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Abstract: Problem statement: A new variant of the Successive Overrelaxation Ep@ethod for
solving linear algebraic systems, the KSOR methad wtroduced. The treatment depends on the
assumption that the current component can be usadtaneously in the evaluation in addition to the
use the most recent calculated components as irs@R method Approach: Using the hidden
explicit characterization of linear functions tdroduce a new version of the SOR, the KSOR method.
Prove the convergence and the consistency analfy$ie proposed method. Test the method through
application to well-known exampleResults: The proposed method had the advantage of updiiéng
first component in the first equation from the ffistep which affected all the subsequent calcutatio

It was proved that the KSOR can converge for adisfie values of the relaxation paramedtet,IR-[-

2, 0] not only for (@(0, 2) as in the SOR method. A new eigenvalue fanat relation similar to that

of the SOR method between the eigenvalues of #ratibn matrices of the Jacobi and the KSOR
methods was proved. Numerical examples illustratimg treatment, comparison with the SOR with
optimal values of the relaxation parameter weresictaned Conclusion: The relaxation parametey* in

the proposed method, can take valugsIR-[-2, 0] not only for (@(0, 2) as in the SOR. The
enlargement of the domain has the affect of refptime sensivity near the optimum value of the
relaxation parameter. Moreover, all the advantajeéhe SOR method are conserved and the proposed
method can be applied to any system. This appraagiromising and will help in the numerical
treatment of boundary value problems. Other exteissand applications for further work are mentioned

Key words: Linear systems, iterative methods, iteration masjcuccessive over relaxation

INTRODUCTION xg"*”:;( ) Z'_lan =2 d *n) @)

The problem of solving linear systems of algebraic '
equations appears as a final stage in solving many From the computational point of view Gauss-Seidel
problems in different areas of science and enginger method is a surprising natural extension for Jacobi
it is the result of the discretization techniqudstee ~ Method. Historically, Gauss introduced his method
mathematical models representing realistic problem¥Nen he was working in least squares problem, #818

T while Jacobi work appeared in 1853, (Saad and Yorst
S;:i%?;g;?ﬁé;gggeﬁg;?fh;eis:?nnézs ]c-!terdlrhe 2000; Hackbusch, 1994). Gauss-Seidel idea depends o

the use of the most recent calculated values. Dt p
Gauss-Seidel method for system (1) is Eq. 3:

LS UDWE LD WRTY 3)

We assume that the system has a unique solution \;oeover, the novel successive over relaxation

and the equations are ordered so thada(Darvishi  approach, the SOR method, generalizes the Gauss
and Hessari, 2011; 2006; Papadomanoétkl., 2010;  Seidel method. The point SOR method for system (1)
Wang, 2010; Loukaet al., 2009; Salkuyeh and s Eq. 4 and 5:

Toutounian, 2006).
Jacobi method is the simplest known iterative

z aﬁjxj:hli:_']_yz...,m (1)
j=1

method; it is a direct application of the fixed poi X" =x"+ >/ b -3 Fa x4 7 a7 - 4 (4)
theorem. The point Jacobi method for system (1) is oined tompemans P —
Eqg. 2: i=1,2,..,m,n= 0,1,2,..
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K = (1-0) X + oxi2z (5) The Gauss-Seidel and Successive Over-Relaxation
(SOR) methods are important solvers for a class of
large scale sparse linear systems due to thediesftty

where,wJ(0, 2) is a relaxation parametes,= 1gives  and simplicity in implementation. Many other

the Gauss Seidel method anxi;”.q is the solution surprising methods appeared in the last few decades

S|

obtained by the Gauss Seidel method (HackbuscH‘,sed the same philosophy to introduce formulas that

1994; Burden and Faires, 2005; Varga, 1965). contain more parameters and include the other rdstho
Using matrix notations, the system of Eq. 1 can béS special cases for some values of the paramétees.
written as Eq. 6: Accelerated Over Relaxation (AOR) method is a novel

two parameter generalization of the above mentioned
_ N S methods (Hadjidimos, 1978; Avdelas and Hadjidimos,
AX=bX,bOR",ADR™A=D-L-U (6) 1981). Albrecht and Klein (1984), have considered

) ] o ) extrapolated iterative methods, they have illustitahat
where, D is a diagonal matrix with the same diajonathe classical iterative methods can be interpreted

elements as A and-L, -U are the strictly lower andintegration methods for certain systems of linear

upper triangular parts of A respectively, (Hackusc (ifferential equations.

