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Abstract: Problem statement: The fight Against Tuberculosis (TB) has mainly focused on the adult 
population because children were perceived to pose a very low risk in TB transmission. This 
assumption ignores the potential risk children had as reservoirs of latent infections from which future 
cases evolve when they become adults.  It was therefore important to investigate the dynamics of TB 
taking into consideration, children. Approach: We formulated a compartmental model for TB with 
two age classes, children and adults. Qualitative analysis of the model was done to investigate the 
stability of the model equilibria in terms of the model reproduction number R0 Numerical simulations 
were also done to investigate the role played by some key epidemiological parameters in the dynamics 
of the disease. Results: The model had two equilibria: The disease free equilibrium which was 
globally stable for R0<1 and the endemic equilibrium which was locally asymptotically stable for 
R0>1, for R0 near 1.  The study showed increased latent infections in the adult population as a result of 
increased latently infected children who mature to adulthood with latent infections. 
Conclusion/Recommendations: Progression to active TB among adults is epidemiologically 
significant and interventions should focus on the adult population. Anti-tuberculosis, treatment of 
adults is crucial in controlling the epidemic and should interventions be proposed, they should target 
progression to active TB for those latently infected. The fight against TB should also take into 
consideration tuberculosis among children. 
 
Key words:  Tuberculosis (TB), pediatric tuberculosis, stability analysis, reproduction number, 
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INTRODUCTION 
 
 Primary tuberculosis is the fountainhead of 
tuberculosis disease and when acquired during 
childhood, it may develop into serious tuberculosis 
disease within a short period of time or remain latent 
during childhood only to be reactivated in adulthood 
(Wood et al., 2010). Children usually progress to active 
disease within 12 months of primary infection because 
children have a high risk of progression to disease 
following infection (Brent et al., 2008; Sharomi et al., 
2008). There has been limited interest in childhood 
tuberculosis because more than 95% of children with 
active disease are sputum smear negative and therefore 
not infectious. Infected children represent a pool from 
which a large proportion of future cases of adult TB 
will arise and thus perpetuating the TB epidemic (Bloch 
and Snider, 1985; Brent et al., 2008; Vynnycky et al., 

2001). The burden of childhood tuberculosis is a clear 
indication of the TB severity in the adult population 
(Mairais et al., 2006; Warren et al., 2004). The 
contribution of children to TB caseload is not well 
documented in poor-resource settings with high disease 
burden, but research has shown that in high disease 
burdened areas, children less than 13 years of age, 
contribute about 13.7% of the total TB caseload in a 
particular community in South Africa (Murray and 
Salomon, 1998). The result compared well with that 
determined for low income countries for children less 
than 15 years of age, which was 15% (Schaaf et al., 
2002). Children usually develop TB as a direct 
complication of the initial infection. Children with 
household or community exposure to TB are highly 
likely to be infected with the disease. Children acquire 
TB infection from an adult who is in their immediate 
environment (Schaaf et al., 2006; Wood et al., 2010). 
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Lack of contagiousness is one of the reasons that public 
health programs on TB prevention have excluded 
children. They are regarded as the end of the transmission 
chain and therefore pose no threat to the evolution of the 
TB epidemic in the population. This view could have 
contributed significantly to early childhood TB. 
 Mathematical models for the dynamics of TB 
have been extensively developed and have been used 
in designing control programs and as predictive tools 
(Bhunu et al., 2008; Blower et al., 1995; Blower and 
Daley, 2002; Castillo-Chavez and Feng, 1997; 
Castillo-Chavez and Song, 2004; Gomes et al., 2004; 
Starke, 2003). Models that consider the potential 
impact of TB vaccines were studied in (Mairais et 
al., 2005). Recently, Bhunu et al. (2008) considered 
a model that studied the impact of treatment and 
chemoprophylaxis in combating TB.   
 Most of the studies reviewed concentrated on adult 
TB and ignored TB in children. It is upon this 
background that we propose a simple deterministic 
model for TB that incorporates children and adults, with 
the goal of investigating the dynamics of interaction of 
pediatric and adult TB epidemics. We develop a 
mathematical model with the object of quantifying the 
underlying factors that drive the epidemic in children.
 This study aims to challenge public health 
policies regarding childhood TB. We endeavor to 
answer the following questions: What is the role of 
increased adult TB control on the growth of 
childhood TB? What is the proportion of adults that 
need to be targeted in order to control TB in 
children? To the best of our knowledge, there is a 
limited number of theoretical models of childhood TB. 

