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Abstract: Problem statement: In this study, we give a simple analytically tractable procedure for 
solving three-way unbalanced nested Analysis of Variance (ANOVA). In many realistic situations, 
unbalanced design was unavoidable due to natural constraints and missing data. Approach: Here, we 
present a comprehensive approach for addressing solutions of problems arising from unbalanced 
nested ANOVA. We consider the F-statistics under the different models. Results: Special attention 
was given to the construction of approximate F-test where exact F-test does not exist. Pseudo-degrees 
of freedoms were derived using the Satterthwaite’s type approximation. Conclusion: In all derivations, 
we assume that the effects act independently and that the mean squares are independent. A numerical 
example is given to illustrate the solution procedure. 
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INTRODUCTION 

 
 This study is intended to be a tutorial for those 
wishing to inform themselves about three-way 
unbalanced nested ANOVA. It focuses on the 
background understanding of model parameters 
estimation, derivation of sum of squares of effects, 
derivation of expected mean squares of effects, setting 
up of variance components and construction of 
approximate F-statistic where exact F-test does not 
exist. Certainly, these tools are not new, but insight into 
how they are applied to three-way unbalance nested 
ANOVA would open new vistas in our way of handling 
unbalanced hierarchical arrangements. The study is 
made to be analytically and computationally accessible. 
Readers need only some prior knowledge of two-way 
balanced nested design; see, for example, Montgomery 
(2008) and Dowdy and Chilko (2004) for discussion on 
balanced Nested Design.  
 An experiment with three factors A, B and C is said 
to be three-way unbalanced nested design if one factor 
say B is nested within another factor say A and factor C 
is nested within factor B such that each A level has bi B 
levels, each B level has Cij C levels and nijk observations 
are drawn from each C level. It is pertinent to mention 
that this arrangement does not permit interaction between 
factors. Analysis of variance layout is called unbalanced 
if it has unequal subclass numbers. In addition, analysis 
of variance model is said to be unbalanced if the variance 

of the difference between any two treatments is not a 
constant but depends on the treatments.  
 Many experimental situations could lead to nested 
arrangement. Thus, this kind of design has found 
extensive applications in industries, biological sciences, 
clinical studies. The analysis of nested design is 
difficult and the problem is complicated when faced 
with unbalanced nested design. Most statistical 
software now incorporate commands and guidelines for 
carrying out computations on unbalanced nested 
analysis of variance. 
 Kashiani and Saleh (2010) discussed three methods 
of estimating varaince components for mixed-model. 
However, there are several methods for estimating 
variance components when the design is unbalanced. 
Each method influences the corresponding approximate 
F-test. Seeger (1970) gave a method for estimating 
variance components in unbalanced design. He used 
unweighted mean in his estimates and showed that 
these estimates are unbiased. Bush and Anderson 
(1963) considered numerical comparisons between 
variances of components of variance due to different 
methods. Tietjen and Moore (1968) developed a fast 
procedure for computing approximate F-test in 
unbalanced nested analysis of variance. Sahai and 
Ojeda (2004) discussed unbalanced nested analysis of 
variance for random effect model.  
 This study aims at providing background 
knowledge on three-way unbalance nested analysis of 
variance in a simple, straightforward, self-contained 
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account of the underlying theory. That is, the study 
exposes the analytical procedures that are hidden when 
analysis is performed with the aid of statistical 
software. 
 Unbalanced nested design could arise from a 
number of factors which include missing data; lose to 
follow-up or subjects get sick, limited resources and 
natural barriers. Missing data can result from overt 
errors in measurements, patients not showing up for 
scheduled visits in a clinical trial, loss of samples,  
(Bolton and Bon, 2009). 
 

MATERIALS AND METHODS 
 
Statistical model: The linear model for three-way 
unbalanced nested arrangement is given by Sahai and 
Ojeda (2004) as Eq. 1: 
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Where: 
yijkl   = The lth observation within the kth level of factor 

C within jth level of factor B within ith level of 
factor A 

µ  = The overall mean 
αi  = The effect due to the ith level of factor A 
βj(i)  = The effect due to the jth level of factor B nested 

within the ith level of factor A 
λk(ij)  = The effect due to the kth level of factor C 

nested within the jth level of factor B nested 
within the ith level of factor A  

eijkl  = The residual error of the observation yijkl  
 
 The following restrictions are imposed on  Eq. 2: 
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where, ℂ is any constant. 
 Restriction (2) allows for estimating the model 
parameters using the least squares method. 

