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Abstract: Classical epidemic models assume that the size of the total population is constant. More 
recent models consider a population size variable to take into account a longer period with death and 
disease causing reduced reproductive. The model contains a disease-free equilibrium and one or 
multiple equilibria are endemic. The stability of a disease-free status equilibrium and the existence of 
other nontrivial equilibria can be determined by the ratio called the basic reproductive number, which 
quantifies the number of secondary infections arise from a simple put infected in a population of 
sensitive. First, the local stability of the infection-free equilibrium and endemic equilibrium were 
analyzed, respectively. Second, the endemic equilibrium was formulated in terms of the incidence rate 
and local asymptotic stability. Finally we applied the adomian decomposition method to the system 
Epidemiologic. This method yields an analytical solution in terms of convergent infinite power series. 
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INTRODUCTION 
 
 Classical epidemic models assume that the size of 
the total population is constant. More recent models 
consider a population size variable to take into 
account a longer period with death and disease 
causing reduced reproductive. 
 Generally, a model contains a disease-free 
equilibrium and one or multiple equilibria are endemic. 
The stability of a disease-free status equilibrium and the 
existence of other nontrivial equilibria can be 
determined by the ratio called the basic reproductive 
number, which quantifies the number of secondary 
infections arise from a simple put infected in a 
population of sensitive. 
 In this study, we discuss the equilibrium and 
stability of the model SIQS epidemic with a constant 
infectious period which is made. Most models used in 
studies of dynamics of epidemics have used a simple 
description of the process of the disease. A particular 
assumption is made that the time which individuals 
remain infectious can be described by an exponential 
distribution. This distribution corresponds to the 
assumption that the chances in a given time interval are 
independent of time since infection. In fact, infectious 
diseases increasing function. These conditions allow 
many differences a constant infectious period. 
 To solve the system with the Adomian 
decomposition method for this we use the references of 
(Ghasemia et al., 2007; Evansa and Raslan, 2005; Zedan 
and Al-Aidrous, 2009; Raslan, 2004; Pamuk, 2005; 
Mohyud-Din, 2010; Makarov and Dragunov, 2010). 

Model equations: The system is described by 
equations which are defined as follows Eq. 1: 

 
.

.

1

.

2

.

3

S(t) ( )S(t) I(t) kS(t)I (t) v,

I(t) S(t) ( )I(t) kS(t) I(t) ,

Q(t) I(t) S(t) Q(t).


 = µ + γ − µ − β − α − +

 = β − µ + γ − α + + ρ

 = γ − γ − µ



 (1) 

 
 S(t), I(t) and Q(t) denote the sizes of the population 
susceptible to disease and infectious members, 
quarantine members with the possibility of infection 
through temporary immunity, respectively. Where S (t) 
+I (t) +Q (t) = N (t) denotes the population size at time t; 
It is assumed that all new burns are susceptible. The 
positive constants µ1, µ2 and µ3 represent the death rates 
of susceptible, infectious and quarantine. The positive 
constants µ and γ represent the birth rate (from 
incidence) of the population and the recovery rate of 
infection, respectively. The positive constants α, β is the 
average numbers of contacts infective for S and I. The 
positive constantγ, is the number of transfer or conversion 
of infected people quarantined. K the rate of unknown 
persons infected with are detected by the system. ν, ρ the 
positive constants are the parameters of immigration. The 
initial condition of (1) is given as Eq. 2: 
 

1 2

3

S( ) ( ), I( ) ( ),Q( )

( ), 0,

η = Φ η η = Φ η η

= Φ η − τ ≤ η ≤
  (2) 
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where, Φ = (Φ1, Φ2, Φ3)
T ∈ C such that S (η) = Φ1 (η) 

= Φ1 (0) ≥ 0, I (η) = Φ2 (η) = Φ2 (0) ≥ 0, Q(η) = Φ3 (η) 
= Φ3 (0) ≥ 0. 
 Let C denote the Banach space C ([-τ, 0], R3) of 
continuous functions mapping the interval [-τ, 0] into 
R3. With a biological meaning, we further assume that 
Φi (η) = Φi (0) ≥ 0 for i = 1, 2, 3. 
 Consider the system without the parameters of 
immigrations and study the stability of the system and 
since Q (t) does not appear explicitly in the first two 
equations of the system (1) with the initial condition 
in (2), Eq. 3: 
 

.

