Journal of Mathematics and Statistics 8 (2): 220;2012
ISSN 1549-3644
© 2012 Science Publications

Modeling the Dynamics of
Tuberculosis Transmission in Children and Adults

'F. Nyabadza antM. Kgosimore
lDepartment of Mathematical Sciences, Faculty oésoe,
University of Stellenbosch, 19 Jonkershoek Roaelleéhbosch, 7600, South Africa
’Department of Basic Sciences,
Botswana College of Agriculture, P. Bag 0027, Gaher Botswana

Abstract: Problem statement: The fight Against Tuberculosis (TB) has mainly dsed on the adult
population because children were perceived to pseery low risk in TB transmission. This
assumption ignores the potential risk children hadeservoirs of latent infections from which fetur
cases evolve when they become adults. It wasftrerénportant to investigate the dynamics of TB
taking into consideration, childrepproach: We formulated a compartmental model for TB with
two age classes, children and adults. Qualitativayais of the model was done to investigate the
stability of the model equilibria in terms of theodel reproduction number,Rlumerical simulations
were also done to investigate the role played lyeskey epidemiological parameters in the dynamics
of the diseaseResults: The model had two equilibria: The disease freeilibgum which was
globally stable for g1 and the endemic equilibrium which was locallyraptotically stable for
Ryo>1, for Ry near 1. The study showed increased latent ifiestin the adult population as a result of
increased latently infected children who mature #multhood with latent infections.
Conclusion/Recommendations. Progression to active TB among adults is epidesgioblly
significant and interventions should focus on tlkil population. Anti-tuberculosis, treatment of
adults is crucial in controlling the epidemic artbugld interventions be proposed, they should target
progression to active TB for those latently infectdhe fight against TB should also take into
consideration tuberculosis among children.

Key words: Tuberculosis (TB), pediatric tuberculosis, stapilianalysis, reproduction number,
equilibria, latently infected

INTRODUCTION 2001). The burden of childhood tuberculosis is eacl
indication of the TB severity in the adult popubeti
Primary tuberculosis is the fountainhead of(Mairais et al., 2006; Warrenet al., 2004). The
tuberculosis disease and when acquired duringontribution of children to TB caseload is not well
childhood, it may develop into serious tuberculosisdocumented in poor-resource settings with highadise
disease within a short period of time or remaiedat burden, but research has shown that in high disease
during childhood only to be reactivated in adultioo burdened areas, children less than 13 years of age,
(Woodet al., 2010). Children usually progress to active contribute about 13.7% of the total TB caseloadain
disease within 12 months of primary infection bessau particular community in South Africa (Murray and
children have a high risk of progression to diseas&alomon, 1998). The result compared well with that
following infection(Brentet al., 2008; Sharomét al.,  determined for low income countries for childresde
2008). There has been limited interest in childhoodhan 15 years of age, which was 15% (Scleadl.,
tuberculosis because more than 95% of children witt2002). Children usually develop TB as a direct
active disease are sputum smear negative and aheref complication of the initial infection. Children kit
not infectious. Infected children represent a pooin  household or community exposure to TB are highly
which a large proportion of future cases of adut T likely to be infected with the disease. Childremnjaice
will arise and thus perpetuating the TB epidemilo¢®  TB infection from an adult who is in their immediat
and Snider, 1985; Bremt al., 2008; Vynnyckyet al., environment (Schaadt al., 2006; Woodet al., 2010).
Corresponding Author: Nyabadza, F., Department of Mathematical Scien€asulty of Science, University of Stellenbosch,
19 Jonkershoek Road, Stellenbosch, 7600, SouthaAfri
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Lack of contagiousness is one of the reasons titaicp We use the following notation for individuals in
health programs on TB prevention have excludedhe two age classes: we use the subscript ¢ amd a t
children. They are regarded as the end of therimeston  represent children and adults respectively, so $at
chain and therefore pose no threat to the evoldfdhe LC, I, and SA, L, I, respectively represent susceptible,
TB epidemic in the population. This view could havelatently infected and infects with active TB in Ichéen
contributed significantly to early childhood TB. and adults. The model is built on the following
Mathematical models for the dynamics of TB assumptions. All subgroups are subjected the ratura
have been extensively developed and have been usetbrtality ratgl. The effective contact rate of infected
in designing control programs and as predictivdstoo adults is assumed to be higher with susceptiblétsadu
(Bhunuet al., 2008; Bloweret al., 1995; Blower and than children (> ¢;). An effective contact is one that
Daley, 2002; Castillo-Chavez and Feng, 1997;is sufficient to result in an infection if the cawsted
Castillo-Chavez and Song, 2004; Goreesl., 2004; individual has never been infected (Walls and
Starke, 2003). Models that consider the potentiaShingadia, 2004). Susceptible children acquire TB

