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Abstract: Classical epidemic models assume that the sizéeototal population is constant. More
recent models consider a population size variabl@ke into account a longer period with death and
disease causing reduced reproductive. The moddhiosna disease-free equilibrium and one or
multiple equilibria are endemic. The stability oflsease-free status equilibrium and the existefice
other nontrivial equilibria can be determined bg thtio called the basic reproductive number, which
quantifies the number of secondary infections afisen a simple put infected in a population of
sensitive. First, the local stability of the infiect-free equilibrium and endemic equilibrium were
analyzed, respectively. Second, the endemic equitibwas formulated in terms of the incidence rate
and local asymptotic stability. Finally we applite adomian decomposition method to the system
Epidemiologic. This method yields an analyticalsian in terms of convergent infinite power series.
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INTRODUCTION Model equations. The system is described by

. ) . _equations which are defined as follows Eq. 1:
Classical epidemic models assume that the size of

the total population is constant. More recent medel
consider a population size variable to take into|. '
account a longer period with death and diseaseS()=M+y—k, ~B)S()-al(t)~ kSOI(W)* v,
causing reduced reproductive. i
Ge%erally, a IOmodel contains a disease-free IO =BSO = ¢, +y =IO +kSOIO +p, (1)
equilibrium and one or multiple equilibria are emie. Q(t) = yI(t) - yS(t) - 1, Q(t).
The stability of a disease-free status equilibramd the
existence of other nontrivial equilibria can be

determined by the ratio called the basic reprogacti S(0), I(t) and Q(t) denote the sizes of the poiita
number, which quantifies the number of secondang,sceptible to disease and infectious members,
infections arise from a simple put infected in agyarantine members with the possibility of infeatio
population of sensitive. o through temporary immunity, respectively. Wheret)S (
In this study, we discuss the equilibrium and .| ) +Q (1) = N (t) denotes the population sizdime t;
stability of the model SIQS epidemic with a constan it is” gssumed that all new burns are susceptibie T
infectious period which is made. Most models used i hqsitive constantg,, p, andp; represent the death rates
studies of dynamics of epidemics have used a simplgs sysceptible, infectious and quarantine. The tivesi
description of the process of the disease. A paBIic constanispy and y represent the birth rate (from
assumption is made that the time which 'nd'V'dua|,3incidence) of the population and the recovery raite
remain infectious can be described by an exporlentignsection, respectively. The positive constant§d is the
distribution. This distribution corresponds to the average numbers of contacts infective for S arithe
assumption that the chances in a given time inteme  gjiive constant is the number of transfer or conversion
independent of time since infection. In fact, infees 5 infected people quarantined. K the rate of umkmo
diseases increasing function. These conditionswallo persons infected with are detected by the systemthe

many differences a constant infectious period. . positive constants are the parameters of immigraiibe
To solve the system with the Adomian jniial condition of (1) is given as Eq. 2:

decomposition method for this we use the referenfes

(Ghasemiaet al., 2007; Evansa and Raslan, 2005; Zeda - -

and AlAidrous, 2000 Raslan, 2004 Pamuk. 200550 =% M. 10)=2:().Q0)

Mohyud-Din, 2010; Makarov and Dragunov, 2010). =®,(n),-1=n<0,
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where,® = (&, ®,, )" O C such that Sr) = P, (n) Qu, is locally asymptotically stable if and only if
=d,(0)20,1 () =P, (N) =P, (0020, Q) =d;(n) the trace of J (g is strictly negative and its
=d, (0)=0. determinant is strictly positive.

Let C denote the Banach space @,(p], ) of Qo, is locally asymptotically stable Eq. 6:
continuous functions mapping the intervat, [0] into
R®. With a biological meaning, we further assume that _ (4 —H, —H, ~a =B) —k(S*+*) >0 6)
@ (n)=® (0)20fori=1,23. (M+y-H)(H,+a+B)-ap>0

Consider the system without the parameters of
immigrations and study the stability of the systana
since Q (t) does not appear explicitly in the finsb
equations of the system (1) with the initial coratit
in (2), Eq. 3:

Endemic equilibrium and its locally asymptotically
stability: We note that when the trivial equilibriumyQ
of system (3) is locally asymptotically stable, ritthe
endemic equilibrium does not exist. In the presesice
infection 1% 0, substituting in the system (3) we obtain

S(t)= @+y-p, —B)S(t)+a l(t)- kS(t)I(t), the second equilibrium point Q* = (S*; *Eq. 7:

3
I(t) =BS(t) = (W, +y+a)l(t) +kS(t) I(t). © .
Hota+y Bl ty) p+Yy-—y
With the initial condition in (2)which becomes .| X K+y-p)" kK 7
Eq. 4: _au+y-w) B
k(u, +y) K
SM)=®, (). I)=®,M).QM) )

=d,(n),-1<n<0, Leth () =S (t-S* m({t)=1()-1* hand m,is
the small perturbations. We calculate the Jacobian
where,®,; (0)= 0,®, (0)=0,d, (0)= 0, T<n<0we Matrix according to the system (3) with Q*:

obtain N () <u'S -y N(t) and S(t) + 1(t) + Q(tk N(1).