 
MATERIALS AND METHODS 

 
A two class age-structured model: The model 
considers a constant population N, subdivided into three 
different subgroups: susceptible (S) latently infected (L) 
and infected with active TB (I). Individuals move from 
one subgroup to the other as their status with respect to 
the disease changes. We again divide the population 
into two age classes, children and adults. Individuals 
below 5 years belong to the “children’s” age class while 
those above 5 years belong to the “adult’s” age-class. 
These age groups are separated primarily to distinguish 
between pediatric TB and adult TB. While the exact age 
demarcation is somewhat arbitrary, the main goal here 
is to divide the population into two reasonable age 
classes. Data from medical institutions also shows 
different phenomena in TB development for the two 
classes.  

 We use the following notation for individuals in 
the two age classes: we use the subscript c and a to 
represent children and adults respectively, so that Sc, 
LC, Ic and SA, La, Ia respectively represent susceptible, 
latently infected and infects with active TB in children 
and adults. The model is built on the following 
assumptions. All subgroups are subjected the natural 
mortality rateµ. The effective contact rate of infected 
adults is assumed to be higher with susceptible adults 
than children (c2 > c1). An effective contact is one that 
is sufficient to result in an infection if the contacted 
individual has never been infected (Walls and 
Shingadia, 2004). Susceptible children acquire TB 

infection from adults with active TB at a rate a
1 1

I
B c

N
= β ; 

while susceptible adults acquire TB infection from 

other adults with active TB at a rate a
2 2

I
B c

N
= β . β is the 

effective contact rate. The parameter c2 accounts for the 
increased infectiousness among the adults due to 
several factors relating to mixing, bacteria propagation 
and environmental settings. A proportion p (q) of 
children (adults) develops active TB in the first year 
after primary infection and the remainder develops 
latent TB. Progression to active TB occurs at a rate 
rc(ra) for children (adults). Recovery, naturally or with 
chemotherapy, results in an individual reverting back to 
the latent class at a rate σc (σa) for children (adults).  
 The rate at which children join the adult classes is 
given by f.  However, infected children are assumed not 
to graduate into adulthood being infective. We 
acknowledge here that the consideration of being 
constant is merely for mathematical convenience.  We 
shall assume that f is less than or equal to the birth rate.  
 Figure 1 depicts the interaction of the two age-
classes.  
 The model is thus described by the following set of 
ordinary differential Eq. 1: 
 

( )

( )

( )

( )

( )

c a
1 c c

c a
1 c c c c c

c a
1 c c c c c

a a
c 2 a a

a a
c 2 a a a a a

a a
2 a a a a a

dS I
N c S f S

dt N
dL I

(1 p)c S I r f L ,
dt N

dI I
pc S r L I ,

dt N
dS I

fS c S S
dt N

dL I
fL (1 q)c S I r L ,

dt N
dI I

qc S r L I
dt N

= µ − β − µ +

= − β + σ − µ + +

= β + − µ + σ

= − β − µ

= + − β + σ − µ +

= β + − µ + σ

 (1) 

 
By setting: 
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Fig. 1: Model diagram showing the transmission of TB between disease stages and age classes 
 

c c c a a a
1 2 3 4 5 6

S L I S L I
x ,x ,x ,x ,x and x

N N N N N N
= = = = = =  

 
 We can rewrite the system (1) as Eq. 2: 
 

( )

( )

( )

( )

( )

1
1 1 6 1

2
1 1 6 c 3 c 2

3 4
1 1 6 c 2 c 3 1 2 4 6 4

5
2 2 4 6 a 6 a 5

6
2 4 6 a 5 a 6

dx
c x x f x ,

dt
dx

(1 p)c x x x r f x ,
dt

dx dx
pc x x r x x , fx c x x x ,

dt dt
dx

fx (1 q)c x x x r x ,
dt
dx

qc x x r x x .
dt

=µ− β − µ+

= − β +σ − µ+ +

= β + − µ+σ = − β − µ

= + − β +σ − µ+

= β + − µ+σ

 (2) 

 
 The model has initial conditions given by xi (0)≥0, 
= 1, 2,…, 6. Biological considerations entail that we 
study systematically (2) in the following region: 
  

6
1 2 3 4 5 6 1 2 3 4 5 6G {(x ,x ,x ,x ,x ,x ) R | x x x x x x 1}.+= ∈ + + + + + ≤  

 
Proposition: Solutions of system (2) are positive for all 
t ≥ 0 and are bounded. The region G is thus positively 
invariant and all solutions in G remain in G for all time.   
 
