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Abstract: Problem statement: In this study, we give a simple analytically tegae procedure for
solving three-way unbalanced nested Analysis ofiarme (ANOVA). In many realistic situations,
unbalanced design was unavoidable due to naturaiti@ints and missing datApproach: Here, we
present a comprehensive approach for addressingis@ of problems arising from unbalanced
nested ANOVA. We consider the F-statistics under different modelsResults. Special attention
was given to the construction of approximate F-tdstre exact F-test does not exist. Pseudo-degrees
of freedoms were derived using the Satterthwatigie approximationConclusion: In all derivations,

we assume that the effects act independently aatdtie mean squares are independent. A numerical
example is given to illustrate the solution proaedu

Key words: Unbalanced data, mean square, pseudo-degreeseobing approximate F-test, nested
design, statistical software, least squares methatiral barriers, linear model, model
parameters

INTRODUCTION of the difference between any two treatments is aot
constant but depends on the treatments.
This study is intended to be a tutorial for those ~ Many experimental situations could lead to nested
wishing to inform themselves about three-way@angement. Thus, this kind of design has found
unbalanced nested ANOVA. It focuses on the€Xtensive applications in industries, biologicaesces,

background understanding of model parameter%l.iﬁn.ic""llt stléditehs. Thﬁl a”?"yS‘s Ofl. n(taséed hdesifgn (ijs
estimation, derivation of sum of squares of effects mcult an € problem Is complicated when lace

derivation of expected mean squares of effectsinget with unbalan_ced nested design. Most . St"’.‘t'St'Cal
. : oftware now incorporate commands and guidelines fo
up of variance components and construction of

imate E-statisti h ¢ E-test d arrying out computations on unbalanced nested
approximate F-statistic where exact F-test does ng nalysis of variance.

exist. Certainly, the§e tools are not new, bughsinto Kashiani and Saleh (2010) discussed three methods
how they are applied to three-way unbalance nesteg; estimating varaince components for mixed-model.

ANOVA would open new vistas in our way of handling yowever, there are several methods for estimating
unbalanced hierarchical arrangements. The study igariance components when the design is unbalanced.
made to be analytically and computationally acé#ssi  Each method influences the corresponding approgimat
Readers need only some prior knowledge of two-way-test. Seeger (1970) gave a method for estimating
balanced nested design; see, for example, Montgomekariance components in unbalanced design. He used
(2008) and Dowdy and Chilko (2004) for discussion 0 unweighted mean in his estimates and showed that
balanced Nested Design. these estimates are unbiased. Bush and Anderson
An experiment with three factors A, B and C islsai (1963) considered numerical comparisons between
to be three-way unbalanced nested design if orterfac variances of components of variance due to differen
say B is nested within another factor say A antbfaC  methods. Tietien and Moore (1968) developed a fast
is nested within factor B such that each A leved b8  procedure for computing approximate F-test in
levels, each B level has; C levels and jp observations unbalanced nested analysis of variance. Sahai and
are drawn from each C level. It is pertinent to tiwn  Ojeda (2004) discussed unbalanced nested analfysis o
that this arrangement does not permit interactetwvben  variance for random effect model.
factors. Analysis of variance layout is called uahaed This study aims at providing background
if it has unequal subclass numbers. In additioa)y@ss  knowledge on three-way unbalance nested analysis of
of variance model is said to be unbalanced if tiéamce  variance in a simple, straightforward, self-conggin
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account of the underlying theory. That is, the gtud Estimation of model parameters and sums of
exposes the analytical procedures that are hiddemw squares: The Least squares method has been widely
analysis is performed with the aid of statisticalused in estimating model parameters, see, for ebeamp
software. Naisipour et al. (2008);Kavitha and Duraiswamy
Unbalanced nested design could arise from §2011) and Rencher and Bruce (2008). The least
number of factors which include missing data; lte squares method and restriction (2) are used tmati

follow-up or subjects get sick, limited resourcea the model parameters. The estimates are as follows:
natural barriers. Missing data can result from bver

errors in measurements, patients not showing up for

0=v 'ﬁizfi -V ,A_i :7i_ —7i s
scheduled visits in a clinical trial, loss of saeml HEY Sy 7Y By =Y.~ %h.
(Bolton and Bon, 2009). )\k(ij) =V Y and("}‘kl = Yo%
Where:
MATERIALSAND METHODS
Statistical model: The linear model for three-way — _ _%y”k' T _,;y”k' T _;y”“' _T
unbalanced nested arrangement is given by Sahai and”~~ N N7 N NV n n
i i ij r’]

Ojeda (2004) as Eq. 1:

Note that dots on subscripts denote summing or
averaging over the subscripts.
i=1,2,..a ) See appendix | on how these estimates are derived.