impact of TB vaccines were studied in (Mairas . . , , l, .
al., 2005). Recently, Bhunet al. (2008) considered infection from adults with active TB at a réig= ClBN’

a model that studied the impact of treatment andyhjle susceptible adults acquire TB infection from
chemoprophylaxis in combating TB.

Most of the studies reviewed concentrated on aduther adults with active TB at a ra = Czﬁlﬁ- B is the
TB and ignored TB in children. It is upon this
background that we propose a simple deterministi
model for TB that incorporates children and aduwifith
the goal of investigating the dynamics of intei@etof
pediatric and adult TB epidemics. We develop
mathematical model with the object of quantifyirtgp t
underlying factors that drive the epidemic in clell
This study aims to challenge public health
policies regarding childhood TB. We endeavor to
answer the following questions: What is the role of
increased adult TB control on the growth of
childhood TB? What is '_[he proportion of adults thf?‘tgiven by f. However, infected children are assumed
need to be targeted in order to control TB iny, graquate into adulthood being infective. We
children? To the best of our knowledge, there is &cknowledge here that the consideration hfing
limited number of theoretical models of childhodB.T  constant is merely for mathematical conveniencee W
shall assume that f is less than or equal to ttk kate.

MATERIALSAND METHODS Figure 1 depicts the interaction of the two age-
classes.

The model is thus described by the following det o
ordinary differential Eq. 1:

effective contact rate. The parametgaccounts for the
increased infectiousness among the adults due to
several factors relating to mixing, bacteria progiam
and environmental settings. A proportion p (q) of
&children (adults) develops active TB in the firgay
after primary infection and the remainder develops
latent TB. Progression to active TB occurs at & rat
r«(ro) for children (adults). Recovery, naturally or hvit
chemotherapy, results in an individual revertingkog
the latent class at a rate (o) for children (adults).

The rate at which children join the adult clasises

A two class age-structured model: The model
considers a constant population N, subdivided timtee
different subgroups: susceptible (S) latently itéel(L) ds _ I,
and infected with active TB (I). Individuals movein (TStc KN _ClBSCﬁ_(“+ s
one subgroup to the other as their status withessio  dL_ _ I,
the disease changes. We again divide the populationgt =@- p)ClBSENJrOC L= (u+ e+ )L
into two age classes, children and adults. Indizdslu i I,
below 5 years belong to the “children’s” age clakile at pClBStNJ' (L= (urog) L
those above 5 years belong to the “adult's” agescla ds I,
These age groups are separated primarily to disshg §; =18~ Czssaﬁ_ HS
between pediatric TB and adult TB. While the exagg¢ gL I
demarcation is somewhat arbitrary, the main goaé he —g; ~ oo T ~NEBS, G+ 041~ (h+r)Lls
is to divide the population into two reasonable ageg I
classes. Data from medical institutions also showsd*; =q°235aﬁ+ Ll (H+o)l,
different phenomena in TB development for the two
classes. By setting:
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Fig. 1: Model diagram showing the transmission Bftietween disease stages and age classes