1994; Burden and Faires, 2005; Varga, 1965; Young, The basic idea in the KSOR method depends on the

1971). process of updating the residue in the right hadel sf
Accordingly, we have. the SOR method (4). It is assumed that the cusaine

can be used in addition to the use of the mostntece

calculated ones (i.e., updating the residue simetiasly

with the current new component). Apparently, this

Jacobi method:

X" =TX"+D%,T; = D*(L+U) (") process leads to an implicit formula but actuatlyisi
explicit due to the linearity of the equations.
T; is the Jacobi iteration matrix Eq. 7. Accordingly, the first component is updated in fhst
step which affects all the subsequent steps. Unlike
Gauss-seidel method: Gauss-Seidel (SOR), AOR and the extrapolated v&ssio
of iterative methods in which the solution is ugdbafter
XA =T X+ (D-L)",T,=(D-L)"'U (8)  the determination of the new component in the KSOR
is assumed that the update prosses can take place
Tg is the Gauss-Seidel iteration matrix Eq. 8. simultaneosoully with the evaluation of the new
components. The iteration matrix of the proposethot
SOR method Eq. 9: is obtained, theoretical considerations are being
discussed. It is proved that the method is comiplete
X =T X+ (D-ol) b (9 consistent and can converge for values of the atitax
Toor = (D-0 L) *((1-0)D + wU) parameter ¢ JR-[-2, 0]) not only for the relaxation
parameter @1(0, 2)) in the SOR. Moreover, the
TsoriS the SOR iteration matrix. proposed method will be convergent when the claksic

SOR (0, 2)) is convergent. Comparison of the results
Definition: The spectral radius of a matrix H, denotedof the proposed method with other well- known itigea
p(H), is given by: methods especially with SOR with optimal valueshef
relaxation parametew has proved the efficiency and
reliability of the method. Numerical examples witie
graphical behavior of the spectral radius of the
] ~corresponding iteration matrices as a functiomsinare
It is well known that a necessary and sufficientgiscussed. Moreover, the proposed KSOR method has

condition for the convergence of a given iterativethod  {he same simple explicit appearance as the SORotheth
is that the spectral radius of the correspondiaaiion

p(H)= max{\)\i\ A, is an eigen value of}}

matrix is less than one. The smaller the specidilis of MATERIALSAND METHODS

the iteration matrix is, the faster the rate ofvargence

of the corresponding iterative method is (Saad\4owt, Assuming that we can use the current component
2000; Hackbusch, 1994; Burden and Faires, 2005imultaneously on the evaluation of the residuecapp
Varga, 1965; Young, 1971; 1954). in the SOR method in addition to the use of the tmos
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recent calculated one. It appears that the methibédev
implicit; however after the rearrangement of thents
we get an explicit formula. Accordingly, the KSOR
method can be written in the form Eq. 10-12:

Xl —x"1+

h-Xha x " T k| o)

Assurned
updated

J} (11)

updated old

i=1,2,..mo R-[-2,0]

X :(hlm)X{x[”] . (b Z% DN EL

JFiHL

i=1,2,-,mo OR-[-2,0]
[n+] _ [r] [n+1]
X; - Xt Xgsi
o) e ) (12)
i=1,2,mo OR-[-2,0]

The relaxation parametes* 0 R-[-2, 0] plays the
same role aso in the SOR method but with extended
domain. It is used to control the spectral raditishe
iteration matrix, accordingly the rate of convergen

The matrix formulation of the KSOR method is Eq.
13 and 14:

x4 :TKsoRx[n] +((1+(1)*)D—(1)*L)_1((1)* b) (13)

Teson = ((1+0)D-0'L) " (D+6 V) (14)
where, ksor is the iteration matrix of the KSOR
method.

We first prove a basic result which gives the
maximum range of values af* for which the KSOR
iteration can converge.

Theorem 1: Let AOR™™ with gz0. Then

p(TkSOR)_‘ , which implies that the KSOR method

can converge for atb* (OR-[-2, 0]
Proof: for all, w*#-1, we have:

det(T.oor )= detf( 2o )D-w'L) " (D+w U))
=det((1+0')D-w'L) det(D+a U)
1

det(lon )= det(( +o ) D-o L)

de( D+w’u)
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_ 1
 det{(1+0')D)
1
(1+0')" det( D)
_1
(1+o)”

det(Tesor )=

det( D+ w’u)

det( D+ w’u)

det( D) de{ D+o'U)
1

(1+03 "

Since, det(Tigor )= |'|J Bi

where, B; is the eigenvalues of the iteration matrix,
Tksor accordingly we find:

de{ Ko'D'U)= .