The regionQ = {(S, I, Q)0 R*+, S+ 1+ Q< N J(Q*):{(“er_“l_ﬁ)_kl* ~okS* .
T L B+ki™ kS* {(H, +y+0)
<=} is positively invariant set of (3).
! Q*; is locally asymptotically stable if and onlf i

) o ) _— the trace of J (Q* is strictly negative and its
The disease free equilibrium and its stability: An geterminant is strictly positive. Q¥ is locally

equilibrium point of the system (1) satisfies Eqg. 5 asymptotically stable Eq. 8:
(+y-u, —B)S(t)+al(t)-kS(t)I(t)= 0, 5) _ {(u-ul-uz-a-B)-k(S*H*) =0 (8)
BS(t)— (U, +y+a)I(t)+kS(t)I(t)= 0. (M+y-p)(H, ta+p)-aB >0

We calculate the points of equilibria in the alzgen The basic reproduction number R,: We calculate the
and presence of infection. In the absence of iidadt ~ Jacobian matrix at {Eq. 9 and 10:
= 0, substituting in the system we obtain the first

equilibrium point: KI(Q ):[(u +y-H, —P) -a J:
’ B ~(H, +y+a)
0.=(8) =0 g BTV BA ]:0 o
B (M ty+a)=A
We calculate the Jacobian matrix according to the
system (3) with @ So:
- PA)=A* =A@ -, — K,
J(Qo){“*V S } (10)
B (1, +y+0) o =B) = (+y-p, ~B)(, +y+a) +aB
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We have traces of the matrix is negative,is by close contact between a susceptible indididua

(u-p, —u,—a-p)<0. If det (J) > 0 then: and an infected individual. However, the number of
contacts is a fixed quantity, independent of theesi

of the total population and therefore the number of

“ry =B, +y+ o) +aB-0. infected individuals.
The basic reproduction numbeg R defined as Eq. MATERIALSAND METHODS
11:
The Adomian decomposition method: The Adomian
R =0 HEVHI, Ayl (11) decomposition method has been applied to broad
V=

B W,+B B classes of problems in many fields such as
mathematics, physics and biology. This method solve

The basic reproduction numbegs i defined as the (e functional equations of different types and the
total number of infected population in the resgtsub- ~advantage of this method is that it solves a probie

infected population where almost all of the unitiéec the direct scheme, the solution is obtained asri@se
sounds fast converging. We consider the operator
Theorem 1: The disease-free equilibrium, B locally ~ €duation Fu = g, when F is the operator represants

asymptotically stable if k1 and unstable if §&1. g_eneral non_linear ordin_ary differential and G is a
given function. The linear part of F can be

The different parameters: It turns out that the stability decomposed into L+R, L is easily invertible andsR i
of the endemic equilibrium is low with small the remainder of the F. It is therefore assumetlttia
perturbations are sufficient to maintain the nonlinear problem can be written as Eq. 15:
recurrence of epidemics in the long term. On

introduced a variation on the infectious contatefa |z+Rz+ Nz=g (15)
the rate is a variable used most is Eq. 12:

where, N represents the nonlinear terms (N is a
nonlinear operator). L: is invertible (L is the tative
highest for what is supposed to be invertible).sRai
linear differential operator (of the order of lakan L)
and g is the source term. We can be written Eq. 16:

a(t)=a, (+ a cos(2 t) (12)

which hag is the average value afanda, and half the
amplitude of the oscillations around this mean @alu
The force of infection the key parameter of
epidemiological model is the force of infectian
This reflects the process of expressing of
contamination an individual may contract the
disease. It is this force of infection that puts
individuals in the S compartment to compartment |. U o
There are different ways to write this probability, Y=2+ L 9= L"(Ru)- L*(Nu) (17)
two of they are density-dependent transmission of
infection where the force is proportional. The where,a is the solution of the homogeneous equation

Lu=g-Ru- Nu (16)

Since L is invertible we also have Eq. 17:

number of patients in the host population Eq. 13: ~ Lu = 0, with initial conditions. The decompositiar
the nonlinear term Nu and to do so, Ado-mian
a=ay=a (¥ a cos(2 t (23) developed a very elegant technique as follows. We

define the parametér decomposition, then N (u) is a
The transmission frequency dependence of théunction ofA, w, ui,..., next expansion N(u) Maclurian
force of infection is proportional. series fromh.
The proportion of patients in the population E4. 1 We have u in the form of a series Eq. 18:

_al _ g+ g cos(f t) »
TS+l S+ (14 = Z;)U (18)

Transmission density is directly dependent on the ~ We decompose the nonlinear term, N as a series of
number of infected individuals. The frequency- SPecial polynomials called Adomian polynomials E8y.
dependent transmission is common for the diseases
directly transmitted for which the number of corttac |, :iA (19)
is fixed. Indeed, for these diseases, the transaomss e
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These polynomials are obtained by introducing a  We can write the system of equations above as an
parametel and writing Eq. 20: operator with Nis the first nonlinear term and | the second