S L. .o .8, L, 1, Suppose there exists a first timestich that t;) =
X, = —=2,X, =—%, X, == X, == X, =—2 and x,=—*
N N N N N N 0 and the derivativé dl <0 att =t and x(t) >0, (i =
We can rewrite the system (1) as Eq. 2: 1,...,6) for O<t <{. The first equation of the system (2)
gives dxl (tl) u>0,which is a contradiction? Thus x
d
Xl _H cPxXg— (H+F)x, (t) WI|| remain positive for all t. Similar stegsn be
followed for the remaining variables. We conclude
?tz:(l— PIGBX X+ T X~ (M+ 1+ f) X, that all solutions of the system (2) are positive dll

time. Our population is also bounded in G thus all
7X3:pclgx1x6+ X~ (u+0) x, 3 =t —cpxxcpx, (2) solutions starting with G will remain in the G. Tu
dt G is positively invariant and attracting and ourdab
d;s =fx, +(L-Q)CBX, X+ 0 X~ (H+ 1) X is thus epidemiologically well posed.
t

Xs Determination of equilibria: We analyze the system
- = BX, X+ X5~ (H+0 ) X di Tor :

G2 XaXs 6 (2) by finding the model equilibria and carryingtou
their stability analysis. At the steady state we the
right hand side of equations of the system (2)edm

The model has initial conditions given by(8)=0, ;ﬂd determirl1e the Stgltje \lariables. y (2)emz

=1, 2,.., 6. Biological_considerati(_)ns en_tail thved From the first five equations of a system (2), we
study systematically (2) in the following region: have:
G={(X;, X, X X u X X ORE | X4+ X+ X4 X+ X X S 1. . _ M .1 _
(X X2 X3 Xy X XJUR X+ X5 X5t X i X X S T} X1_(M+f)+clﬁx*6’x2‘(L1+rc+f)[(l p)qpx1x6+ocx3],

Proposition: Solutions of system (2) are positive for all - _ 1 [pqﬁx %o+ J % = fx;
t > 0 and are bounded. The region G is thus positively (U+0) Yo
invariant and all solutions in G remain in G fortahe.

[0, H@ —q)c X, + 0 1 |

XS

(u+r)

Proof: For the given initial conditions, we prove by

contradiction that if x(t), x (), X3 (1), X (), % (t) and  Solving for x, and x;, simultaneously, we have Eq. 4:

Xs (t) are solutions of a system (2.2), then they are

positive (see also Bhuraial., 2008; Zivet al., 2004). X, = WX X, (3)
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X3 = WX X g 4)
Where:

o= [@-pp+a] g

(Fo)p+f)+pr, "
And:
__ Pu+f)+r

T wr oyt v,

Substituting forx; in x,, we have Eq. 5:
. f

X; § (5)

TP+ +OPXy)

Substituting Eq. 3 into the expression fpr we
have:

%= [ fox, H{L -a)e X, +a 1] (6)

Substituting Eq. 6 into the last equation of syste
(2) we have the solutions; =0 and the solution of the

guadratic polynomial:

P(%G)=a% +aX%+ a (7)

Where:

& =Hu+fu+o,+r)-R,

a =g+ @+ Ne)u+o,+ r)-rfolas (1+o #r)cel
And:
R,=R,+R, (8)
With:

_ cBf(ug+r)
Hu+f)(u+o,+r)’

R :[ [A-pu+olep }( ]

M+ 0 ) (U +T) +pr,
Here, R represents the contribution of adults to
secondary infections while ;Rs the contribution of
children to secondary infection. The threshold

a

r,f
(W+F)(u+0,+r)

parameter Rdefines the mean number of secondaryQualitative
infectedReproduction Number: We consider first, the effafts

cases generated by introducing a single
individual into a wholly susceptible populationwhich
children are involved in the dynamics of the diseas

The casex, =0 gives the disease free equilibrium
point:
232
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The endemic equilibrium is thus determined from
the solutions of (7). As regards the sign pfra(7), we
have the following proposition.

Corollary: If Rg <1 then a>0.

Proof: Consider:

a=WU+o,+r)uc+ @+ f)c,)-rjw,
=(H+0, +r)(uc,+ (u+f)c,)[1- K]

[z

We note that if R< 1 then K< 1 since:

Where:

f
He,+(+f)e

rl
H+o,+r,

(1-pp+o,
WroJu+f)+wr

.

e

f
He, + (U +f)c,

f
p+f

This implies that 20.
We thus have the following theorem on the
existence of the endemic equilibrium.