(1+a)

m 1 m
8| =1detCon ] = | —=—5| < map)
J= (1+u) )
Thusp(Tsor) = 1 —. For convergence, we must
Lo
have1>p(T,sor)2 ‘1 1 ‘ and this givesy* OR-[-2,0].
+0

Theorem 2: The KSOR method (10 or 11)
completely consistent with the system (1) for alues
of the relaxation parameter OR-[-2, 0].

is

Proof: The proof is straightforward application of the
definition of consistency (Young, 1971).

Theorem 3: The characteristic equation of the KSOR
iteration matrix can be written in the form Eq. 15:

det(1-p-Po)D+oU+0 pL)=0,0'0-2,0] (15)

Proof: the characteristic equation is:

det( Tesor — B |) =
det[((1+w*)D—w*L)_l(D +(5U)—BI} =
(D+e'u)-px

def{(1+0’)D-0'L) de{((nd)D—afL)

]=0

Since de((1+ o' )D-o L) #0

We must have:

Det (1-p-po )D+0 U+6pL]=
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This result holds for any system of the form (1) SOR iteration matrix, Jog, Will be considered in a next
(have a unique solution with; & 0. Moreover, for any work. From the point of view of integration methdds

w*0OR-[-2, 0] # 0, because;& 0. certain systems of linear differential equations,
Albrecht and Klein (1984) and the references therei

Theorem 4: For any matrix that satisfies Eq. 16: the KSOR method can be considered as the method
which uses the prediction correction philosophyire

det @D -yL -y *U) = det) D- L- U (16)  Step. From the point of view of extrapolated method

08, yOR\{ G the KSOR method, like the SOR method can be

considered as an extrapolated Gauss Seidel method.
In general two cyclic consistently ordered mainix The KSOR method and other iterative methods can be
the sense of Young (1971); Theorem 3.3pag 147) andombined from the point of view of prediction
Varga (1965). The eigenvalu@sof the KSOR point correction techniques and this will be our
iteration matrix are related to the eigenvalpesf the ~ considerations in a subsequent work.

Jacobi point iteration matrix by the relation E@: 1 ) _ o
The KSOR algorithm: we introducethe algorithmic

(B+po -1¢ =po?p?,0 20 (17) formulation of the KSOR method. This algorithm is
similar except for some constant multipliers of the
already well-established SOR algorithm (Burden and

Proof: The eigenvaluef of the KSOR point iteration _
Faires, 2005).

matrix satisfy:

Algorithm (KSOR):

det[(l_ p-po’)D+w'U+ap L} =0, Input: The number of equations m:

B 1 * 1
s | BHBO -1 -2
((‘) ﬁzj{ N D-p *U _ * The entries gl< i, jsm, of the matrix A
det op | 0. e Theentrieshl<i<mofb
_p7L « The entries XQI< i <sm of XO0=x? ; the
) . parametew*
Z0,0 20 . . .
_ . p=0o * Tolerance TOL; maximum number of iterations N
det ﬁ+[*3oi/2—1 D—B_IIZU —B“ZL} =0, . _ _
| of Output: The approximate solution 1X..xn, Or a
[p+po -1 message that the number of iterations was exceeded:
det] s D- (U+ L):| = O,
- me Step1: Setk=1
det %"12‘1 I- DU+ L)} =0 Step 2: While (&N) do steps 3-6
L op Step 3: Fori=1,...,m

*

Which proves that,%“i,z_lzu is an eigenvaluef setx = (1+lm*) X0+~ (f+ w.){ b _.Zj‘ 3 X—glé‘ X‘P}

the Jacobi iteration matrix. This result gives aedi

correspondence between the eigenval@esof the Step4 :If[|X-XO [[< TOL Then output (x...x,)

KSOR iteration matrix, fsog and those of the Jacobi (Procedure completed successfully.)

iteration matrix, T. In particular if T has a p-fold zero STOP.

eigenvalue, then &or has p corresponding eigenvalues Step 5: Set k = k+1. .

equal to 1/(1&). Step 6: Fori=1,..., msetXO xi . _
Moreover, associated with the 2q nonzeroStep 7: OUTPUIT (Maximum number of iterations

eigenvalues p of Tj there are 2q eigenvalues ofsEr exceeded"); (Procedure completed successfully.)