Estimation of model parameters and sums of 
squares: The Least squares method has been widely 
used in estimating model parameters, see, for example 
Naisipour et al. (2008); Kavitha and Duraiswamy 
(2011) and Rencher and Bruce (2008). The least 
squares method and restriction (2) are used to estimate 
the model parameters. The estimates are as follows: 
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 Note that dots on subscripts denote summing or 
averaging over the subscripts. 
 See appendix I on how these estimates are derived. 
 The sums of squares are given below: 
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Expected mean squares: We give the expected mean 
squares for fixed effect model (model I), random effect 
model (model II) and mixed effect model (model III). 
We refer the reader to appendix II for the derivation of 
the expected mean squares under the different models. 
 
Fixed effect model (Model I): Factor A is fixed, factor 
B is fixed and factor C is fixed. 
 
Assumptions of the model: The assumptions of the 
model are given in Eq. 3: 
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 The expected mean squares are: 
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Where: 
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and E(MS) stands for expected mean square due to a 
given factor under a particular Model.  
 
Random effect model (Model II): Factor A is random, 
factor B is random and factor C is random. 
 Assumptions of the model Eq. 4: 
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 The expected mean squares are: 
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Mixed effect model (Model IIIA): Factor A is fixed, 
factor B is random and factor C is random. 
 Assumptions of the model Eq. 5: 
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 The expected mean squares for the model are: 
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Mixed effect model (Model IIIB): Factor A is random, 
factor B is fixed and factor C is random. 
 Assumptions of the model Eq. 6: 
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 The expected mean squares are given below: 
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Mixed effect model (Model IIIC): Factor A is random, 
factor B is random and factor C is fixed. 
 Assumptions of the model Eq. 7: 
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Mixed effect model (Model IIIAC): Factor A is fixed, 
factor B is random and factor C is fixed. 
 Assumptions of the model Eq. 8: 
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 The expected mean squares for the model are: 
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Estimation of the variance components: First, we 
consider the random effect model (Model II) and give 
procedure for estimating the variance components as 
follows: 
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where, " "≙  reads “estimated by”. 
 This procedure is similar to Henderson’s Method I. 
Sahai and Ojeda (2004) discussed Henderson’s methods 
for estimating variance components for unbalanced data: 
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Where: 
 

1 1k kβθ =  
 
And: 
 

( )2 3 2 1 3k k k k k kλ βθ = −  
 
 The same procedure is used to obtain the variance 
components for the different models and the results are 
given below. 
 
Mixed effect model (Model IIIA): Factor A is fixed; 
factor B and factor C are random. 
 The variance components are: 
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Mixed effect model (Model IIIB): Factor B is fixed, 
factor A and factor C are random. 
 The variance components are: 
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where, 3k kλυ = . 

 
Mixed effect model (Model IIIC): Factor C is fixed, 
factor A and factor B are random. 
 The variance components are: 
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Mixed effect model (Model IIIAC): Factor B is 
random, factor A and factor C are fixed. 
 The variance components are: 
 

2
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1
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ˆ

kβ
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Test proceddures for the models: The expected mean 
squares help in the determination of appropriate test 
statistics for testing hypotheses about the effects. 
Expected mean squares determine which hypotheses are 
tested by each mean square. An F-statistic can only be 
formed when, under appropriate hypothesis, two 
expected mean squares have the same value (Mason et 
al., 2003). In this study, we shall consider the test 
statistics under the different models. 
 
Model I (Fixed-effect model): The hypothesis H:αi=0 
is tested by MSA/ MSE, H:βj(i)=0 is tested by  MSB/ MSE 
and H:λk(ij)=0 is tested by MSC/ MSE. The ANOVA 
estimate of 2

eσ  is EMS . 

 It is observed that under null hypothesis, 
( ) 2

A eE MS I = σ , ( ) 2
B eE MS I = σ  and ( ) 2

C eE MS I = σ .  
 