. term is linear, L differential opera d;')j Eq. 28:
()= DN, (20) ‘
k=0
LX, =N, +R,,  i=1,2,3,...,n. (28)
We deduce that Eq. 21:

With applying the differential operator inverse' L
we have Eq. 29:

Anzl{ d Nu()\)} 21)
n! dA" o .
X, =X,(t) +L°N, +L R, i =23..n (29)

We have Eg. 22: The solution X(t) is given as Eq. 30:

~ | ~ _ av ©
;”"‘“0 LR;,“" L;A“ (22) X, (1) =3 X0, =1,2,3,..,n (30)

To determine the juwe can use the following
method Eq. 23:

u, =a+ L'g N =22 8%, (31)

It was the first nonlinear term is Eq. 31:

u, =-L"Ru, - LA, (23)
: With applying the differential operator inversée'L
Uy, = —L7'Ru, - LA we have Eq. 32:
Then Eq. 24: zi ij X, dt, i=1,2,3,...n. (32)
u, =-L'R(u,-1)- L*(A,), N=1 (24)
It was the first linear term is Eq. 33:
Finally a solution is given as Eg. 25:
N-1 Ri = ZZqu ZI‘* Mim,p,q (33)
P ()= u,(x), N21 (25) prrao mo
e By applying the differential operator inversé® L
The exact solution is Eq. 26: sur I' Eq. 20 to obtain Eq. 34:
U(X):hl‘im o, (26) LR, ZZ%ZI Min,p o0t (34)
- p=1g=0
The resolution of the system with adomian Fori=1,2,3,..,n, we have Eq. 35:

decomposition method: It has a direct application of

the Adomian decomposition method the system. Werlm(t) X, (1% +zzauj' XAt

note that the system is a more general homogeneous® =1 m=1 (35)
system of ordinary differential equations where theJrZ”:Z":a1 Ix M.

nonlinear term is the product of two variables. We &4 ™ m. o

consider the general form of a system of diffewnti

equations given as follows Eq. 27: So if we write the solution for each i =1, 2, 3,n.
as follows Eq. 36-39:
X Za,lx,, pz;qpq XX, i=123,..n (27) X (1) =X, () (36)
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X0 =Ya[ X,d+>Sa [ M, dt 37 = L
=2 AL Kot 22 B, Mo BD e =Py + (m- 1)Zk'(m k-1)! (48)
(M +y+a)o, ,+p
X, (1) = a, [ X,dt+ ‘M, dt (38)
’ le % leqZﬁpqL HP ¢, =yb(m- 1)-p, c(m- Ly b(m- 1 (49)
RESULTS

xi,(m+1)(t) = Zaijj‘i Xi,mdt +ZZ quJ: Mi,m,p,th (39)
= P We study the model analytically SIQS

constantly integrating the infectious period. Oesults

By applying the Adomian polynomial and then the show that distributed for non-cyclic non-linear ratsdof

general solution, is defined as follows (t-#D Eq. 40: infectious diseases do not change the asymptotic
behavior of local models. Sufficient conditions wer
e (t-t* )'“ o given to ensure the existence of
Xi(0) = Zd o 151230 (40) the endemic equilibrium for the system and the ilitiab

of the endemic equilibriumis studied, we have
shown that under certain restrictions on the parame
values and the infectious period.
The ‘endemic equilibriumis locally  asymptotically

Solutions ¢, is given as follows Eq. 41and 42:

dio =X () (41) stable, epidemiologically, this means that theatisewill
prevail and persist in a population.
n n nml
Oy =quq + (m- )ZZ apq kl DISCUSSION
L jm-) P=00=01=0 (42) . .
oty From the values we have obtained that k is the
K(m—k-1)F parameter t_hat varies the most relatlvely.. The eslof
the equilibrium point Q*, are very sensitive to ke
variations, as k appears in the denominator of (7).
Solve the system using the method (MADM): The 0, end Q*, satisfied the conditions in (2) and (4)
solution explicite Eq. 43-45: and they are locally asymptotically stable. Theultss
obtained from the model give indications that any
S= z (t-t" t*)m (43) search method that is based on a group that hasibee
contact with persons that carry the virus is farreno
important in the control of the epidemic than a moeit
°(t- t*)m that is directed of the population
I=>b, (44)
m=0 CONCLUSION
°(t- t*)m In this study, we considered the stability of tae
Q= mZ:OCm | (45) variable population SIQS epidemic models. We showed

that if R<l1, the disease-free equilibrium is locally
asymptotlcally stable, whereas ifeR, the endemic
The coefficients are given to the relationsgqyilibrium is locally attractive. Then we resoltiee
occurrence as follows Eq. 46: system SIQS epidemic model with a delay with the
method of decomposition adomian.
3, =S(t"), b=1I(t), c¢=Q(t), m=z1 (46)
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