Proof: For the given initial conditions, we prove by 
contradiction that if x1 (t), x2 (t), x3 (t), x4 (t), x5 (t) and 
x6 (t) are solutions of a system (2.2), then they are 
positive (see also Bhunu et al., 2008; Ziv et al., 2004).  

 Suppose there exists a first time t1 such that x1(t1) = 

0 and the derivative 1dx
0

dt
<  at t = t1 and xi (t) >0, (i = 

1,…,6) for 0<t <t1. The first equation of the system (2) 

gives 1
1

dx
(t ) 0,

dt
= µ > which is a contradiction? Thus x1 

(t) will remain positive for all t.  Similar steps can be 
followed for the remaining variables. We conclude 
that all solutions of the system (2) are positive for all 
time. Our population is also bounded in G thus all 
solutions starting with G will remain in the G. Thus 
G is positively invariant and attracting and our model 
is thus epidemiologically well posed.  
 
Determination of equilibria: We analyze the system 
(2) by finding the model equilibria and carrying out 
their stability analysis. At the steady state we set the 
right hand side of equations of the system (2) to zero 
and determine the state variables.  
 From the first five equations of a system (2), we 
have:  
 

* * * * *
1 2 1 1 6 c 3*

1 6 c

*
* * * * * 1
3 1 1 6 c 2 4 *

c 2 6

* * * *
5 2 2 4 a 6

a

1
x ,x (1 p)c x x x ,

( f ) c x ( r f )

1 fx
x pc x x r x ,x ,

( ) c x

1
x fx {(1 q)c x }x .

( r )

µ
 = = − β + σ µ + + β µ + +

 = β + = µ + σ µ + β

 = + − β + σ µ +

 

 
Solving for *

2x  and *
3x  simultaneously, we have Eq. 4:  

 
* * *
2 1 1 6x x x= ω  (3) 
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* * *
3 2 1 6x x x= ω  (4) 

 
Where: 
 

[ ]c
1 1

c c

(1 p)
c

( )( f ) r

− µ + σ
ω = β

µ + σ µ + + µ
. 

 
And: 
 

c
2 1

c c

p( f ) r
c

( )( f ) r

µ + +ω = β
µ + σ µ + + µ

. 

 
Substituting for *

1x  in  *
4x , we have Eq. 5: 

 
*
4 * *

2 6 1 6

f
x

( c x )( f c x )

µ=
µ + β µ + + β

. (5) 

 
 Substituting Eq. 3 into the expression for*

5x , we 

have: 
  

  * * * *
2 1 1 2 4 a 6

a

1
x f x {(1 q)c x }x

( r )
 = ω + − β + σ µ +

. (6) 

 
 Substituting Eq. 6 into the last equation of system 
(2) we have the solutions, *6x 0=  and the solution of the 

quadratic polynomial: 
  

* *2 *
6 2 6 1 6 0P(x ) a x a x a ,= + +      (7) 

 
Where: 
 

0 a a 0

2
1 1 2 a a a 1 2 a a 1 2

a ( f)( r )[1 R ],

a ( c ( f)c )( r ) r f ],a ( r )c c

=µ µ+ µ+σ + −

= µ + µ+ µ+σ + − ω = µ+σ + β
 

 
And:  
 

0 a cR R R= +  (8) 
 
With: 
  

2 a
a

a a

c 1 a
c

c c a a

c f ( q r )
R ,

( f )( r )

[(1 p) ]c r f
R

( )( f ) r ( f )( r )

β µ +=
µ µ + µ + σ +

  − µ + σ β=   µ + σ µ + + µ µ + µ + σ +  

. 