Model II (Random effect model): The hypotheses to 
be tested are: 
 
• 0AH : 0ασ =   

• 0BH : 0βσ =   

• 0CH : 0λσ =  
 
 We observe that( )AE MS II , under the null 

hypothesis 0AH : 0ασ = , does not have the same value as 

( )BE MS II  because 1k kβ ≠  and 2k kλ ≠ . Hence, there is 

no exact F-test for testing0AH : 0ασ = . Therefore, we 

construct a new mean square,̂MSθ  which is 

independent of AMS . We employ the approach 

proposed. 

 Let 2 2 2
eMS k kθ β β λ λ= σ + σ + σ . This is the expected 

mean square due to factor A under the null hypothesis 

0AH : 0ασ = . 

 The variance estimates are: 
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Where: 
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 We now show that: 
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The approximate F-statistics: The hypothesis H0A:σα 

= 0 is tested by: 
 

A
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where, FA is approximately F-distributed with a-1 and fθ 
degrees of freedom. 
 
Where: 
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And: 
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Derivation of pseudo-degrees of freedom, fθθθθ: We 
construct the degrees of freedom fθ by applying an 
approximation due to Satterthwaite (1946). A 
Satterthwaite approximation is based on assuming that 
a variance estimator has a chi-square distribution and 
solving for the implied degrees of freedom, using the 
method of moments (Valliant and Rust, 2010): 
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 If we assume that MSB and MSC are independent, 
then Eq. 9 and 10: 
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variance of chi-square distribution isE2f . 

 Substituting the result, ( ) 4
E EVar SS 2 f≈ σ in (10), we 

have Eq. 11: 
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 Next, we consider testing H0B:σβ = 0. There is no 
exact F-test for testing this hypothesis because E 
(MSB/II), under 0BH : 0βσ = , does not have the same 

value as E (MSc/II) since 2 3k k≠ . We derive the 

approximate F-test using the same procedure as 
presented above and the result is as follows: 

 The hypothesis H0B:σβ = 0 is tested by B
B
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Model IIIA (Mixed effect model; where factor A is 
fixed): The hypotheses to be tested are: 
 
• 0A iH : 0α =  
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• 0CH : 0λσ =  

 
 The hypothesis H0A:σ α=0 is tested by: 
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 The hypothesis H0B:σβ=0 is tested by B
B

MS
F

MSγ

= ; FB 

is approximately F-distributed with fθ Bf  and fθ f γ  

degrees of freedom. 
 
Where: 
 

( )

( ) ( ) ( ) ( )
C E

12 2 22
2

C E

C E

ˆMS MS 1 MS and

MS 1 MSˆf MS
f f

γ

−

γ γ

= γ + − γ

 γ − γ
= + 

  

 

 

 The hypothesis, H0C:σλ=0 is tested by C

E

MS

MS
. 

 
Model IIIB (Mixed effect model; where factor B is 
fixed): The hypotheses to be tested are: 
 
• 0AH : 0ασ =  

• ( )0B j iH : 0β =   

• 0CH : 0λσ =  

 
 The hypothesis H0A:σ α=0 is tested by: 
 

A
A

MS
F

ˆMSυ

=  

 
where, FA is approximately F-distributed with a-1 and 
f υ degrees of freedom, where: 

  

( )

( ) ( ) ( ) ( )
C E

12 2 222
C E

C E

ˆMS MS 1 MS and

MS 1 MSˆf MS
f f

υ

−

υ υ

= υ + − υ

 υ − υ
= + 

  

 

 
 The hypothesis H0B:βj(i)=0  is tested by: 
 

B
B

MS
F

ˆMSγ

=  

 
where, FB is approximately F-distributed with fB and fγ 
degrees of freedom. 

 The hypothesis H0C:σλ=0 is tested by C

E

MS

MS
. 

 
Model IIIC (Mixed effect model; where factor C is 
fixed): The hypotheses to be tested are: 

• 0AH : 0ασ =   

• 0BH : 0βσ =   

• ( )0C k ijH : 0λ =  

 
 The hypothesis H0A:σ α=0 is tested by: 
 

1

A
A

MS
F

ˆMSθ

=  

 
where, FA is approximately F-distributed with a-1 and 
Fθ degrees of freedom, where: 
 

( )

( ) ( ) ( ) ( )
1

1 1

1 C 1 E

12 22 222 1 E1 B

B E

ˆMS MS 1 MS and

1 MSMSˆf MS
f fθ

θ

−

θ

= θ + − θ

 − θθ = +
 
 

