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Abstract: Problem statement: A measurement control system ensures that measemimgment and
measurement processes are fit for their intendedans its importance in achieving product quality
objectives. Approach: The manufacturing industries have been making =tensive effort to
implement Statistical Process Control (SPC) inrthpdaints and supply baseResults. Capability
indices derived from SPC have received increassage not only in capability assessments, but also
in the evaluation of purchasing decisions. In nneat life applications, real observations of contins
quantities are not precise numbers; in practicey ire more or less imprecise. Since observatibns o
continuous random variables are imprecise the salfieclated test statistics become impreciseoines
cases Specification Limits (SLs) are not preciseimers and they are expressed in fuzzy terms, $o tha
the classical capability indices could not be agplConclusion/Recommendations: In this study we
obtain 100(1&)% fuzzy confidence interval for Cpm fuzzy procespability index, where instead of
precise quality we have two membership functionsgecification limits.

Key words: Fuzzy set, membership function, process capabildgx, triangular fuzzy number, fuzzy
random variable

INTRODUCTION information see Montgomery, 2008). An underlying
assumption is that output process measurements are
Statistical techniques can be helpful throughbat t distributed as normal random variables. Experience
product cycle, including activites prior to shows that the normality assumption is often notime
manufacturing, in quantifying process variabilitiy real world.
analyzing this variability relative to product Application and observations usually contain
requirements or specifications and in  assistingfyzziness owing imprecise measurements or described
development and manufacturing in eliminating orpy jinguistic variables, For instance, the watelef a
greatly reducing this variability. This generaligity i rjyer cannot be measured in an exact way because of
called process capability analysis. Process capabil iha fluctuation.
analysis is a very usable statistical technique to Similarly, temperature in a room is also unable to
demonstrate the process performance. The result®of e measured precisely because of the same reason.
analysis can be used to improve the procesgypical example for an imprecise number is thetitife

performance. Process capability refers to theyf a system which cannot, in general, be described
uniformity of process. Obviously, the variability the  one real number because the time at which théniéet
process is a measure of the uniformity of output. ends is not a precise number but is more or less

There may not exist a definition of the “processimprecise. Other examples of imprecise data ara dat
capability” but in high probability the (real vadd) given by color intensity pictures or readings on
quality characteristic X of the produced items liesanalogue measurement equipment. Therefore, thg fuzz
between some lower and upper specification limB& L sets theory is found to be an appropriate tool in
and USL (or tolerance interval limits). Therefdr®@  modeling the imprecise data. There have been some
idea of process capability implies that the fractipof  attempts to analyze these situations with fuzzy set
produced nonconforming items should be small if thetheory developed by (Zadeh, 1965). In some cases
process is said to be capable. Specification Limits (SLs) are not precise humbesng

In the traditional quality management, the mostthey are expressed in fuzzy terms, so that thesickals
commonly used capability indices like Cp, Cpk andcapability indices could not be applied. (Parchami
Cpm are used to indicate process capability (foremo al., 2006) obtained fuzzy confidence interval for fuzzy
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process capability(p) when SLs are imprecise. (Chen Definition 2.2: The Dp,g-distance, indexed by
et al., 2008) used the fuzzy analytic method concerningharameter 1< B, O< Q< 1 between two fuzzy numbers

process capability index Cpm and calculéem for i 5 ; . .
fuzzy observation. (Perakis and Xekalaki, 2004);‘S %TS)V?ISI? a nonnegative function on F(R) x F(R) give
constructed confidence interval for the index Cpithw ’

crisp data. In this study, we introduce a new fuRgi

(Cpm) whenSLs, target and observations are triangular L . 1

fuzzy number and introduced a 10@(L% confidence - q)J‘ AT - B_‘ da +q|P

interval for Cpm fuzzy process capability index, when of @ ¢ it

the engineering specification limits are triangulazzy Lo 4P Hp=e
numbers. A set of confidence intervals of samplame D (AB)= I‘Aa _Ba‘ da

and variance that produces triangular fuzzy numfuers p,q( B) =1l

the estimation ofCpk index present in (Wu, 2009a). (1-q) sup U A= B_D

(Wu, 2009b) apply fuzzy sets theory to the statidti o<a<it! & @
confidence interval for unknown fuzzy parameters by _ + 4.
considering fuzzy random variables (Hsu and Shu, +q 0<lf&f<1( ‘Aa -BGDIfP =