Theorem 1: If Ry <1 then P (¥ has no positive
solution. However, if 1, then P (¥ has one positive
solution. We therefore conclude that system (2) das
unique endemic equilibrium point Bshenever @>1.

Proof: The solution of (7) is given by:

L - atVa’-4aa

6 232

Here >0 and g0 if Ry<1 and @< 0 if Ry>1and
from (8), if Ri<0, then we have two negative solutions
and for R>1, we have one positive solution for all a

RESULTSAND DISCUSSION

results. Analysis of the Model
increasing the recovery rategsando.. We note that as
0.—~ 0, Ry » 0 the implications of this result is that
emphasis should be placed on preventing adult

individuals from progressing to active TB. A highter



J. Math. & Stat., 8 (2): 229-240, 2012

of recovery of individuals with active TB plays a 2
crucial role in decreasing the pool of infected 1.8
individuals. However, ag,- 0, R, - R, where: L6 [0 06 e
1.4 P ]
Ro = CBf(Ma+L) | cpf A e . ]
CoHu)(ro,tr)  pHf (WO, ) L '
i — — 1
This result shows that the recovery rate of chitdr ber B S ——
does not play a crucial role in the dynamic of T8 a ] S R e 10—
compared to that of adults. The contour plot in. Fig L e —— e 10—
shows the relationship betweep B, anda.. 0 0'2;’ = : '2'2_1 _12; >

Figure 2 represents a set of &®ntours for which,
for a chosen set of parameter values, changesein th
values ofg, and o, would give. We note that as the Fig. 2:Shows the relationship between the recoveatgs

Ge

value ofa, increases, the value of, Becreases. In fact, and the reproduction numbeg Rr the following
this result is similar to the one proven analyticathat set of parameter valug$;= 0.01,u = 0.017, p=q
aso, — 0, Ry — 0. Recovery in this case may be due to =0.1,0,=0.8p,=0.6,c1 =6,c2 =10, f=0.02
treatment or natural recovery. Since the fight asgfai

TB has been restricted to, vaccination, identifying 2=

infectious cases and treating them, one can cantige 18+

result to imply that the fight against TB must be 16t

directed mostly to the adult population since tlaeg 14k g
the source of infection. It is clear from Fig. 2ath 12l p— e

increasing the recovery rate, for children does not . 2"

play any significant role in the transmission dyizm i |
of the disease. s 2 2
We now investigate the role of the progression 06

5 Al gp—————— i
ratesgand . Asr, - 0, R, - R3?, where: ) ' .
02 K ' 4
5 l—o05— —~ 05 - —
mo_ CBadf 0 05 1 15 i)
0 " =
(H+f)(u+o,) Lo
_ . Fig. 3: Shows the relationship between the progress
Note that R@ <R,. Thus a reduction in the rates and the reproduction number RO for the
progression rates leads to a reduction in the numbe following parameter valuesf = 0.005p =

secondary infections generated by an infected 0.1,90.1,rc =0.08,ra=0.5,c1 = 6,c2 = 20, f20.0

individual. ) ) ) )
Children become a reservoir of latent infections

We also note that ag -0, we haveR, ~ R7.,  from which reactivation is highly likely to occur
where: when they become adults. Figure 3 illustrates the
theoretical results relating variations of progiess
_ CPf(ug+r) +cpf[(1_pp+oc][ r, ] raand g to secondary infections.
Wu+f)(u+o,+r)  (uHf)(u+o) () (p+agr) )