 

 
 The hypothesis H0B:βj(i)=0  is tested by: 
 

B
B

E

MS
F

MS
=   

 
and the hypothesis H0C:λk(ij)=0 is tested by: 
 

FC = C

E

MS

MS
 

 
Model IIIAC (Mixed effect model; where factor A 
and factor C are fixed): The hypotheses to be tested 
are: 
 
• 0A iH : 0α =  

• 0BH : 0βσ =   

• ( )0C k ijH : 0λ =  

 
 The hypothesis H0A: σα = 0 is tested by: 
 

1

A
A

MS
F

ˆMSθ

=  

 
where, FA is approximately F-distributed with a-1  
and 

1
f θ  degrees of freedom, where: 

 

( )

( ) ( ) ( ) ( )
1

1 1

1 C 1 E

12 22 222 1 E1 B

B E

ˆMS MS 1 MS and

1 MSMSˆf MS
f fθ

θ

−

θ

= θ + − θ

 − θθ = +
 
 
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 The hypothesis 0BH : 0βσ =  is by B
B

E

MS
F

MS
=  and the 

hypothesis H0C:λk(ij)=0  is tested by C

E

MS

MS
. 

 
RESULTS AND DISCUSSION 

 
Numerical example: We give illustrative example with 
hypothetical data on the hardness (crushing strength) of 
a particular tablet produced by a pharmaceutical 
company. The company has two production sites within 
a particular region. Two of the machines for producing 
the tablet are randomly selected from site one and three 
machines from site two. Based on the production 
capacity of each machine, two batches of the produced 
tablets are randomly selected from each of the machines 
at site one. At site two, two batches are selected from 
machine one, three batches from machine two and one 
batch from machine three. The measures of the crushing 
strength of the tablets randomly selected from each of the 
batches are recorded in Table 1 below. The company 
wants to investigate if the batch to batch variability 
within machines, machine to machine variability within 
sites and site effect are significant sources of variation in 
the crushing strength of the tablet. This is a case where 
the site is fixed, machines and batches are random. 
 We now proceed to construct the nijk-table (Table 
3)  to make the computation easier. The nijk-table  is 
table of counts of the number of observations for the ith 

Site, jth Machine and kth batch.   
 
Computation of sum of squares: 
 
Let: 
 

( )
( ) ( )

( ) ( )

( ) ( )
( )

( )

22
....

2 2

2
i i ... i

i

2 22
ij ij.. ij

ij

2 2

22
ijk ijk . ijk

ijk

2

ijkl

R T N 369.14 78 1746.978713,

152.77 216.37
R T N 1747.072156

32 46

R T n 85.27 18 67.50 14

113.66 10 58.30 12 1748.129827

R T n 36.82 8 ...

58.30 12 1751.519083

R

= = =

= = + =

= = + +

+ =

= = +

+ =

=

∑

∑

∑

( ) ( )2 22
ijkl

ijkl

y 4.08 ... 3.90 1836.7302= + + =∑

 

 
 Therefore, the sums of squares are: 
 

site i machine ij i

Batch ijk ij error ijkl ijk

Total ijkl

SS R R 0.093443,SS R R 1.057671,

SS R R 3.389256,SS R R 85.211117,

SS R R 89.751487

= − = = − =

= − = = − =

= − =

 
 The results of these computations are summarized 
in Table 3 below. The values marked by asterisk (∗ ) in 

column five are obtained by the approximate F-test 
developed in this study. No exact F-test exists for such 
tests. 
 
How the degrees of freedom are calculated: 
 

( ) ( )

( ) ( )

i 1 2
i

c ij i 11 12 21 22 23 1 2
ij i

e ij
ij

f b a b b a 2 3 2 3

f C b C C C C C b b

2 2 3 2 1 2 3 5

f N C 78 10 68

β = − = + − = + − =

= − = + + + + − +

+ + + + − + =

= − = − =

∑

∑ ∑

∑

 

 
Calculation of the weighting factors: The values of 
the nijk ’s in Table 2 are used for computing the 
weighting factors as follows: 
 

( )

1 2
i

i

2 2

1 2
1 i ij

i ij

k N N N a 1

1
78 32 46 39 37.74358974

78

k N N n f

−
α

−
β

 = − − 
 

 = − + =  

 
= − 
 

∑

∑ ∑

 