 
 Here, Ra represents the contribution of adults to 
secondary infections while Rc is the contribution of 
children to secondary infection. The threshold 
parameter R0 defines the mean number of secondary 
cases generated by introducing a single infected 
individual into a wholly susceptible population in which 
children are involved in the dynamics of the disease.  
 The case *

6x 0=  gives the disease free equilibrium 

point: 

0

f
E ,0,0, ,0,0

f f

 µ=  µ + µ + 
 

 
 The endemic equilibrium is thus determined from 
the solutions of (7). As regards the sign of a1 in (7), we 
have the following proposition. 
 
Corollary: If R0 <1 then a1 >0.  
 
Proof:  Consider: 
  

[ ]
1 a a 1 2 a 1

a a 1 2

a ( r )( c ( f )c ) r f

( r )( c ( f )c ) 1 K

= µ + σ + µ + µ + − ω ,
= µ + σ + µ + µ + −

 

 
Where: 
 

1 c
1

a a 1 2 c c

r f (1 p)
K c

r c ( f)c ( )( f) r

     − µ+σ= β    µ+σ + µ + µ+ µ+σ µ+ +µ    
 

 
 We note that if R0 < 1 then K ≺ 1 since: 
  

1 2

f f
.

c ( f )c f
<

µ + µ + µ +
 

 
 This implies that a1>0. 
 We thus have the following theorem on the 
existence of the endemic equilibrium.  
 
Theorem 1: If R0 <1 then P (x6) has no positive 
solution. However, if R0>1, then P (x6) has one positive 
solution. We therefore conclude that system (2) has a 
unique endemic equilibrium point E1 whenever R0>1. 
 
Proof: The solution of (7) is given by: 
  

2
1 2 01

6
2

a 4a aa
x

2a

− ± −
= . 

 
 Here a2>0 and a0>0 if R0 <1 and a0 < 0 if R0 >1and 
from (8), if R0<0, then we have two negative solutions 
and for R0 >1, we have one positive solution for all a1. 
 

RESULTS AND DISCUSSION 
 
Qualitative results: Analysis of the Model 
Reproduction Number: We consider first, the effects of 
increasing the recovery rates σa and σc. We note that as 
σa→ ∝, R0 → 0 the implications of this result is that 
emphasis should be placed on preventing adult 
individuals from progressing to active TB. A high rate 
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of recovery of individuals with active TB plays a 
crucial role in decreasing the pool of infected 
individuals. However, as σa→ ∝, a

0 0R Rσ→ ,  where: 

 

a 2 a 1 a
0

a a a a

c f ( q r ) c f r
R

( f )( r ) f ( f )( r )
σ  β µ + β= +  µ µ + µ + σ + µ + µ + µ + σ + 

. 

 
 This result shows that the recovery rate of children 
does not play a crucial role in the dynamic of TB as 
compared to that of adults. The contour plot in Fig. 2 
shows the relationship between R0, σa and σc. 
 Figure 2 represents a set of R0 contours for which, 
for a chosen set of parameter values, changes in the 
values of σa and σa would give. We note that as the 
value of σa increases, the value of R0 decreases. In fact, 
this result is similar to the one proven analytically, that 
as σa → ∝, R0 → 0. Recovery in this case may be due to 
treatment or natural recovery. Since the fight against 
TB has been restricted to, vaccination, identifying 
infectious cases and treating them, one can consider this 
result to imply that the fight against TB must be 
directed mostly to the adult population since they are 
the source of infection. It is clear from Fig. 2 that 
increasing the recovery rate σc for children does not 
play any significant role in the transmission dynamics 
of the disease. 
 We now investigate the role of the progression 
rates ra and rc. As ra → 0, a

0 0R Rσ→ ,  where: 

 
r 2a
0

a

c qf
R

( f )( )

β=
µ + µ + σ

. 

 
 Note that ra

0 0R R< . Thus a reduction in the 

progression rates leads to a reduction in the number of 
secondary infections generated by an infected 
individual. 

 We also note that as rc →0, we have rc
0 0R R ,→  

where: 
 

r 2 a 1 c ac
0

a a c a a

c f( q r ) c f[(1 p) ] r
R

( f)( r ) ( f)( ) ( f)( r )

 β µ + β − µ+σ= +  µ µ+ µ+σ + µ+ µ+σ µ+ µ+σ + 
. 