Vi =B+ + B

j=12,..b The sums of squares are given below:
+)\k(u) + euk\ k=12 G
(2,00,G
I=1,2...,n, SS, = %“(*y -v) :Z N(y.-7V)
ij i
Where: DT T2
Vi = The I" observation within the kth level of factor = e
C within jth level of factor B within ith level of N N
factor A DI I 5
_ _ 2 _ _ 2 i -
M = The overall mean SS, :Z( Y. - y) =y f}( y - y) = T
o; = The effect due to the ith level of factor A ik i n N
B = The effect due to the jth level of factor B tees =YW -%) =2 (% -v)
within the " level of factor A i ik
Ay = The effect due to the kth level of factor C dDTE DT
nested within the jth level of factor B nested =k W
within the ith level of factor A Mij N
g = The residual error of the observatign y ZTuzk
2 = )
SS = L= = -k
The following restrictions are imposed on Eq. 2: % %:( Y = %) .,%: % Ml
_ _ T
zNiGi :072 nij(i) = O,an(i ﬁ)\k(ij) = ( (2) _szotal _ij% ijk W
i ij ijk
Note that: Expected mean squares. We give the expected mean

squares for fixed effect model (model I), randore&tf
model (model 1) and mixed effect model (model .llI)
2.C=NC,> C=nC> C=n,C, We refer the reader to appendix Il for the derivatof
- “ ! the expected mean squares under the different model
>.C=NC,Y.C=N,Candy.C= NC
W W i Fixed effect model (Model 1): Factor A is fixed, factor
B is fixed and factor C is fixed.
where, Cis any constant.
Restriction (2) allows for estimating the model Assumptions of the model: The assumptions of the
parameters using the least squares method. model are given in Eq. 3:
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2., =0.iZj:Bj(i) = O'ijzkl)\k(u) = 0,6, ~ N 0) (@) 2o=0By~ N(05). )
A ~N(0.07)andg, ~ N 00?)
The expected mean squares are:
SN vavB?(-) The expected mean squares for the model are:
i LU
E(MS,/1)=- 2 E(MS/ )= ——+0?
(MS,/1) =" g+ 0L E(MS/ ) =+ Snat
Y0z, E(MS, /1, )= 1 +ky0; +k,07 +0.,
E(MSC/I)="1‘f7+0§,E(MSE/ )=0? E(MS,/1ll,) =k,07 +k,07 + 02
C
Where: E(MS./1ll,) =k,0; +o2andE( MS/ Ill,) =02
f,=a(b-1)= —af=ap - 1= Yt Mixed effect model (Model I11g): Factor A is random,
o =a(n =) Zb : b( f )l ZJ: : Z factor B is fixed and factor C is random.
fo =abg, ( N — ]) =N-Y ¢ Assumptions of the model Eq. 6:
ij
o, ~N(0,07), 3By =0
and E(MS) stands for expected mean square due to a i (6)
given factor under a particular Model. M) = N(O,Gf)ands-;;. ~ ,\( 0%2)

Random effect model (M odel 11): Factor A is random, The expected mean sauares are given below:
factor B is random and factor C is random. P q 9 )

A ti f th del Eq. 4:
ssumptions o € moael £q E(MSA/|||B) =ka0§ +kx0§ +0:'
o~ N(0.07) B, ~ N(003). @ E(Ms,/1,) Zj:”u‘ﬁjz(i) e
= +k,0% +02,
Mg~ N(0.02)ands, - N o) S/ lla) = ka0,

E(MS./1llg) =k 0} +o2andE( MS/ llly) =02

The expected mean squares are:
Mixed effect model (Model I11¢): Factor A is random,
E(MS, /) =k,0% +k,07 +K,07 +0Z, factor B is random and factor C is fixed.
E(MSB/ ”) ko +k.O% 42 Assumptions of the model Eq. 7:
1V 29\ e

a; ~N(0,07 ) B,y ~ N(007
E(MS;/ ) =k,0} +02 (0.02) 8 ~ N(05)

Z}\k(ij) =Oandem - '\( Ooez) (7)
ijk
Where:
The expected mean squares for the model are:
k, = [N - N'liz NiZJ/a— 1, E(MSA/ I"c) = kao's +kpo'§ + o'j,
E(MS,/lll;) =k 0} + 02
kg = [z N> nZ=N nf]/a— 1
i j ij
1 2 1 2 Znijk)\i(ij)
k)\: zNi_znijk_N_ank a-1 E(Msc/mc): ijk f +02e
i jk ijk C