( ) ( )2 2 2 2 21 1
78 18 14 24 10 12

32 46

14.64130435

  = − + + + +  
  

=

 

1 2 1 2
2 ij ijk i ijk

ij k i jk

k n n N n f− −
β

 
= − 
 
∑ ∑ ∑ ∑  

 

( ) ( ) ( )

( ) ( )

( )

( )

2 2 2 2 2 2 2

2 2 2

2 2 2 2

2 2 2 2 2 2

1 1 1
8 10 6 8 10 6 8

18 14 24
1 1

6 4 12
10 12

3
1

8 10 6 8
32
1

10 6 8 6 4 12
46

  + + + + + +  
  
  + + +   =  
  + + + +  
 − 
  + + + + +    

 

3

 8.309535312.

13163
k 78 5 7.242539683.

315

=

 = − =  

 

3135 670
k 16.89659978.

92 39β
 = − = 
 

 

1551 110
k 8.397157191.

92 13λ
 = − = 
 

 

 

1 21.15403651,  0.1646314679.

1.147323408,  =1.159421634.

ˆ ˆMS 0.3085446029,  MS =0.5931028995.θ γ

θ = θ = −
γ = υ

=

 



J. Math. & Stat., 8 (1): 1-14, 2012 
 

9 

Table 1: Drug hardness    

Site I    II 
 --------------------------------------------------- ------------------------------------------------------------------------------------------ 
Machine 1                         2  1                               2                             
 ------------------------ ------------------ -------------------------------------------- ------------------------ 3 
Batch B1  B2 B1 B2 B1 B2 B3 B1 B2 B1   
Hardness (kg) 4.08 5.69 3.55 4.67 4.79 3.84 3.13 3.34 5.01 5.71  
 5.11 6.24 4.37 3.82 5.11 5.73 7.21 4.69 5.07 4.23 
 4.56 5.42 6.31 5.03 5.20 4.42 5.89 5.38 3.14 4.77 
 5.74 4.13 4.64 6.90 3.68 5.65 4.45 3.54 6.24 6.22 
 4.80 5.22 6.17 4.30 6.41 4.50  3.14 4.30 5.17 
 3.83 5.47 6.24 3.01 3.93 4.82 5.03 3.70  6.10 
 5.08     4.11  3.71 2.25    4.56  5.41 
 3.62     5.05                         4.78 6.86             5.29                                    4.05 
  4.98   4.70                                                            3.22 
  2.14   3.07                                                            3.76 
Tijk. 36.82   48.45 31.28 36.22 46.00   28.96     38.70    24.95      19.46      58.30 
Tij ..      85.27   67.50  113.66                      44.41             58.30  
Ti…  152.77       216.37 
T.…      .369.14 
 
Table 2:  nijk- table 
n111=8 N121=6  n211=10 n221=6 n231=12 
n112=10 n122=8 n212=6 n222=4 
  n213=4 
n11=18 n12=14 n21=24 n22=10 n23=12 
 N1=32  N2=46 
  N=78 
 
Table 3: ANOVA Table for drug hardness  
Source of variation Degree of freedom Sum of squares Mean square Expected mean square F-test 

Site 1 0.093443 0.093443 2 2 2 2
i i e

i

N /a 1 16.9 8.4β λα − + σ + σ + σ∑  0.3028509* 

 Machine 3 1.057671 0.352557 2 2 2
e14.6 8.3β λσ + σ + σ  0.5944281* 

Batch 5 3.389256 0.6778512 2 2
e7.2 λσ + σ  0.5409374 

Error 68 85.211117 1.2531047 2
eσ  

Total 77 89.751487  
 
 The values of the approximate F-tests for factors A 
and B are obtained as follows: 
 

A A

B B

ˆF MS MS 0.3028509

ˆF MS MS 0.5944281

θ

γ

= =

= =
 

 
 On the basis of the results shown in Table 3, we 
conclude that there is no difference in Sites, there is no 
significant difference in machine-to-machine variability 
within the Sites and there is no difference in batch-to-
batch variability within the machines at one percent and 
five percent significant levels, respectively.  
 