 
 That rc

0 0R R> . Reduction in the progression of 

latently infected children to active pediatric TB leads to 
increased secondary infections in the adult population. 
The implications of this scenario are that there are 
increased latent infections in the adult population as a 
result of increased latently infected children who 
mature to adulthood with latent infections.  

 
 
Fig. 2: Shows the relationship between the recovery rates 

and the reproduction number R0 for the following 
set of parameter values; β = 0.01, µ = 0.017, p = q 
= 0.1, σc = 0.8,σa = 0.6,c1 = 6,c2 = 10, f = 0.02 

 

 
 
Fig. 3: Shows the relationship between the progression 

rates and the reproduction number R0 for the 
following parameter values; β = 0.005,p = 
0.1,q0.1,rc = 0.08,ra = 0.5,c1 = 6,c2 = 20, f = 0.02. 

 
 Children become a reservoir of latent infections 
from which reactivation is highly likely to occur 
when they become adults. Figure 3 illustrates the 
theoretical results relating variations of progression 
ra and rc to secondary infections.   
 
Global stability of E0: 
Theorem 2: The disease free equilibrium point E0 is 
globally asymptotically stable in G whenever R0 < 1.   
 
Proof: We consider the following Lyapunov function: 
  

1 2 2 3 3 5 4 6V x x x x= α + α + α + α  

 
Where: 
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1 a c 2 a c 1 a c c

4 a c c

fr ( ), fr , r [( f )( ) r ]

and ( r )[( f )( ) r ]

α = µ + σ α = σ α = µ + µ + σ + µ
α = µ + µ + µ + σ + µ

 

 
 The derivative of V with respect to time is given by: 
  

2 3 5 6
1 2 3 4

c c a a 0 6 0

dV dx dx dx dx
,

dt dt dt dt dt
[( f )( ) r ][ ( r ) ](R 1)x , 0 for R 1

= α + α + α + α

≤ µ+ µ +σ +µ µ µ + +µσ − ≤ <
 

 

 It follows that dV
0

dt
≤   for R0 <1, since the model 

parameters are assumed to be positive. The 

derivativedV
0

dt
= , if and only if R0 = 1.  Hence V is a 

Lyapunov function on G. The largest compact set that is 

invariant in 1 2 3 4 5 6

dV
{(x , x , x , x , x , x ) G | 0}

dt
∈ =  is the 

singleton {E0}. It follows from the lasalle’s invariance 
Principle (Lietman and Blower, 2000), that every 
solution of (2) with initial conditions in G approaches 
E0 as t→∝ whenever R0 <1.  
 
Local stability of the endemic equilibrium: The 
size and nature of the matrix resulting from standard 
linearization of the system (2) makes the 
determination of eigenvalues and their nature a 
difficult and tedious exercise. We resort to the center 
manifold theory described in (Feng et al., 2001) and 
used in (Song et al., 2002) to determine the stability of the 
endemic equilibrium point. We note that our system is of 
the form: 
 

dX
F(X)

dt
=  

 
Where:  
 
X = (x1, x2, x3, x4, x5, x6)

T 
 
and F (f1, f2, f3, f4, f5, f6)

T where (.)T denotes a matrix 
transpose. System (2) becomes Eq. 7: 
 

 

( )

( )

( )

( )

( )

1
1 1 1 6 1

2
2 1 1 6 c 3 c 2

3
3 1 1 6 c 2 c 3

4
4 1 2 4 6 4

5
5 2 2 4 6 a 6 a 5

6
6 2 4 6 a 5 a 6

dx
f c x x f x

dt
dx

f (1 p)c x x x r f x ,
dt

dx
f pc x x r x x ,

dt
dx

f fx c x x x ,
dt

dx
f fx (1 q)c x x x r x ,

dt
dx

f qc x x r x x
dt

= = µ − β − µ +

= = − β + σ − µ + +

= = β + − µ + σ

= = − β − µ

= = + − β + σ − µ +

= = β + − µ + σ

 (9) 

 Suppose β is the bifurcation parameter. When R0 
= 1 we have: 
 