Mixed effect model (Model 111,): Factor A is fixed, And:
factor B is random and factor C is random. ,
Assumptions of the model Eq. 5: E(MS./lllc) =02
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Mixed effect model (Model 111,c): Factor A is fixed, _k,
factor B is random and factor C is fixed. y_ki'
Assumptions of the model Eq. 8:
E(MS,/Il) =k,0% +k,0; +k,07 +0Zand se
0 =0, ~ N(0g;), MS, = k 82 + k,62 +k, 52 +67

' 8
DAy =0andg, ~ N 007) ‘ ‘
i MSB——ZMSC—[l——ZJ MS.
k,62=MS, -k Ks S
The expected mean squares for the model are: o AP k,
> Na? MS. - MS,
E(MS, /lll,c) = ——— +k,0% + 0, _k*( ; J_MSE
k
E(MS;/ Il ) =k,0f + 02, =MS, —k—BMSB = (Kky /Ky = sk, /K ks ) MSe
1
>y Az
2 i ki) ~[1- kg ki = (K, /Ky = Kok, [k ) [MS,
ijk 2 =2
E(MS/ M) fe FoandE( M5/ ) =0 52 - MS, ~8,MS, -6,MS, - (1-8,-6,) MS,
a ku
Estimation of the variance components: First, we
Where:

consider the random effect model (Model Il) andegiv
procedure for estimating the variance components ag —y /k
1 g/ ™

follows:
) ] And:
E(MS./1l) =02 and setd%= MS sinc
E(MS./11)2 MS,; 8, = (K, /ks —Kgk,/k k)
where," 2" reads “estimated by”. The same procedure is used to obtain the variance

This procedure is similar to Henderson’s Method I.components for the different models and the resrks
Sahai and Ojeda (2004) discussed Henderson’s neethofliven below.
for estimating variance components for unbalanegd:d Mixed effect model (Model 111,): Factor A is fixed:

factor B and factor C are random.

E(MS./Il) =k} +oandMS, = k7 + MS. The variance components are:
since MS/ I)2 M
 MS/ )2 Mg L . MS. - MS,
2 _ MS.-MS, 82=MS, 0% =%
3
MS, -yMS. -(1-y) M
E(MS, /1l) =k,o? +k,0? + 62 and oz =My Sck (1-y)Ms
MS, = kG2 + k.07 + G7sincel, M$/ )2 MS, '
Where:
MS, = k% + k{'\/'SCk'MSE] +MS, y=ky/K,
3
K K Mixed effect model (Model Illg): Factor B is fixed,
MS, = > MS _[l_sz MS factor A and factor C are random.
6; = = ” : , The variance components are:
1
6;2 MSB_VMSC_(l_V) MSE, (AFs:MSE,(AFf: MSC_MSE and
k, Ky
52 = MSy ~UMS, -(1-v) MS.
Where: ¢ k

a
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wherep =k, /k, .

Mixed effect model (Model Illc): Factor C is fixed,
factor A and factor B are random.
The variance components are:

6. =MS,,6; = and

e

> _MS, - MS,

kl
MS, -8,MS. —(1-6,) MS.
k

a

A2 —
o, =

Mixed effect model (Model Ill5c): Factor B is
random, factor A and factor C are fixed.

The variance components are:

MS, - MS,

A2 — A2 —
6, =MS. andg; = ”

1

Test proceddures for the models: The expected mean
squares help in the determination of appropriag te

statistics for testing hypotheses about the effects
Expected mean squares determine which hypotheses ar-g ms, +0,MS_ +(1-6,-8,) MS

tested by each mean square. An F-statistic can lmaly
formed when, under appropriate hypothesis,

Let MS, =k,0; +k,0f +oZ. This is the expected
mean square due to factor A under the null hypighes
Hy,:0, =0.

The variance estimates are:

[

Ms, - <2 Ms, -
k3

a2
0 =

Ky
62 = MS ~ MS, andg? = MS.

3

Therefore:

MS, - MS,

3

+kA(

]+MSE

E

tWOwhere:

expected mean squares have the same value (Mason
al., 2003). In this study, we shall consider the test8, =k;/k,

statistics under the different models.

Modél | (Fixed-effect model): The hypothesis =0
is tested by M& MSg, H:Bj;=0 is tested by M8 MSe
and HAg ;=0 is tested by M8 MSg. The ANOVA
estimate ofg? isMS; .