Appendix I: Procedure for estimating model 
parameters: We provide here procedure for estimating 
the parameters of (1). The least squares method and 
restriction (2) are used to estimate the model parameters 
as follows Eq. 12 and 13: 

( ) ( )( )2
2
ijkl ijkl i j i k ije y= − µ − α − β − λ∑ ∑   (12) 

 
 Differentiating (12) with respect to µ and equating 
to zero, we have:  
 

( ) ( )( )ijkl i j i k ijy 0− µ − α − β − λ =∑                                  (13) 

 
 Solve for µ by summing on i ,j, k and l in (13), we 
get:  
 

ijkl
ijkl

ˆy N 0− µ =∑  

 
by Eq.2. Therefore: 
 

   
ijkl

ijkl ....
....

y
T

ˆ y
N N

µ = = =
∑
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 Solve for iα  by summing on j, k and l in (4): 
 
 ijkl i i i

jkl

ˆy N N 0− µ − α =∑  

 
 Since: 
  
 ( ) ( )ij ijkj i k ij

j jk

c n 0β = λ =∑ ∑  by  (2): 

 

  
ijkl

jkl i...
i i... ....

i i

y
T

ˆ ˆ ˆ y y
N N

α = − µ = − µ = −
∑

 

 
 Solve for ( )j iβ by summing on k and l in (13): 
 

( )ijkl ij ij i ij j i
kl

ˆˆˆy n n n 0− µ − α − β =∑ ;  

 
Since: 
 
 ( )k ij

kl

0λ =∑  

 
by(2):  
 

( )

ijkl
ij..kl

i i ij.. i...j i
ij ij

y
Tˆ ˆ ˆˆ ˆ y y

n n
β = − µ − α = − µ − α = −

∑
 

 
 Solve for ( )k ijλ by summing on l in (13): 

 

( ) ( ) ( )

( ) ( )

ijkl
l

ik ij j i k ij
ijk

ijk.
i ik.. ij..j i k ij

ijk

y
ˆ ˆ ˆˆˆ

n

T ˆ ˆˆˆ y y
n

λ = − µ − α − β − λ

= − µ − α − β − λ = −

∑

 

 
 Solve for ijkle  by substituting ̂µ , iα̂ , j(i )β̂  and ( )k ijλ  

in (1), we get: 
 

ijkl ijkl ijk.e y y= −  

 
Appendix II. Derivation of expected mean squares: 
We derive the expected mean squares for fixed effect 
model (model I), random effect model (model II) and 
mixed effect model (model III).  
 
Fixed effect model (Model I): 
 

( )
( )2

i i... ....
i

A

N y y
E MS I E

a 1

 −
 =  − 
 

∑
 

where, ( )AE MS I  stands for expected mean square due 

to factor A under Model I.  
 We obtain the equivalents of i...y and ....y  using the 

assumptions of the model and (1) as: 
 

i... i i...y e= µ + α +   

 
And:  
 

.... ....y e= µ + ; 

 
Where: 
 

   
ijkl

jkl
i...

i

e

e
N

=
∑

 

 
And: 
 

   
ijkl

ijkl
....

e

e
N

=
∑

. 

 
Therefore: 
 

( )
( )

A

2 2
i i i... .... i i

2i i
e

E MS I

N e e N
E

a 1 a 1

 α + −  α  
= = + σ − − 

 

∑ ∑  

 

( )
( )2

ij ij.. i...
ij

B
B

n y y

E MS I E
f

 −
  =  
 
  

∑
 

 
 We obtain the equivalents fori...y and ij..y  using (1) 

and (3) as: 
 

i... i i...y e= µ + α +   
 
And: 
 

( )ij.. i ij..j iy e= µ + α + β +  
 
Therefore: 
 

( )

( ) ( ) ( )

B

2 2
ij ij.. i... ijj i j i

ij ij 2
e

B B

E MS I

n e e n

E
f f

  β + − β    = = + σ 
 
  

∑ ∑  
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( )
( )2

ijk ijk. ij..
ijk

C
C

n y y

E MS I E
f

 −
  =  
 
  

∑
 

 
 We obtain the equivalents fori...y and ij..y  using (1) 

and (3) as: 
 

( )ij.. i ij..j iy e= µ + α + β +  

 
And:  
 

( ) ( )ijk. i ijk.j i k ijy e= µ + α + β + λ +  

 
Therefore: 
 

 

( )

( ) ( ) ( )