2008) present. The fuzzy inference procedure tesass
process capability. Generalized confidence intsriad
the process capability index Cpm is proposed as an The analytical properties of Dp,q depend on the
extension of classical confidence intervals by (lsu first parameter p, while the second parameterf q o
al., 2008). (Lin and Pearn, 2005) present a testingp,q characterizes the subjective weight attributed
manufacturing performance based on capability indexhe sides of the fuzzy numbers. If there are nsaes
Cpm. (Parchami and Mashinchi, 2007) assess Fuzay distinguish any side of fuzzy numbers, B is
estimation for process capability indices. recommended (For more information see Gildeh and
The organization of this study is as follows. We Samaneh, 2001).
recall some notions of fuzzy number used in thislgt
which contains the traditional definitions of prese pefinition 2.3: A mapping X: Q - F(R)is said to be a

capability indices. Then assigned to the presiemtaf  fuzzy random variable associated wit®, (A) if and
point and interval estimations for Cpm based orzyuz only if:

data. A numerical example is then given at the end.

o (x):xOX, (w) DAxB
Preliminaried: Let R be the set of real numbers and

consider setsF(R)={A|A:R-[0,d,A is a continous
function}, F (R)={ T,.la,b,6] R,& & }c where Eq. 1:

where B denote the-field of Borel set in R.

Definition 2.4: The central BRgmean square
(x-a)/(b-a) if as x< b, dispersion of X about E(X) (or fi,) is called
Ta,b,c(x) =e-x)/e-b) if bsxsc, (1) Dvar(X) givenby the value (if it exists):
elsewhere.
Y — Y 2
Any AOF (R) is called a fuzzy set dR and any Dvar(X) = B([D,, (X.i)T)
TapcOFr (R) is called a triangular fuzzy number, which (X4 (w) 1(X o (w)
we sometimes write as T (a, b, c). :f[(l‘ Q)J._(u~ )-)zdﬂ + QJ‘_(u~ )2 dl] dp(w)
Q 0 x « 0 X a
Definition 2.1: Let T (a, b, ¢)d F (R), KIR, k =0.
Define the operatiofl on F (R) as follows Eq. 2: Assume thatA and B are triangular fuzzy
numbers:A =T(a,,a, ,a )andB=T(b,,b,,b,), thea-cuts

koT(a,b,g= T a,b,§o k T ka,kb,Rc 2 N _
of A andB are as follows:
This operation is called the multipilication of(&,
b, ¢) by k. Fora[0,1], thea-cut of T (a, b, c) is A, =ll-oa +aa a0+ (Fa)g ]
defined by: B, =[1-a)b, +ba,ba+ (1-a)b,]
(T(a’b@)q :{ X RI Ty ))ZG} It can be established that:
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index considers that as the ratio of the real perémce

7By - L _a )2
[D2u2(AB)] _é(bl ay) +2 of process to requested performance that is:

(b,-a, 7+ (b,-aj+ (b- a)s- 3

USL-LSL
+(by-a,)(b,- 3,)] c,=YSL-LsL
60
Proposition 1: Suppose thatk be a fuzzy random C, indicates how well the process fits between
variable and DOF(R). Then Eq. 3: upper and lower specification limits and focuses th
dispersion of the studied process and does notitaée
Elp, (x.7)]=€[p, (%p.)]2+[D, (5. ,T)]? account the centering of the process. The indgx C
[ Zq( )J [ fq( X)J [~ 2“‘( X )J (3) measures the consistency of process quality
=Dvar(X)+[ D, (1. T)|? characteristic relative to the manufacturing tales
and, therefore, only reflects process potential (or
Proof: process precision). If the process average is not
' centered near the midpoint of specifications liite
_ _2 C, index gives misleading results.
- L (Xa(W) =T5) In order to reflect departures from the targeueal
E D, (X, T)| =E (- 1
[ 2'q( )J ( q)J(;da+qJ'(X§ (W)- T ) da (M:%) as well as changes in the process
0
1 ) 1 variation several order indices have been propesed
=@-a) E[ (%, w)=T,)] du+af E[ (X; W)~ T,)] as G and Gy, given as Eq. 6 and 7:
0 0
il varoc -1 lu-M|
=-9) [var(xa g T )} Cope = Gl W k= e (6)
1 _ _ 7 2
o var0 )+ (g )y = Ty)|
0 , And:
=Dvar(X) +[D, o(f1;, ) |
c = USL-LSL @)
Similarly, it can be established that Eq. 4: " 6o+ (u-M)?
if[D (X T)T where,u is the distribution center of characteristic X. M
nal 29\ @) is not always equal towhich is target value.
1n L =\? ~ Cox measures the distance between the process
‘ﬁiiDz,q(x'X” +[D21q (X'T)] mean and the closest specification limit relatiortte

one-side actual process spreaal &g describes how
. L ) . ) well the process fits within the specification It®)i
where Dvar(X) is estimator of Dvar(X). Thatis Eq. 5:  taking into account the location of the process mea
The index Gy takes into account the magnitudes of
- process variation as well as the degree of process
,Xﬂz (5) centering, which measures manufacturing performance
based on yield (proportion of conformities). Hentte
- . o capability index G is a yield-based index.
Trad|t|.0'nal process capability |nd|ce; Process Departures g(()mthe target value carry more weight
Capability Indices (PC.IS) are becommg powerful it the other well-known capability index,& The
standard tools for quality report, particularly, the  |1os pased process capability indexm,Cso?netimes
management level around the world. They measure theyjeq the Taguchi index, has been proposed to the
ability of a mgnufactur!r)g process to produce itehag manufacturing  industry to  measure  process
meet certain  specifications. Numerous Procesgerformance. In fact, the capability index,Os not
Capability Indices (PCls) have been proposed to th@rimarily designed to provide an exact measurehen t
manufacturing industry to provide numerical measure number of conforming items, i.e., the process yiBldt
of process performance (Kane, 1986; ¥wl., 2009).  C,, considers the process departyeT}’ (rather than
One of the proposed definitions on process capbili 60 alone) in the denominator of the definition to eefl
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the degrees of process targeting (Cétaal., 1988). The A=B if and only if R(A) = R(B)

index G, emphasizes measuring the ability of the R

process to cluster around the target, which thesefo

reflects the degrees of process targeting (cemferin where A andB arein F (R).

The index Gm incorporates with the variation of Several ranking functions have been proposed by
production items with respect to the target valne the  researchers to suit their requirements of the erobl
specification limits preset in the factory (Kotzdan under consideration. For more details see (Bortatah
Lovelace, 1998). In principal,Gbehaved like G but  pegani, 1985; Wang and Kerre 2001). The ranking
Com is bounded above as-0 andp#M. For u=M it fynction proposed by Roubens (Fortemps and Roubens,
holds G = Gy = Gom 1996) is defined by Eq. 10:

Fuzzy proccess capability indices: If we define the T B
specification limits by fuzzy quantities, it is neor Rr(A):EIo(iananSUpAa)dﬂ (10)
appropriate to define the process capability irgliae

fuzzy numbers. From now on, if Ris the Roubens’'s ranking

Definition 4.1: Let L = T (i, |, 1), U = T (W, W, W) function, then we wnteg simply as<. We can easily

are lower and upper specification limits, whege=U;.  prove the following lemmas.
T =T (4 t, t3) is a fuzzy target and observations are

triangular fuzzy number too. Théy,is defined as Lemma 1. If T (a, b, c)UFr (R) then Roubens’s
. ranking function reduces to following Eq. 11:
follow (see [14]) Eq. 8:

~ 2b+at ¢
€ = kO T(Uy = LUy L ug= 1) 8 Re(T(abg)="=, (11)
e ) Lemma 2: Let m, R, T (a, b, c)JF; (R) and 2b + a
Where k :(6\/ E( D2vﬂ2(X'T)) ] + ¢=0. Then according to Roubens’s ranking function
moT(a,b,g< n T a,b,xif and only if m< n.
The point estimate forC,, is as follows Eq. 9: Fuzzy confidence interval foti‘pm
épm = KO T(Uy= 1y u,= LU= 1), (9)  Definition 6.1: Let A, B UFy (R) and A< B. The fuzzy

interval [A, B] is the sqtA,B]={COF, (R)|A<C<§ .

Note that [A, B] is nonempty, since A, B [A, B].
1an ) Suppose that the set of all random samples of size

Where k :(6\/”2('32,1/2()( nT)) J which are possible isR.

Definition 6.2: Any function A: X" _ Fr (R) is called
Ranking function: In this study we are going to give a a fuzzy statistic. Note that A ¢X..,X,) only depends
fuzzy confidence interval, where comparing fuzzyon A (X,,...,X,) and without any unknown parameters.
numbers is emergent and so an ordering approach \§hen the observation X ¢X..,X.) is given, then the
needed. We need a criterion for comparison of twayalue of the statistic, A (X) is just a triangulfuzzy
fuzzy subsets. A simple but efficient approachtfe@  number. Let Xbe a measurable random variable on the
ordering of the elements of F (R) is to defineskiag  probability space@®, F, P) and T = (a, b, dJFr (R)
function R: F (R)- R which maps each fuzzy number sych that 2b + a +20. We define Eq. 12:
into the real line, where a natural order exist4aléki,

2002). Define the ordek on F(R) by: (XoT)(w@ =X(0) 0T, DwlQ (12)

A2B if and only if R(A)=R(B) According to definition 2.1:
Proposition 2: Let X be a measurable random variable
on the probability space€)( F, P), k, k, D Rand T =T
(a, b, c)OdF; (R) with 2b + a +&0. Then:
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P(ko TsXoT<k,0T)=1-a By Proposition 1, we can write:
If and only ifP(k < X<k,)=1-a.. P(\/ x’n%q /Z(na)bvar(S()
- Bvar(s % T2
Definition 6.3: Let A and B be the observed fuzzy nbvar(X)+ n[D,,,, (X, T)]
statistic as triangular fuzzy numbers, where<AB. y 1 < 1
Then [A, B] is a 100 (1e) % fuzzy confidence interval o =2 C =2
for X O T, where P (&< X < B) = 1-a.. 61/ 12 1D, (TP 6EID, (X, T) (16)

X

Theorem 1: Suppose tha X ..., X, are independent, Xln%]_—q ; o(nd) Dvar(X)
identically distributed fuzzy random variables with < nBvar(X)+ n[D, ., (X T)]z
(ho)andL=T (L o ) OFr (R), U= (U t, ) O 2t

Fr (R), are lower and upper specification limits 1 y=1-a
(engineering fuzzy limits), wherg & 5. Target value is 6\/1, Ny [D, ., (X, T)2
triangular fuzzy number also such as T =7 {, t) '

0Fr (R). Then the following interval is a 100 (@) % | ot

fuzzy confidence interval far,,, Eq. 13-18:

A~ 2 ~ 12
[épmﬂ Xn,alZ(né) é g Xn,l—alz(rﬁ)] (13)

‘- X2,»(n8) Dvar(X)
nDvar(X)+ n[D, , X, TP
1

n@+s) = " n(l+3)

where & is defined with Eq 2 SL/ME[D,(XDF

pm
6:[Dzy$mfﬂ2 And:
Dvar

central chi-square with degrees of freedom and non- X2, o o(n8) Dvar(X)
. k. = _ nl-a v
centrality parametefd . nDvar(X)+ n[D, ., (X, T)

andy;?,,(nd) depicted as the non-

na/2

¢ The statisic e PP T L 1
Proof: The stausuc;W is distributed as 6\/1/nz[D2M(X,T)]2