1

.

2

S(t) ( )S(t) I(t) kS(t)I(t),

I(t) S(t) ( ) I(t) kS(t) I(t).

 = µ + γ − µ − β + α −

 = β − µ + γ + α +

  (3) 

 
 With the initial condition in (2) which becomes 
Eq. 4: 
 

1 2

3

S( ) ( ), I( ) ( ) ,Q( )

( ), 0,

η = Φ η η = Φ η η

= Φ η − τ ≤ η ≤
  (4) 

 
where, Φ1 (0) ≥ 0, Φ2 (0) ≥ 0, Φ3 (0) ≥ 0, -τ ≤ η ≤ 0 we 

obtain  
.

N (t) ≤ µ S - µ1 N(t) and S(t) + I(t) + Q(t) ≤ N(t). 
 The region Ω = {(S, I, Q) ∈ R3+, S + I + Q ≤ N 

1

Sµ
µ

≺ } is positively invariant set of (3). 

 
The disease free equilibrium and its stability: An 
equilibrium point of the system (1) satisfies Eq. 5: 
 

1

2

( )S(t) I (t) kS(t) I (t) 0,

S(t) ( ) I(t) kS(t) I(t) 0.

 µ + γ − µ − β + α − =

β − µ + γ + α + =

  (5) 

 
 We calculate the points of equilibria in the absence 
and presence of infection. In the absence of infection I 
= 0, substituting in the system we obtain the first 
equilibrium point: 
 

( )T
T

0O S,I (0,0) .= =ɵ ɵ  

 
 We calculate the Jacobian matrix according to the 
system (3) with Q0: 
 

1
0

2

J(Q ) .
( )

 µ + γ − µ − β α
=  β − µ + γ + α 

 

 Q0, is locally asymptotically stable if and only if 
the trace of J (Q0) is strictly negative and its 
determinant is strictly positive. 
 Q0, is locally asymptotically stable Eq. 6:  
 

1 2

1 2

( ) k(S* I*) 0

( )( ) 0

 µ − µ − µ − α − β − +⇔ 
µ + γ − µ µ + α + β − αβ

≻

≻
 (6) 

 
Endemic equilibrium and its locally asymptotically 
stability: We note that when the trivial equilibrium Q0 
of system (3) is locally asymptotically stable, then the 
endemic equilibrium does not exist. In the presence of 
infection I ≠ 0, substituting in the system (3) we obtain 
the second equilibrium point Q* = (S*; I*)T Eq. 7: 
 

T

2 2 1

1

1

2

( )
,

k k ( ) k
Q*

( )
.

k( ) K

 µ + α + γ β µ + γ µ + γ − µ− µ + γ − µ =
 α µ + γ − µ β
 − − µ + γ 

  (7) 

 
 Let h (t) = S (t) – S*, m (t) = I (t) – I*. h and m, is 
the small perturbations. We calculate the Jacobian 
matrix according to the system (3) with Q*: 
 

1

2

( ) kI * kS*
J(Q*) .

kI * kS* ( )

 µ + γ − µ − β − −α
=  β + − µ + γ + α 

 

 
 Q*; is locally asymptotically stable if and only if 
the trace of J (Q*) is strictly negative and its 
determinant is strictly positive. Q*, is locally 
asymptotically stable Eq. 8:  
 

1 2

1 2

( ) k(S* I*) 0

( )( ) 0

 µ − µ − µ − α − β − +⇔ 
µ + γ − µ µ + α + β − αβ

≻

≻
 (8) 

 
The basic reproduction number R0: We calculate the 
Jacobian matrix at Q0 Eq. 9 and 10: 
 

1
0

2

( )
KJ(Q ) 0

( )