* a a c c

2 a c c a 1 c

( f )[ ( r )][( )( f ) r ]

fc ( q r )[( )( f ) r ] r fc [(1 p) ]

µ + µ µ + σ + µ + σ µ + + µβ =
µ + µ + σ µ + + µ + µ − µ + σ

 

 
 The Jacobian matrix of the system (7) at E0 for β = 
β* is given by: 
  

*

A B
J

C Dβ

 
=  
 

 

 
where, A,B,C and D are 3×3 matrices given by: 
 

c c

c c

( f ) 0 0

A 0 ( r f )

0 r ( )

− µ + 
 = − µ + + σ 
 − µ + σ 

 

 
* *

1 1
* *

1 1
* *

1 1

0 0 c x f 0 0

B 0 0 (1 p)c x ,C 0 f 0

0 0 pc x 0 0 0

 − β  
   = − β =   

  β   

 

 
* *

2 4
* *

a 2 4 a
* *

a 2 4 a

0 c x

D 0 ( r ) (1 q)c x

0 r qc x ( )

 −µ − β
 

= − µ + − β + σ 
 β − µ + σ 

 

 
 Jβ*  has a zero simple eigenvalue and the 
corresponding right eigenvector associated with this 
simple eigenvalues is given by   y = (y1, y2, y3, y4, y5, 
y6)

T where: 
 

{ }
2

1 a a c c
1

2 a c c a 1 c

c ( r )[( )( f ) r ]
y

f ( f ) c ( q r )[( )( f ) r ] r c [(1 p) ]

−µ µ + σ + µ + σ µ + + µ=
µ + µ + µ + σ µ + + µ + µ − µ + σ

 

 

{ }
2

1 a a c
2

2 a c c a 1 c

c ( r )[(1 p) ]
y

f c ( q r )[( )( f ) r ] r c [(1 p) ]

µ µ + σ + − µ + σ=
µ + µ + σ µ + + µ + µ − µ + σ

 

 

{ }
2

1 c c c
3

2 a c c a 1 c

c [p( f ) r ][( )( f ) r ]
y

f c ( q r )[( )( f ) r ] r c [(1 p) ]

µ µ + + µ + σ µ + + µ=
µ + µ + σ µ + + µ + µ − µ + σ

 

 

{ }
1 2 a a c c

4
2 a c c a 1 c

(c c ( f ))( r )[( )( f ) r ]
y

( f ) c ( q r )[( )( f ) r ] r c [(1 p) ]

− µ + µ + µ + σ + µ + σ µ + + µ=
µ + µ + µ + σ µ + + µ + µ − µ + σ

 

 

{ }
1 a a c c c c a

5 6
2 a c c a 1 c

c ( r )[(1 p) ] c [( )( f ) r ][ (1 q) ]
y , y 1

c ( q r )[( )( f ) r ] r c [(1 p) ]

µ σ + − µ + σ + µ + σ µ + + µ µ − + σ= =
µ + µ + σ µ + + µ + µ − µ + σ

 

 
 The left eigenvector of the transpose of Jβ* that is, 
the left eigenvector of Jβ* is given by: 
 

T
1 2 3 4 5 6Z (z ,z ,z ,z ,z ,z )=  
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Where: 
  

1 2 a c 3 a c 4

5 a c c 6 a c c

z 0,z fr ( ),z fr ,z 0,

z r [( )( f ) r ],z ( r )[( )( f ) r ]

= = η µ + σ = η σ =
= η µ + σ µ + +µ = η µ + µ + σ µ + +µ

 

  
 And η>0 is chosen so that the condition y •z=1 is 
satisfied.  
 Following Theorem 4.1 in (Feng et al., 2001), we 
thus compute a and b to determine the stability of E1 
around R0 = 0, where: 
  

2 2
k k

kij 1 k i j ki 1 k i *
i j i

f f
a z y y b z y

x x x= =
∂ ∂= ∑ = ∑

∂ ∂ ∂ ∂β
 (10) 

 
And β* the bifurcation parameter.  
 The non-zero partial derivatives of F at the disease 
free equilibrium point are given by:  
 