C

2
2

ijk ijk. ij.. ijkk ij k ij
ijk ijk 2

e
C C

E MS I

n e e n

E
f f

  λ + − λ   = = + σ 
 
  

∑ ∑  

 
( )

( ) ( )
E

2 2

ijkl ijk. ijkl ijk.
ijkl ijkl 2

e
E E

E MS I

y y e e

E E
f f

   − −
      = = = σ   
   
      

∑ ∑  

 
Random effect model (Model II): 
 

( )
( )2

i i... ....
i

A

N y y
E MS II E

a 1

 −
 =  − 
 

∑
 

 
 We obtained the equivalents ofi...y and ....y  using 

(1) and (4) as: 
 

( ) ( )i... i i.... i . i.y e= µ + α + β + λ +   
 
And: 
 
 ( ) ( ).... . ..... . . ..y e= µ + α + β + λ +  
 
Where: 
 

( )

( )

( )

( )

( )

( )

( )

( )

ij ijkj i k iji i
j jki

. . i . i.
i i

ij ijkj i k ij
ij ijk

. . . ..

n nN
, ,

N N N

n n

, and
N N

β λα
α = β = λ =

β λ
β = λ =

∑ ∑∑

∑ ∑
 

Therefore: 
 

( )AE MS II  

( ) ( ) ( )( ) ( ) ( )( ) ( )
2

i i . i... ..... i . . . i. . ..
i

N e e
E

a 1

  α − α + β − β + λ − λ + −   =  − 
  

∑
 

( ) ( )

( ) ( )

2 1 2 2
i i i i

i i

1 2 2 1 2 2
i ij ijj i j i

i j ij

1 2 2 1 2 2
i ijk ijkk ij k ij

i jk ijk

N N N
E

a 1

N n N n

E
a 1

N n N n

E
a 1

−

− −

− −

 α − α
 =  − 
 

 β − β
 +  − 
 

 λ − λ
 +  − 
 

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

 

( )2

i i... ....
i

2 2 2 2
e

N e e
E

a 1

k k kα α β β λ λ

 −
 +  − 
 

= σ + σ + σ + σ

∑

 

 
Where: 
 

1 2
i

i

1 2 1 2
i ij ij

i j ij

k N N N a 1

,k N n N n a 1

−
α

− −
β

 = − − 
 

 
= − − 
 

∑

∑ ∑ ∑
 

 
And: 
  

1 2 1 2
i ijk ijk

i jk ijk

k N n N n a 1− −
λ

 
= − − 
 
∑ ∑ ∑ . 

 
( )

( )
B

2

ij ij.. i...
ij

B

E MS II

n y y

E
f

 −
  =  
 
  

∑  

 
 We obtained the equivalents fori...y and ij..y  using 

(1) and (4) as: 
 

( ) ( )i... i i.... i . i.y e= µ + α + β + λ +   

 
And: 
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 ( ) ( )ij.. i ij..j i . ijy e= µ + α + β + λ +  

 
Where: 
 
 ( ) ( )ijk ij. ij k ij

k

n nλ = λ∑  

 
Therefore: 
 

( )

( ) ( )( ) ( ) ( )( ) ( )
B

2

ij ij.. i...i . i . ij . i.
ij

B

E MS II

n e e

E
f

  β − β + λ − λ + −   =  
 
  

∑  

 

( ) ( )

( ) ( )

( )

2 1 2 2
ij i ijj i j i

ij i j

B

1 2 2 1 2 2
ij ijk i ijkk ij k ij

ij k i jk

B

2

ij ij.. i...
ij

B

2 2 2
1 2 e

n N n

E
f

n n N n

E
f

n e e

E
f

k k

−

− −

β λ

 β − β
 =  
 
 

 λ − λ
 +  
 
 

 −
  +  
 
  

= σ + σ + σ

∑ ∑ ∑

∑ ∑ ∑ ∑

∑

 

 
Where: 

 

1 2
1 i ij B

i j

k N N n f− 
= − 
 

∑ ∑  

 
And: 
 

1 2 1 2
2 ij ijk i ijk B

ij k i jk

k n n N n f− − 
= − 
 
∑ ∑ ∑ ∑ . 