 µ + γ − µ − β −α
= = 

β − µ + γ + α 
 

 

1

2

( )
det 0

( )

 µ + γ − µ − β − λ −α
= 

β − µ + γ + α − λ 
 (9) 

 
So: 
 

2
1 2

1 2

P( ) (

) ( )( )

λ = λ − λ µ − µ − µ

−α − β − µ + γ − µ − β µ + γ + α + αβ
  (10) 
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 We have traces of the matrix is negative, 

1 2( ) 0.µ − µ − µ − α − β ≺  If det (J) > 0 then: 

 

1 2( )( ) 0.− µ + γ + µ − β µ + γ + α + αβ ≻  

 
 The basic reproduction number R0 is defined as Eq. 
11: 
 

1 1
0

2

R
α µ + γ + µ µ + γ − µ= × +
β µ + β β

  (11) 

 
 The basic reproduction number R0 is defined as the 
total number of infected population in the resulting sub-
infected population where almost all of the uninfected. 
 
Theorem 1: The disease-free equilibrium P0 is locally 
asymptotically stable if R0<1 and unstable if R0>1. 
 
The different parameters: It turns out that the stability 
of the endemic equilibrium is low with small 
perturbations are sufficient to maintain the 
recurrence of epidemics in the long term. On 
introduced a variation on the infectious contact rate, 
the rate is a variable used most is Eq. 12: 
 

0 1a(t) a (1 a cos(2 t))= + π  (12) 
 
which h α0 is the average value of α and α1 and half the 
amplitude of the oscillations around this mean value. 
 The force of infection the key parameter of 
epidemiological model is the force of infection α. 
This reflects the process of expressing of 
contamination an individual may contract the 
disease. It is this force of infection that puts 
individuals in the S compartment to compartment I. 
There are different ways to write this probability, 
two of they are density-dependent transmission of 
infection where the force is proportional. The 
number of patients in the host population Eq. 13: 
 

0 1a ay a (1 a cos(2 t))= = + π  (13) 
 
 The transmission frequency dependence of the 
force of infection is proportional. 
 The proportion of patients in the population Eq. 14: 
 

0 1aI a (1 a cos(2 t))
a

S I S I

+ π= =
+ +

 (14) 

 
 Transmission density is directly dependent on the 
number of infected individuals. The frequency-
dependent transmission is common for the diseases 
directly transmitted for which the number of contacts 
is fixed. Indeed, for these diseases, the transmission 

is by close contact between a susceptible individual 
and an infected individual. However, the number of 
contacts is a fixed quantity, independent of the size 
of the total population and therefore the number of 
infected individuals. 
 

MATERIALS AND METHODS 
 
The Adomian decomposition method: The Adomian 
decomposition method has been applied to broad 
classes of problems in many fields such as 
mathematics, physics and biology. This method solves 
the functional equations of different types and the 
advantage of this method is that it solves a problem in 
the direct scheme, the solution is obtained as a series 
sounds fast converging. We consider the operator 
equation Fu = g, when F is the operator represents a 
general nonlinear ordinary differential and G is a 
given function. The linear part of F can be 
decomposed into L+R, L is easily invertible and R is 
the remainder of the F. It is therefore assumed that the 
nonlinear problem can be written as Eq. 15: 
 
Lz Rz Nz g+ + =  (15) 
 
where, N represents the nonlinear terms (N is a 
nonlinear operator). L: is invertible (L is the derivative 
highest for what is supposed to be invertible). R is a 
linear differential operator (of the order of less than L) 
and g is the source term. We can be written Eq. 16: 
 
Lu g Ru Nu= − −  (16) 
 
 Since L is invertible we also have Eq. 17: 
 

1 1 1u a L g L (Ru) L (Nu)− − −= + − −  (17) 
 
where, α is the solution of the homogeneous equation 
Lu = 0, with initial conditions. The decomposition of 
the nonlinear term Nu and to do so, Ado-mian 
developed a very elegant technique as follows. We 
define the parameter λ decomposition, then N (u) is a 
function of λ, u0, u1,…, next expansion N(u) Maclurian 
series from λ. 
 We have u in the form of a series Eq. 18: 
 

n
n 0

u u
∞

=

=∑  (18) 