which satisfy: STOP

2 —p 2 Illustrative examples: Among the test problems we
By +Bw* )" =Biqw have considered, we mention only two simple well
known examples used in the literature with origims
The correspondence between the eigenvluet  the discretization of boundary value problems (\arg
the KSOR iteration matrix, gkor and those\ of the  1965; Young, 1971). In the first example we presbat
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solution values and the graphical representatiothef Table 1:The solution values obtained by the SOROTEWith top

absolute values of the eigenvalues of the SOR and SOR
KSOR iteration matrices Wopt = 1.07p = 0.0942179

In the sgcond example we present the e-lge-nvalues ) 0 ‘EKSOR‘
of the Jacobj;,| = 1,2,3 and 4 and Gauss Seiddl = ' 2 '
1,23 and 4 iteration matrices and obtained thél’ 8-gggggg g-gggggg 8-2832328883
eiger.walues)\i,i. = 1_,2,3 and 4 pf the SOR iteration 0.936905 0.978759 0.0665742000
matrix as functions imo and the eigenvalugs,i=1,2,3 3 0.993052 0.997770 0.0072966400
and 4 of the KSOR iteration as functionswh ;‘ 8-38332? 8-333;;2 8-888(7)‘7‘%233

The main difficulty in the efficient use of itehas 6 0.999993 0.999998 :

. . . . 1

methods which depends on some parameters like the 0.999999 1.000000
SOR method, the AOR method lies in making a good 1.000000 1.000000

estimate of the optimum relaxation parameters which

maximizes the rate of convergence of the method. Idable 2: The solution values obtained by the KSG#hod
the following we consider two well known examples Kf(_)Fis 6155 = 0.0795160

with known optimum relaxation parametety,y. W

Determining the optimum value of the relaxation U1l 01 [
parameters is a very important task and it will be ’ ’ .

: - 1 0 0 0.00000000000

considered later in a separt work. 5 0539958 0831514 0.48992400000
3 0.945789 0.984193 0.05646800000

Example 1: Consider a system with data Eq. 18: 4 0.995797 0.998994 0.00432127000
5 0.999793 0.999968 0.00020972500
6 1.000000 1.000000 0.00000231632

A { 2 - } bH (18) 7 1.000000 1.000000 I
-1 2 1 8 1.000000 1.000000

. . Table 3: The solution values obtained by the KS@éhod
Whose exact solution is;x1, % =1, (Young page 96) KSOR Y

and (Varga, 1965). . W* = -14.9282p = 0.07179687
It is well known that, for this system we have.

The eigenvalues of the Jacobi iteration matfiinT N X[ X[ |EXSOR|
this example are: 1 0.535898 0.823085 0.4966780
2 0.938513 0.979751 0.0647356
W=H,=05 3 0.993563 0.998004 0.0067391
4 0.999393 0.999818 0.0006341
. , . .5 0.999946 0.999984 5.631E-05
The eigenvalues of the Gauss Seidel iterationg 0.999995 0.999999 4.818E-06
matrix T are: 7 1.000000 1.000000 4.015E-07

8 1

}\l: 0.0,)\2 =0.25

) ) ) _ By simple calculations one can easily see that,
The eigenvalues of the SOR iteration matréixglare  theorem 4, formula (17) is completely satisfiedcsin

Eq. 19: every 2x2 matrix is a consistently ordered maffixble
1-3 illustrate the component wise solution, wheydsE
A :0_125{ 8 8+l + V16— 160 + 02 1&0+c02} (19) the Euclidian norm of the error defined by the tiela
Figure 1 illustrates the behavior of the absolute |EfOR| = Zin:]l(xexad_x[in])z

values of the eigenvalues of the SOR iteration imatr
against the relaxation parameter. The eigenvalfidseo

KSOR iteration matrix fsog are Eq. 20: Figure 2 illustrates the behavior of the absolute

value of the eigenvalues of the KSOR iteration iratr
Tksor agains the relaxation parameter.
_8+80 +t0’+m 16+ 16w +o°
= — (20)
8(l+ 20 +07) Example 2: Consider a system with Eq. 21:
180
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D 2 ut-0.29°=0

14 0 -1 |2 02020 )
Al 0 a4 -1P7)2 (21) =, =0, =-05p,=0.5

0 -1 -1 4 2

The eigenvalues of the Gauss Seidel iteration
For simplicity we adapted the right hand side b samatrix T are the roots of the equation:

that the exact solution igx1, %=1x=1x,=1, (Young,

1971; Varga, 1965).