Global stability of Eq:
Theorem 2: The disease free equilibrium poing &5
ThatR§ >R,. Reduction in the progression of globally asymptotically stable in G whenevey<R1.
latently infected children to active pediatric T&ads to
increased secondary infections in the adult pojmrlat Proof: We consider the following Lyapunov function:
The implications of this scenario are that there ar
increased latent infections in the adult populatisna V=aX, +a X+ o X+ X g
result of increased latently infected children who
mature to adulthood with latent infections. Where:
233
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a, =fr,(u+o),a,=frg,a =r(u+f)(p+o)+prl Suppose is the bifurcation parameter. Wheg R
anda, = @+ )+ ) +o,)+pr] =1 we have:
The derivative of V with respect to time is givayn . (O +o, +rI(H+o)(p+f) +pr]

T HC, Mg+ I+ oYM+ +ur ]+ fc [A-p)H+0 ]
ﬂ:uld—xz+(]2d7x3+(]3%+(]4%, : H
dt dt dt dt dt The Jacobian matrix of the system (7) gfdf B =
<[(u+f)(u+0) +pr ][ u+) +Uo)(R ,-)x (<Ofor R <1 B’ is given by:

It follows that & <o for R, <1, since the model J. :(A B]
dt B C D

parameters are assumed to be positive. The
derivative?j—\t/:o, if and only if R = 1. Hence V is a where, A,B,C and D are<d matrices given by:

Lyapunov function on G. The largest compact setitha

. _ ) W _ —(u+f) 0 0

invariant in {(xl,xz,x3,x4,x5x6)DG|E=O} is the A = 0 —(u+r, +f) o,

singleton {E}. It follows from the lasalle’s invariance 0 fo “+a)

Principle (Lietman and Blower, 2000), that every

solution of (2) with initial conditions in G approies 00 -¢fx% f 00

E; as t- 0 whenever R<1. B=|0 0 (1-p)gB X |,C=| O f

Local stability of the endemic equilibrium: The 00 pgBx 00

size and nature of the matrix resulting from stadda

linearization of the system (2) makes the _ 0 e X

determination of eigenvalues and their nature a H & .

difficult and tedious exercise. We resort to thetee D=0 —@+r) @-agpx+o,

manifold theory described in (Femtal., 2001) and 0 A qcP X, - +o,)

used in (Songt al., 2002) to determine the stability of the

endemic equilibrium point. We note that our systerof J+ has a zero simple eigenvalue and the

the form: corresponding right eigenvector associated witls thi
dX simple eigenvalues is given by vy =(Y2, Ya, Ya, Vs,
= =FX) Ye)' where:

Where: y, = W (+o, +r)(+o ) +f) +pr]

f(u+){c,(ng+r)[(u+0)(u+f) +r] +rg (A -p)u+o]}

X= (Xl! X2, X3, X4, X5, XG)T

T oy We(+0, +r)A-pp+o]
and F (f, f, f5, f4, f5, fe)" where (.J denotes a matrix 27 1{c,(ua+ [+ oYU +T) +ur] +urg [A-p)u+0 J}
transpose. System (2) becomes Eq. 7:

pre[p( + ) +rJ(u+o)(u+f) +ur]

dx y, =
TR ()X, *He,(g ) +o )+ +w] +rg[A-pu+o ]}
d

%=f2=(1—p)qﬁxlx6+ocx3—(u+ r+f)Xx, v, = e+ c,E+ PP +o, +r)(U+o ) +f) +pr]

i b D{e,a+ i+ o)) +pr] g [L-pu+o ]}
(T;: 3 =PCPXXgt+ I’CXZ—(U+OC)X3

d 9 v _hc,+r)A-pu+oJrclp+o)@+f)+urjlul-q)+o] vo=1
%:f‘l:fxl—czgx)(e— ux , ° {c.ba+ Dl+o )+ H+wl+wefa-ppu+of

dxs _ . _ The left eigenvector of the transpose gfthat is
— =f_ =X, +(1-q)cPX X +0 X~ (U+T)X '
da  ° 7 (=)o xxatoXe= (Hrr)x, the left eigenvector ofdis given by:

dx,

—=f, = + —(pn+

at 6 ZACPX X+ I X5 (“ ca)xﬁ Z=(21.ZZ,23,Z4.%,%5
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Where:

2120’22:nfraq’l-'.o-c)!ZS:nfrpc!ZA: 01 °
zg=nr[(p+o)@+f) +prd z=n(+r)l(p+o Y(H+f) +pr]