 We decompose the nonlinear term, N as a series of 
special polynomials called Adomian polynomials Eq. 19: 
 

n
n 0

Nu A
∞

=

=∑  (19) 
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 These polynomials are obtained by introducing a 
parameter λ and writing Eq. 20: 
 

k
uk

k 0

u( )
∞

=

λ = λ∑  (20) 

 
 We deduce that Eq. 21: 
 

n

n n
0

1 d
A Nu( )

n! d λ=

 
= λ λ 

 (21) 

 
 We have Eq. 22: 
 

1 1
n 0 n n

n 0 k 0 n 0

u u L R u L A
∞ ∞ ∞

− −

= = =

= − −∑ ∑ ∑  (22) 

 
 To determine the un we can use the following 
method Eq. 23: 
 

1
0

1 1
1 0 0

1 1
n 1 n n

u a L g

u L Ru L A

u L Ru L A

−

− −

− −
+

 = +


= − −


 = − −

⋮
 (23) 

 
 Then Eq. 24: 
 

1 1
n n n 1u L R(u 1) L (A ), N 1− −

−= − − − ≥  (24) 

 
 Finally a solution is given as Eq. 25: 
 

N 1

N n
n 0

(x) u (x), N 1
−

=

Φ = ≥∑  (25) 

 
 The exact solution is Eq. 26: 
 

NN
u(x) lim

→∞
= Φ  (26) 

 
The resolution of the system with adomian 
decomposition method: It has a direct application of 
the Adomian decomposition method the system. We 
note that the system is a more general homogeneous 
system of ordinary differential equations where the 
nonlinear term is the product of two variables. We 
consider the general form of a system of differential 
equations given as follows Eq. 27: 
 

n n n
'
i i j ij i pq p q

j 1 p 1 q 1

X a X a X X , i 1,2,3,...,n
= = =

= + =∑ ∑∑  (27) 

 We can write the system of equations above as an 
operator with Ni is the first nonlinear term and I the second 

term is linear, L differential operator
d(.)

dt
 
 
 

 Eq. 28: 

 

i i iLX N R , i 1,2,3,...,n.= + =  (28) 

 
 With applying the differential operator inverse L−1 
we have Eq. 29: 
 

1 1
i i i iX (t) X (t*) L N L R , i 1,2,3,...,n− −= + + =  (29) 

 
 The solution Xi (t) is given as Eq. 30: 
 

i im
m 0

X (t) X (t), i 1,2,3,...,n
∞

=

= =∑  (30) 

 
 It was the first nonlinear term is Eq. 31: 
 

n n

i i j im
j 1 m 0

N a X
= =

=∑∑  (31) 

 
 With applying the differential operator inverse L−1 
we have Eq. 32: 
 

n t1
i i j imt*

j 1 m 0 n 0

L N a X dt, i 1,2,3,...,n.
∞ ∞

−

= = =

= =∑∑ ∑∫  (32) 

 
 It was the first linear term is Eq. 33: 
 

n n t

i i pq im,p,qt*
p 1 q 0 n 0

R a M
∞

= = =

=∑∑ ∑∫  (33) 

 
 By applying the differential operator inverse L−1 
sur l’ Eq. 20 to obtain Eq. 34: 
 

n n t1
i i pq im,p,qt*

p 1 q 0 n 0

L R a M dt
∞

−

= = =

=∑∑ ∑∫  (34) 

 
 For i = 1, 2, 3,…, n, we have Eq. 35: 
 

n t

im i ij imt*
m 0 j 1 m 1

n n t

ipq im,p,qt*
p 1 q 1

X (t) X (t*) a X dt

a M dt

∞ ∞

= = =

= =

= +

+

∑ ∑∑ ∫

∑∑ ∫
 (35) 