It is well known that, for this system we have. V'-025v=0
The eigenvalues of the Jacobi iteration matrjix T . _  _  _ —A o
are the roots of the equation: V1=V, =V; =00, =02

TN 11 |-1Vﬁ;|
W N T

0.

Ln

t t t t t t L]
1.0 1.5 10

Fig. 1: The behavior of the absolue value of tigemvalues of iteration matrixsgr
04 '-|

w' =—14.§21

02k II',
L] |

\\ [ III"'-.

! “lr ‘o Tganr ) =0.0780162
roqp | = 0071726 .,
& Taop ) = 007175 —
2 B S
1 L L 1 L L L L i L L L L 1 L L S — — | &
-1 -10 10 20

Fig. 2: The behavior of the absolute values ofdigenvalues of the iteration matrixsbr
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s . d=1072 Py
B - I e
0.6 S . -
'Ilk /
0.4
0.2 \* '/
Y -__.-' _
Tf g Tsoml=0.072
L L L L L L L L o
0.5 1.0 1.5 2.0

Fig. 3: The behavior of the spectral radius ofiteetion matrix Eor

Table 4: The eigen values of thesk corresponding to those of T and the maximum absolute value (the spectral radisis

WM Ay Ay Ay maxRip shown in Fig. 3.

0250 0750 0750  0.649278 0.866347 0.866347 : . . - )

0500 0500 0500  0.351732 0.710768 0.710768 The KSOR iteration matrixEoris Eq. 23:

0750 0250 0250  0.120062 0.520563 0.520563

1.000 0000  0.000  0.000000 0.250000 0.250000

1072 -0072 -0072  0.071648+0.00711084 | 0.072000 4o, 0's, wo, O

1250 -0.250 -0.250  -0.0546875+0.243945 | 0.250000 . . X

1500 -0.500 -0.500  -0.21875+0.446909 | 0.500000 1|40, ©oc,+4o, 06, ®OC,

1750 -0.750 -0.750  -0.367188+0.653967 | 0.750000 Tksor =— A \ \ (23)
6| 4o, oo, wo,+40, 0o,

) . 6, ®o,+40, ®wo,+45, 2006,+4c
Table 5:The behavior of the spectral radius of Tagg near the 4 3 2 8 2 2 L

minimum value

w P(Tsor) Where:
1.070 0.0942179 _ * *2 *3 *4
1071 00s6aa72 O = 256+102fh) + 153*26co +1E)324w +256 W
1.072 0.0720000 01 = 64+192w + 192w+ 64w
1.073 0.0730001 g, = 16w 32w?2 + 16w°
1.074 0.0740000 _ Q.2 +3
1.075 00750000 03 8W"+8w
. . : . ) In Table 6 we list the calculated numerical value
The SOR iteration matrixsbgis Eq. 22: of the eigenvalues of the iteration matrix defifed23)
and the maximum absolute value (the spectral radisis
(1-0) 0.25 02% O shown in Fig. 4.
0.251w) t, 0.625° 0.25» It is clear from, Table 4 that correspondinguic-
SOR =~ 0.25(1-0) 0.625° t, 0.25 (22) Ofi = 1,2\ =1- w, i =1,2and the rel_ation between the
0.1250% (1-0) t, L, ot elgerzl\zlalueﬁi, Ai _and the reIaxa.\tlc_)n parametes,
K wh? =N +w-1is completely satisfied.
It is clear from, Table 6, that correspondingutc
Where:

t, = (1w)+0.125%
t,= (1w)+0.625%

ts= 0.25w (1-w)+003125°

0,i=1,2, :%,i =1,2and the relation, between the
(O]

eigenvaluesy;,3; and the relaxation parametes*,

theorem(4), i w*Bi? =pi+P; w*-1 is completely

satisfied all calculations and graphs are performed

In Table 4 we list the calculated numerical valueswith the help of the computer algebra system
of the eigenvalues of the iteration matrix defime22)

Mathematica 7.0.
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o
[
. _ ¥ | : N
w*=-14 928 ,I sl "
| [ T
|I e
| o3}
¢
[ ozl
e /
-""H__‘\ ..H._,-"' N
\ [ -
\'L__..._..--" 0.1 C p:_TKSDR_:' = [l.EI ! IS
1 L " " L 1 " L " " 1 " " L " L " " L 1 L 1 {“,“
=30 =20 -10 10

Fig. 4: The behavior of the spectral radius ofithmtion matrix ksor

Table 6: The eigen values of thesgr corresponding to those of T . Numerical examp|es i||ustrating and Confirming the