And n>0 is chosen so that the condition y «z=1 is
satisfied. .
Following Theorem 4.1 in (Feng al., 2001), we
thus compute a and b to determine the stabilityof

around R = 0, where:

%,

0X,0X;

0%,
ox,0p

b=24 %Y (10)

a:zkijzl Z Yy

And B’ the bifurcation parameter.
The non-zero partial derivatives of F at the disea
free equilibrium point are given by:

o1,
"OX.0X

of, _
X X ¢

at,

P, _
=(1-p)gp B X,

0X,0X ¢

= pef + g af

To determine a we substitute the above expressions
of the partial derivatives into Eq. 10. We thusdiav

a= Yy [(1- p)z,+ pz I y,¥8 [(- 9)z+ gz k (

Since y<0 and y<0, the right hand side of a is ,
always negative. For the sign of b the followimg the
non-zero partial derivatives of F:

9%, .
— 2z =(1-
ox0F (A-p)ax

o,
% 0B

0%,
ox A8

fo _

K ac'y

= (& e g

=pGX

An evaluation of b shows that b is always greater
than 0. We thus have the following results based o
Theorem 4.1 in (Feng al., 2001).

Theorem 3: The endemic equilibrium point;&s locally
asymptotically stable for &1 but with R near 1.

Numerical results: We now give a discussion of the
numerical solutions of systems (2), the parameter
values and interpretations of the cases that arise
thereof. The dynamics of the system (2) are studied
numerically using the fourth order Runge-Kutta
numerical scheme in MATLAB.

human beings are between 40 and 80 years. We use
the natural mortality rate in the range 0.042%

The rate at which children join the adult class f i
assumed to be less than or equal to the birth rate.
We try to accommodate, the fact that not every
child survives to adulthood. So we seff

Susceptible children and adults are infected with
probability 3 upon contact. Contact patterns that
can result in infection can be random, associative,
age-specific and sex-specific and so on, but ig thi
study we assume random mixing. This means that
every susceptible is equally likely to be infectad

an infective should contact occur

While the probability of infection is taken to Hweet
same for children and adults, we assume that adults
have increased chances of mixing. We thus
consider different contact rates

Estimates have shown that 10% (proportions p, q)
of TB infection progression fast to active TB (Jung
et al., 2002). The risk for young children to
develop active TB if the infection is not treated i
up to 43% in children less than a year old,
approximately 24% for children between 1 and 5
years of age and much lower for those between 6
and 13 years (Schaef al., 2003). The proportion

of children that develop active TB fast can thus be
assumed reasonably to be higher than 10%

Active TB has always been taken as a continued
development of the primary infection first acquired
or due to endogenous reactivation or exogenous re-
infection with a second or the same strain.
Separation and quantification of these mechanisms
especially (endogenous reactivation and exogenous
re-infection) requires technology that can
differentiate between strains (Zhasgal., 2007).

We crudely lump the two processes (Jwdl.,
2002) in this study to represent a progression to
active TB, denoted by, and ¢

Recovery, may be due to treatment or natural
recovery In which case individuals revert back to
the exposed class at rates and 0,. The rate at
which individuals recover usually depends on the
immune status of the individual, types of drugs,
genetic and socioeconomic factors. We
acknowledge that quantification of these rates of
recovery is difficult as evidenced by variations in
the parameter values in research publications

The estimated parameter values used are given in

Parameter values: Some of the model parameters wereTgpje 1.

decided upon based on the following assumptions:

Numerical plots: Figure 4a shows the changes in the
» Since the birth and death rates are taken to be thgroportion of the susceptible populations for ctela

same, we assume that the average lifespans afnd
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Table 1: Table of parameters and numerical values the ageing function f, was chosen so that it doss n
Parameter Value(s) Reference exceed the birth rate of the population based @n th
H 0.0125-0.025 (Sorg al., 2002) assumption that the individuals that graduate into
B (%' 11) \\//a”?‘?)'f adulthood survive with some probability less than o
2;13 ((0.’5’ )1) (Birﬁéajqzoo&l_a%”e’ equal to one. We acknowledge that it is difficudt t