 

( )
( )2

ijk ijk. ij..
ijk

C
C

n y y

E MS II E
f

 −
  =  
 
  

∑
 

 
 We obtained the equivalents ofijk.y and ij..y  using 

(1) and (4) as: 
 
 ( ) ( )ijk. i ijk.j i k ijy e= µ + α + β + λ +  

 
And: 

 ( ) ( )ij.. i ij..j i . ijy e= µ + α + β + λ +  

 
 Therefore: 
 

( )
( ) ( )( ) ( )

( ) ( )

( )

2

ijk ijk. ij..k ij . ij
ijk

C
C

2 1 2 2
ijk ij ijkk ij k ij

ijk ij k

C

2

ijk ijk. ij..
ijk 2 2

3 e
C

n e e

E MS II E
f

n n n

E
f

n e e

E k
f

−

λ

  λ − λ + −   =  
 
  

 λ − λ
 =  
 
 

 −
  + = σ + σ 
 
  

∑

∑ ∑ ∑

∑

 

 
Where: 
 

1 2
3 ij ijk C

ij k

k N n n f− 
= − 
 

∑ ∑ . 

 
Mixed effect model (Model IIIA): 
 

( )
( )2

i i... ....
i

A A

N y y
E MS III E

a 1

 −
 =  − 
 

∑
 

 
 We obtained the equivalents ofi...y and ....y  using 

(1) and (5) as: 
 

( ) ( )i... i i.... i . i.y e= µ + α + β + λ +  

 
And: 

 

( ) ( ).... ..... . . ..y e= µ + β + λ + . 

 
Therefore: 
 

( )

( ) ( )( ) ( ) ( )( ) ( )
A A

2

i i i... ..... i . . . i. . ..
i

E MS III

N e e
E

a 1

  α + β − β + λ − λ + −   =  − 
  

∑
ɺ

 

f 1.6506917,  2.895969529.θ γ= =f
2

i i
2 2 2i

e

N
k k

a 1 β β λ λ

α
= + σ + σ + σ

−

∑
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( )
( )2

ij ij.. i...
ij

B A
B

n y y

E MS III E
f

 −
  =  
 
  

∑
 

 
 We obtained the equivalents ofi...y and ij..y  using 

(1) and (5) as: 
 

( ) ( )i... i i.... i . i.y e= µ + α + β + λ +  

 
And: 
 
 ( ) ( )ij.. i ij..j i . ijy e= µ + α + β + λ + . 

 
Therefore: 
 

( )

( ) ( )( ) ( ) ( )( ) ( )
B A

2

ij ij.. i...j i . i . ij . i.
ij

B

2 2 2
1 2 e

E MS III

n e e

E
f

k kβ λ

  β − β + λ − λ + −   =  
 
  

= σ + σ + σ

∑
 

 

( )
( )2

ijk ijk. ij..
ijk

C A
C

n y y

E MS III E
f

 −
  =  
 
  

∑
 

 
 We obtained the equivalents ofijk.y and ij..y  using 

(1) and (5) as: 
 

( ) ( )ijk. i ijk.j i k ijy e= µ + α + β + λ +  

 
And:  
 

( ) ( )ij.. i ij..j i . ijy e= µ + α + β + λ + . 

( )

( ) ( )( ) ( )

( )
( ) ( )

C A

2

ijk ijk. ij..k j . ij
ijk 2 2

3 e
C

2 2

ijkl ijk. ijkl ijk.
ijkl ijkl 2

E A e
E E

E MS III

n e e

E k
f

y y e e

E MS III E E
f f

λ

  λ − λ + −   = = σ + σ 
 
  

   − −
      = = = σ   
   
      

∑

∑ ∑

 

  Using the same procedure as described above, the 
expected mean squares for other models can be easily 
derived. 

CONCLUSION 
 
 We have attempted to provide solutions to 
problems arising from three-way unbalanced nested 
ANOVA resulting from a combination of missing data 
and natural restriction on the design. A primary goal 
was to construct pseudo-F-test where exact F-test does 
not exact. The approximate degree of freedom derived 
in this study often result in non-integer value which in 
turn leads to interpolation in the table of Percentage 
points of the F-distribution. The layout for the 
illustrative example has large degrees of freedom for 
the estimation of the error component which 
compensates for the high sum of squares due to error 
(that is experimental error). 
 The procedure provided here can be easily 
implemented and extended to m-way unbalanced nested 
analysis of variance. 
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