 50 1.000 1.000 1.000 1.000 1.000 1.000 0.886 0.840 
200 10 1.000 1.000 0.844 0.833 0.545 0.549 0.303 0.307 
 20 1.000 1.000 0.993 0.991 0.863 0.837 0.497 0.464 
 50 1.000 1.000 1.000 1.000 1.000 0.999 0.872 0.826 
400 10 1.000 1.000 0.849 0.841 0.560 0.561 0.299 0.301 
 20 1.000 1.000 0.992 0.989 0.845 0.814 0.475 0.438 
  50 1.000 1.000 1.000 1.000 1.000 1.000 0.904 0.856 

 
Table 6: Observed p-values for testing the changes in gene expression 

after treatment for leukemia data 
 DF BSF   
Leukemia data 
Statistic  115.733  10.7072 
Average sum  438022  438022 
p-values  0.0129  0.0000 

 
Therefore, for protection some gains of using these two 
tests, we recommend these tests for high dimensional 
data when p ≥20 and n > 10 for one-side alternatives. 
 
An example: The proposed tests are applied to an 
example of DNA micro array data which the data are 
8280 (p) gene expression information on 110 
childhoods suffering from acute lymphoblastic 
leukemia. To see the changes in gene expression after 
treatment, the data were cleaned and then obtained the 
difference of gene expression from before and after 
treatment of 50 children in 254 (p) gene expressions 
(http://www.ailab.si/supp/bi-cancer/projections/info). 

The results of using these two tests are shown in Table 
6. The p-values of DF’s test and BSF’s test equal to 
0.0129, 0.0000 respectively. Thus, all two tests lead to 
the rejection of the hypothesis that the gene expressions 
after treatment have the same level as before treatment. 
 

DISCUSSION 
 
 At present, there have no such other tests 
available for this kind of hypothesis testing on high-
dimensional data yet, the proposed test should be the 
best one available though it works well on some 
conditions or under the circumstances considered in 
this study. Hopefully, there will be some other 
researchers interested in it. 
 

CONCLUSION 
 
 Since for the data with the number n of available 
observations is smaller than the dimension p (n ≤ p), the 
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proposed one-sided multivariate tests, DF’s test and 
BSF’s test, have power larger than the tests with 
unrestricted multivariate alternative tests. Thus, for 
comparing the two treatments of data with the 
dimension p larger than the number n of available 
observations that one believes that for each coordinate 
the mean responses for treatment one are at least as 
large as those for treatment to which at present there 
have no such other tests available for this kind of 
hypothesis testing yet, we recommended the proposed 
tests, DF’s test and BSF‘s test for p ≥ 20 and n > 10 
under the circumstances considered in this study. 
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