2 2 2 2
* * * *2 3 5 6

1 1 2 2
1 6 1 6 4 6 4 6

f f f f
(1 p)c , pc , (1 q)c , qc

x x x x x x x x

∂ ∂ ∂ ∂= − β = β = − β = β
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
 To determine a we substitute the above expressions 
of the partial derivatives into Eq. 10. We thus have: 
  

* *
1 6 2 3 4 6 5 6a y y [(1 p)z pz ] y y [(1 q)z qz ] 0= β − + + β − + <  

 
 Since y1<0 and y4<0, the right hand side of a is 
always negative.  For the sign of b the following are the 
non-zero partial derivatives of F: 
  

2 2 2 2
* * * *2 3 5 6

1 1 1 1 2 4 2 4* * * *
6 6 6 6

f f f f
(1 p)c x , pc x , (1 q)c x , qc x

x x x x

∂ ∂ ∂ ∂= − = = − =
∂ ∂β ∂ ∂β ∂ ∂β ∂ ∂β

 

 
 An evaluation of b shows that b is always greater 
than 0.  We thus have the following results based on 
Theorem 4.1 in (Feng et al., 2001).   
 
Theorem 3: The endemic equilibrium point E1 is locally 
asymptotically stable for R0>1 but with R0 near 1.  
 
Numerical results: We now give a discussion of the 
numerical solutions of systems (2), the parameter 
values and interpretations of the cases that arise 
thereof. The dynamics of the system (2) are studied 
numerically using the fourth order Runge-Kutta 
numerical scheme in MATLAB.  
 
Parameter values: Some of the model parameters were 
decided upon based on the following assumptions: 
 
• Since the birth and death rates are taken to be the 

same, we assume that the average lifespans of 

human beings are between 40 and 80 years. We use 
the natural mortality rate in the range 0.0125≤µ≤ 

• The rate at which children join the adult class f is 
assumed to be less than or equal to the birth rate. 
We try to accommodate, the fact that not every 
child survives to adulthood. So we set f≤µ 

• Susceptible children and adults are infected with 
probability β  upon contact. Contact patterns that 
can result in infection can be random, associative, 
age-specific and sex-specific and so on, but in this 
study we assume random mixing. This means that 
every susceptible is equally likely to be infected by 
an infective should contact occur 

• While the probability of infection is taken to be the 
same for children and adults, we assume that adults 
have increased chances of mixing. We thus 
consider different contact rates 

• Estimates have shown that 10% (proportions p, q) 
of TB infection progression fast to active TB (Jung 
et al., 2002). The risk for young children to 
develop active TB if the infection is not treated is 
up to 43% in children less than a year old, 
approximately 24% for children between 1 and 5 
years of age and much lower for those between 6 
and 13 years (Schaaf et al., 2003). The proportion 
of children that develop active TB fast can thus be 
assumed reasonably to be higher than 10% 

• Active TB has always been taken as a continued 
development of the primary infection first acquired 
or due to endogenous reactivation or exogenous re-
infection with a second or the same strain. 
Separation and quantification of these mechanisms 
especially (endogenous reactivation and exogenous 
re-infection) requires technology that can 
differentiate between strains (Zhang et al., 2007). 
We crudely lump the two processes (Jung et al., 
2002) in this study to represent a progression to 
active TB, denoted by ra and rc 

• Recovery, may be due to treatment or natural 
recovery  In which case individuals revert back to 
the exposed class at rates σc and σa. The rate at 
which individuals recover usually depends on the 
immune status of the individual, types of drugs, 
genetic and socioeconomic factors. We 
acknowledge that quantification of these rates of 
recovery is difficult as evidenced by variations in 
the parameter values in research publications 

 
 The estimated parameter values used are given in 
Table 1. 
 
Numerical plots: Figure 4a shows the changes in the 
proportion of the susceptible populations for children    
and      adults,    with     increasing    time.  
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(c) 

 
Fig. 4: Shows the changes in the proportion for each population with time. The value of the model reproduction 

number is 0.0792 in this case 
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(b) 

 

 
(c) 

 
Fig. 5: Shows the changes in the proportion for each population with time. The value of the model reproduction 

number is 1.1426 
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Table 1: Table of parameters and numerical values 
Parameter Value(s) Reference 
µ 0.0125-0.025 (Song et al., 2002) 