W B B, By B maxBi theoritical eigenvalue functional relation are
-50.0 -0.0204082 -0.0204082 0.00191423 0.21757817628 .
250 -0.0416670 -0.0416670 0.00974298 0.17819178091 considered
20.0 -0.0526316 -0.0526316 0.01801970 0.15372553025 . i
-14.928 -0.0717980 -0.0717980 0.071796 + 0.0005104 oorires ° From Table 5-7, we see that the Spectral radius
-10.0  -0.1111110 -0.1111110 0.0432099 + 0.102365 | 0111111 P(Tsor) changes from 0.072-0.092 whitTxsor)
5.0  -0.2500000 -0.2500000 0.0546875 + 0.243945 | 0.25000 : ;
10 05000000 05000000 0.3517320 0710768 0.710768 changes from 0.072-0.073 in an interval of length
5.0 0.1666670 0.1666670 0.062500 0.444444 0.444444 0.005 around the minimum value i.e., the change in
100 0.0909091 0.0909091 0.0225904 0.365839 0.35583 . . .
150  0.0625000 0.0625000 0.0117306 0.332996 0.33299 P(TsoRr) is 20 times the change p(Tksor) along

an interval of the same length which illustrates
Table 7:The behavior of the spectral radius of Thgor near the relaxation of the sensitivity around the minimum

minimum value value

w* P(Tksor) . . .
12,925 0.0718133 Further extensions are mentioned
-14.926 0.0718081
-14.927 0.0718030 DISCUSSION
-14.928 0.0717978
-14.929 0.0728104 Although the problem of solving large sparse Imea
-14.930 00733212 systems of algebraic equations is one of the old

RESULTS pr_oblems (Sa}adnd Vorst, 2090; Hackbusch, 1994) it is

still has an important role in many modern areas of

The KSOR updates the residue simultaneousl)ﬁde”ce- The SOR is one of most used iterative oasth

with the solution in addition to the use of the mos €SPcially when a good estimation of the optimunueal

recent calculated solution which reflects the theOf the relaxation parametex, is avaliable. Even b

rapied convergence at the begainning appeared i§ avaliable, it is sensitive as illustrated in tesults of

the numerical examples the numerical examples.

The domain of the relaxation parameter in the KSOR  In comparison with the SOR method, with known

is w* OR-[-2,0] instead ofod (2,0) in the SOR optimal value of the relaxation parameter, the KSOR

The iteration matrix of the proposed method, themethod has the same advantages of the SOR. Even

consistency and convergence analysis of thérom_the point of view of the splitting of the cdiefent_ _
method are well established matrix, one can see that the SOR uses the splitting

Afunctional eigenvalue relation between the A :1(([)-@ L)—((l—m)D+o)U)) while in the KSOR it
eigenvalues of the iteration matrices and the @
relaxation parameters (theorem (4)) is weIIis A:i*(((lﬂx)*)D—m*L)—(DﬂﬁU)) in addition to the
established ®
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possibility of the use of the philosophy of the Burden, R.L. and J.D. Faires, 2005. Numerical

prediction correction techniques, which we will Analysis. 8th Edn., Thomson Brooks/CoRgcific
consider in a subsequent work. Grove, Calif., ISBN-10: 0534404995, pp: 847.

It remains to introduce an effective procedure forDarvishi, M.T. and P. Hessari, 2006. On convergence
the estimation of the optimum value of the relaoati of the symmetric modified successive
parameter (*)kopt. which maximizes the rate of overrelaxation method for 2-cyclic coefficient

convergence of the proposed KSOR method and this matrices. Applied Math. Comput., 183: 953-960.
will be the objective of a subsequent work. Alse th DOI: 10.1016/j.amc.2006.05.121
KSOR can be used with more relaxation parameters dsarvishi, M.T. and P. Hessari, 2011. A modified
well as combinations of the SOR and the KSOR can be symmetric successive overrelaxation method for
considered. augmented systems. Comput. Math. Appli., 61:
3128-3135. DOI: 10.1016/j.camwa.2011.03.103
CONCLUSION Hackbusch, W., 1994. Iterative Solution of LARGE
Sparse Systems of Equations. 1st Edn., Springer-
The KSOR has the same simple structure as Verlag, New York, ISBN-10: 0387940642, pp: 429.
the SOR method so its implementation is an emsly; t  Hadjidimos, A., 1978. Accelerated overrelaxation
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