the non- central chi-square with n degrees of eed

and non-centrality parameter nd where By Proposition 2 and the fact & |5, we can obtain

qT 2
6:7[%%%;'-)] (Vakhania, 1981)We have: Pl o T(U =5, U= 1, U= 1)<
;”DT(Ul_lyuz_lzvl%_ 1) (17)
6y E[D,,(X, T)]?
X;’IZG/Z(né)< <k, oT(u —lu,—1,u;-1))=1-a
n L. =1- By Definition 2.1:
JIRACREC E o (19
1= — ! Te) P(T(k1(ul_ |3),|<1(U2— Iz)vkl(us_ |1))<
Dvar(x) <Xn,1—a /2(n ) 1
ST(U =y u, = 1= 1) (18)

Therefore: 6,/E[D,,,(X,T))?

<T(k2(u1_ |3),|(2(U2— |2),|(2(U 3" |1))=1—0(
X;12,a 1»(N®)D Var(k)
20, 4a(%,T) | E[D, XD
1
< (15) Xa(0) .
E[Dz,ﬂz(va)] : n(L+ S) 0Com <Cpn
Xiwar2(NG)Dvar(X)

X T L2 LA Xnaearo(NB) - &
5[0, (X, T) ED, T L
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Table 1: 30 triangular fuzzy observation

X, =(5.85 6.15 6.35

X,, =T(5.86 6.04 6.25

X,, =(5.55.81 5.99

X,=(5.795.95.98
X, =(5.715.83 5.99

. =(6.056.18 6.32

s =T(5.89 6.06 6.23

, =T(6.016.10 6.25

,=(6.15 6.20 6.30

s =T(5.64 5.81 6.05
X, =T(5.85.95.98
X, =T(6.016.12 6.24

X X X X X
L | R T | | R |

X, =(6.13 6.23 6.33

15 =(5.95 6.05 6.19

X,, =T(5.06 65.5 5.70
5 =T(5.655.74 5.84
6 =T1(5.705.77 5.83
. =T(6.23 6.32 6.40
15 =1(5.60 5.70 5.08
X, =T(5.85 5.95 6.05
X, =T(5.90 6.00 6.10

>

X X X X

X,, =(5.6 5.92 6.05
X,, =(5.55 5.75 5.95
X,, =T(5.84 6.03 6.50
.5 =T(6.05 6.30 6.50
X, =T(6.25 6.35 6.45
X,, =T(5.65 5.86 6.05
=T(5.70 5.87 5.95
X5 =T(5.755.95 5.15
X4, =T(6.10 6.23 6.46

X

]

Table 2:Fuzzy confidence interval

1-a Fuzzy confidence interval
0.8 T(0.5570 0.7161 0.8758) ,G< T(0.59507€60 0.9349
0.85 T(0.5617 0.7222 0.8822)~pn(’-]js T(0.59017%8B7 0.9273
0.9 T(0.5664 0.7283 O.890§;)~pr$]:s T(0.58537%25 0.9198
0.95 T(0.5712 0.7343 0.897§)~pn95 T(0.58067464 0.9123
Hence: )
c< u3 |1 an,l%x/Z(Arﬁ)
1la o = n(1+o)
Xeara®) 2 [Xdra D) | 6\/n§[ e %)
n@+3) "\ n@+d) o
And:
Is a 100 (1) % fuzzy confidence interval fa,, .
Note that ang,,, = T(a,b,q, with:
12
- u, =l n,1-a 1 2{Md)
1N . n(l+93)
6|22 [l 7]
i=1
Or:
Is in the 100 (1-a)% fuzzy confidence interval ~ 6b li D.. (% T =
given in Theorem1 if the following inequalities Hol Xnara(NO) _ ni=1[ ran( % )J Xn-a12(M0)
n(1+9) u, =1, n(i+d)
u1_|3 X:12,G/2(n§)<a 5 5
1n - =~ n(1+8) B LetADl X'n,a/z('jé)’ X'n,l—a/z(fﬁ)
6 2 Puse(%.T)| n@+d) "\ n+d)
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