 
 So if we write the solution for each i = 1, 2, 3,…, n. 
as follows Eq. 36-39: 
 

i0 iX (t) X (t*)=  (36) 
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n n nt t

i1 ij i0 ipq i0,p,qt* t*
j 1 p 1 q 1

X (t) a X dt a M dt
= = =

= +∑ ∑∑∫ ∫  (37) 

 
n n nt t

i2 ij i1 ipq i1,p,qt* t*
j 1 p 1 q 1

X (t) a X dt a M dt
= = =

= +∑ ∑∑∫ ∫  (38) 

 
n n nt t

i,(m 1) ij i,m ipq i,m,p,qt* t*
j 1 p 1 q 1

X (t) a X dt a M dt+
= = =

= +∑ ∑∑∫ ∫  (39) 

 
 By applying the Adomian polynomial and then the 
general solution, is defined as follows (t-t*) ≥ 0 Eq. 40:  
 

m

i im
m 0

(t t*)
X (t) d , i 1,2,3,...,n.

m!

∞

=

−= =∑  (40) 

 
Solutions dim is given as follows Eq. 41and 42: 
 

i0 id X (t*)=  (41) 

 
n n n m 1

qk
im ij ipq

j 1 p 0 q 0 k 0j(m 1)

p(m k 1)

d
d a d (m 1)! a

k!

d
m 1

k!(m k 1)!'

−

= = = =−

− −

= + −

≥
− −

∑ ∑∑∑
 (42) 

 
Solve the system using the method (MADM): The 
solution explicite Eq. 43-45: 
 

m

m
m 0

(t t*)
S a

m!

∞

=

−= ∑  (43) 

 
m

m
m 0

(t t*)
I b

m!

∞

=

−= ∑  (44) 

 
m

m
m 0

(t t*)
Q c

m!

∞

=

−= ∑  (45) 

 
 The coefficients are given to the relations 
occurrence as follows Eq. 46: 
 

0 0 0a S(t*), b I(t*), c Q(t*), m 1= = = ≥  (46) 

 
We suppose that N = S + I + Q, then we have Eq. 47-49: 
 

m 1 (m 1) (m 1)

m 1
k (m k 1)

k 0

a ( )a ab

a b
k(m 1)! v

k!(m k 1)!

− −

−
− −

=

= µ + λ + µ − β +

− − +
− −∑

 (47) 

m 1
k (m k 1)

m (m 1)
k 0

2 (m 1)

a b
c a (m 1)!

k!(m k 1)!

( a)b

−
− −

−
=

−

= β + −
− −

− µ + γ + + ρ

∑  (48) 

 

m 3c b(m 1) c(m 1) b(m 1)= γ − − µ − − γ −  (49) 
 

RESULTS 
 
  We study the model analytically SIQS 
constantly integrating the infectious period. Our results 
show that distributed for non-cyclic non-linear models of 
infectious diseases do not change the asymptotic 
behavior of local models. Sufficient conditions were 
given to ensure the existence of 
the endemic equilibrium for the system and the stability 
of the endemic equilibrium is studied, we have 
shown that under certain restrictions on the parameter 
values and the infectious period. 
The ‘endemic equilibrium is locally asymptotically 
stable, epidemiologically, this means that the disease will 
prevail and persist in a population. 
 

DISCUSSION 
 
 From the values we have obtained that k is the 
parameter that varies the most relatively. The values of 
the equilibrium point Q*, are very sensitive to these 
variations, as k appears in the denominator of (7). 
 0O  end Q*, satisfied the conditions in (2) and (4) 
and they are locally asymptotically stable. The results 
obtained from the model give indications that any 
search method that is based on a group that has been in 
contact with persons that carry the virus is far more 
important in the control of the epidemic than a method, 
that is directed of the population.  
 

CONCLUSION 
 
 In this study, we considered the stability of the few 
variable population SIQS epidemic models. We showed 
that if R0<1, the disease-free equilibrium is locally 
asymptotically stable, whereas if R0>1, the endemic 
equilibrium is locally attractive. Then we resolve the 
system SIQS epidemic model with a delay with the 
method of decomposition adomian. 
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