β (0, 1) Variable 
p, q (0, 1) Variable 
σc, σa (0.5, 1) (Bhunu et al., 2008; LaSalle,  
  1976; Nelson and Wells, 2004) 

rc 0.03 (Nelson and Wells, 2004) 

c1, c2 (1, 100) Estimated 
F f≤µ Estimated 
ra (0.5,1) (LaSalle, 1976) 

 
The susceptible population of adults initially falls as the 
infective among adults increase, but later increases to a 
steady state value over time. The susceptible children 
increase to a steady state. This is reasonable since in 
most population structures, the proportion of children is 
higher than that of adults. In Fig. 4b the latently infected 
population for the two subgroups decreases over time to 
zero. In Fig. 4c the graphs for the two sub-populations 
show a similar trend in which their proportions fall 
over time to zero We observe that infection in the 
adult population clear later than that of children 
mainly because of the latent reservoir of infection 
from children. Overall, the Fig. 4a-c, represent the 
disease free equilibrium point E0 over a longer period 
of time than the one presented in the simulations.  
 In Fig. 5a shows the changes in the proportion of 
the susceptible populations for children and adults, with 
increasing time. Both sub-populations decrease to a 
steady state over time and again we have the proportion 
of children being higher than that of adults as the 
epidemic evolves. In Fig. 5b, the latently infected 
population for the two subgroups initially decreases and 
then rises to a steady state over time. Figure 5c shows 
the graphs for the proportions of infectives. The adult 
infects increased rapidly and settled in an endemic 
steady state over time. This scenario represents the 
endemic steady state E1, which we deduced analytically 
to be asymptotically stable for R0 >1.  
 

CONCLUSION 
 
 The study presented in this study is a very simple 
model showing the dynamics of TB in children and 
adults in the absence of any intervention. Many 
deterministic models of TB have been developed but a 
few, to the best of our knowledge, have been 
developed this way without using the age structures. 
We presented a model in which there are no 
interventions. A more realistic approach would be to 
include the current intervention strategies. This forms 
our research that is in progress. Although some of the 
model assumptions are realistic, many of them over 
simplifies the natural evolution of TB. In particular, 

the ageing function f, was chosen so that it does not 
exceed the birth rate of the population based on the 
assumption that the individuals that graduate into 
adulthood survive with some probability less than or 
equal to one. We acknowledge that it is difficult to 
estimate and an age-structured model would have 
eliminated such a difficulty. The lumping up of 
progression to active TB to include reinfection and 
reactivation and recovery to include both natural 
recovery and recovery due to the treatment represent 
significant short comings to the model. The agreement 
between the model output and epidemiological data 
has been restricted to very broad TB epidemiological 
trends. Despite these inadequacies, this study 
provides some unique insights in the way 
progression and recovery parameters influence the 
dynamics of the disease. Any form of intervention 
implemented should influence these parameters and 
quantify their changes and influence on the 
reproduction number. 
 Our analysis shows that progression to active TB 
among adults is epidemiologically significant and 
interventions should focus on the adult population. This 
perhaps explains why TB among children has not been 
a major subject for research. Similar trends can be 
observed in the recovery rates rc and ra. The 
relationship between the progression rates to active 
TB for children and adults and the model reproduction 
number draws out important information that can help 
in prophylactic treatment such as the use of Isoniazid 
in preventing progression to active TB. Figure 3, also 
shows that change in the progression rate for adults, 
results in significant changes in the model reproduction 
number. Attempts to use chemoprophylaxis for active 
TB prevention should be targeted to adults.  
 The global stability of the model shows that if 
R0<1 then every solution tends to the disease free 
equilibrium and the disease clears from the 
population. We showed that there exists a unique 
endemic equilibrium point whenever R0 >1. If the TB 
is present in a population then, as long as R0 >1, it 
will always persist.  
 In conclusion, despite all our results pointing out 
the need to focus interventions on adults, pediatric 
TB forms an important indicator of how the TB 
epidemic is evolving in adults. Infected children act 
as a reservoir of latent infections that can reactivate 
into active TB when they become adults. One of the 
most important factors to consider with regards to 
pediatric TB is that, it is possible to clearly 
distinguish between disease progression stages, 
exposure, infection and disease. This is particularly 
important to public health policy formulation, 
designing interventions and modeling in general.  
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