1976; Nelson and Wells, 2004) €stimate and an age-structured model would have
e 0.03 (Nelson and Wells, 2004) eliminated such a difficulty. The lumping up of
.G (1, 100) Estimated progression to active TB to include reinfection and
F f<p Estimated

‘. 0.5.1) (LaSalle, 1976) reactivation and recovery to include both natural

recovery and recovery due to the treatment reptesen
significant short comings to the model. The agrestme
between the model output and epidemiological data
has been restricted to very broad TB epidemioldgica
trends. Despite these inadequacies, this study
provides some unique insights in the way

. - . progression and recovery parameters influence the
higher than that of adults. In Fig. 4b the latemtfigcted dynamics of the disease. Any form of intervention

population for the two subgroups decreases oves n  jmplemented should influence these parameters and
zero. In Fig. 4c the graphs for the two sub-popeie  guantify their changes and influence on the
show a similar trend in which their proportionsl fal reproduction number.

over time to zero We observe that infection in the = o analysis shows that progression to active TB
adqlt population clear later than tha_t of _chlldr_enamong adults is epidemiologically significant and
mainly because of the latent reservoir of 'nfeCt'oninterventions should focus on the adult populatiBiis

Lr_om chi]chren. O_‘l’_f)r?‘”- the_ Fi%‘ 4a-c|, represene (;h perhaps explains why TB among children has not been
Isease free equilibrium poing iBver a longer perio a major subject for research. Similar trends can be

of time than the one presented in the simulations. Pbserved in the recovery rates and g The

In Fig. 5a shows the changes in the proportion Orelationship between the progression rates to @ctiv
th tibl lations for child d aduitth : .
e susceptible populations for children and ad gB for children and adults and the model reprodurcti

increasing time. Both sub-populations decrease to . . .
steady state over time and again we have the piopor number draws out important information that carphel

of children being higher than that of adults as thd" Prophylactic treatment such as the use of Isodia
epidemic evolves. In Fig. 5b, the latently infectedin Preventing progression to active TB. Figure Bpa
population for the two subgroups initially decrenaed ~ Shows that change in the progression rate for adult
then rises to a steady state over time. Figurehbavs ~ results in significant changes in the model repatidn

the graphs for the proportions of infectives. Tlila ~number. Attempts to use chemoprophylaxis for active
infects increased rapidly and settled in an endemid B prevention should be targeted to adults.

steady state over time. This scenario represers th ~ The global stability of the model shows that if
endemic steady statg,Evhich we deduced analytically Ro<l then every solution tends to the disease free

The susceptible population of adults initially $alis the
infective among adults increase, but later incredsea
steady state value over time. The susceptible rehild
increase to a steady state. This is reasonable $&nc
most population structures, the proportion of akifdis

to be asymptotically stable forpR1. equilibrium and the disease clears from the
population. We showed that there exists a unique
CONCLUSION endemic equilibrium point whenevep R1. If the TB

is present in a population then, as long asR it

N . ) will always persist.
The study presented in this study is a very simple |, ¢onclusion, despite all our results pointing ou

model showing the dynamics of TB in children andihe need to focus interventions on adults, pediatri
adults in the absence of any intervention. Manyrg forms an important indicator of how the TB
deterministic models of TB have been developedabut epidemic is evolving in adults. Infected childrect a
few, to the best of our knowledge, have beergs 4 reservoir of latent infections that can reaté
developed this way without using the age structuresinto active TB when they become adults. One of the
We presented a model in which there are nomost important factors to consider with regards to
interventions. A more realistic approach would be t pediatric TB is that, it is possible to clearly
include the current intervention strategies. Thisfs  distinguish between disease progression stages,
our research that is in progress. Although somthef exposure, infection and disease. This is partitylar
model assumptions are realistic, many of them ovelmportant to public health policy formulation,
simplifies the natural evolution of TB. In partiem]  designing interventions and modeling in general.
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