It is observed that under null hypothesis,
E(MS,/1)=02,E(MS;/1)=0? and E(MS./1)=0?2.

Modéd 11 (Random effect model): The hypotheses to
be tested are:

Hyc:0, =0

We observe thai(Ms,/ll), under the null

8, = (K, /ks =Kk ,/k ko)
We now show that:

E(Mée) = k,o; + k03 +0;

E(Mée)=91E( M%)+62E( MSZ)+(1_61_62) E( M%)
=0k0; +6k0r +0 kg7 +07%
=k,0; +k,07 +0?

The approximate F-statistics: The hypothesis §i:04
=0 is tested by:

_MS,
MS,

A

hypothesisi,, :0, =0, does not have the same value as

E(MS,/ ) becausek, # k, andk, #k,. Hence, there is
no exact F-test for testing,,:o, =0. Therefore, we

construct a new mean squavks, which is
independent aflS,. We employ the approach
proposed.

5

where, I is approximately F-distributed with a-1 and f
degrees of freedom.

Where:

MS, = 8,MS, +8,MS_+(1-6,-8,) MS.
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And:

6 (MS,)" | 65(MS,)’
~\2 f f
o =(MS,) e c
+(1—91—92)2(|v|s )?
fe

Derivation of pseudo-degrees of freedom, fg: We
construct the degrees of freedog Hy applying an
approximation due to Satterthwaite (1946).

a variance estimator has a chi-square distribusiot

solving for the implied degrees of freedom, usihg t
method of moments (Valliant and Rust, 2010):

MS, =6,MS, +8,MS. +(1-6,-8,) MS;

If we assume that Msand M& are independent,
then Eq. 9 and 10:

Var(M8§, ) =67 Var( MS,) o
+02var(MS,) +(1-6,-8,)° Vai( MS,)

Recall that:

MS, =SS/ f. and that §8 7 ~ x}

Var(Ms;) :fi2 Var(S$) (10)

2\ - 1 - ;
var(ss/o2?)= Va(xfE): = vaf S§)= 2f, since the

variance of chi-square distributionzf .
Substituting the resultyar(S$)= @* tin (10), we
have Eq. 11:

var(Ms,) = 2(0.2) " (11)

By extending our idea of (11) in (9), we get:

2(M§) ;1= 27(MS,)’ ;!
+202(MS.)” + 2(1-6,-8,)*( MS.)* f2
-1
6 (Ms;)" , B5(MS.)*
~ 2 f f
f, =(MS, 8 ¢
( ) (18, -0,)*(MS,)°
fe

Next, we consider testingoklag = 0. There is no
exact F-test for testing this hypothesis because E
(MSg/ll), under H,,:0,=0, does not have the same

value as E (M3Il) since k,zk,. We derive the
approximate F-test using the same procedure as

presented above and the result is as follows:

The hypothesis 3.0 = 0 is tested b, = sz .

Y
F, is approximately F-distributed witif, and f,

. o S ). Adegrees of freedom, where:
Satterthwaite approximation is based on assumiag th

MS, = YMS; +(1-y) MS.
And:

271

f,= (w8, )| L MSC), (1) (MS)
y y f f

[} E

Finally, the hypothesis §d:0, = 0 is tested by
MS,
MS;,

E

Model 111, (Mixed effect model; where factor A is
fixed): The hypotheses to be tested are:

. Hoa:0;, =0
. Hog: 0, =0

*  Hy:o,=0
The hypothesis §i:0,=0 is tested by:

;M
MS,

where, ki is approximately F-distributed with a-1 and f
degrees of freedom, where:

MS, = 8,MS, +6,MS_+(1-6,-8,) MS,

And:

02 (Ms,)’ | B(Ms)’
~ )2 fB fC
(18, -0,)*(MS,)’
fE
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The hypothesis §d:05=0 is tested byr, :L,céB : Fg
Y
is approximately F-distributed withgff, and #§f,

degrees of freedom.
Where:
MS, = yMS, +(1-y) MS. and

v (MS.) | (1-v)'(Ms)
fE

271

f,=(ms,)

The hypothesis, §d:0,=0 is tested b%\% .
E

Modd |1l (Mixed effect model; where factor B is
fixed): The hypotheses to be tested are:

. Hyp:0,=0
* HOB:Bj(i) =0

. Hyc:0, =0

The hypothesis §i:0,=0 is tested by:

;M)
MS,

where, Ik is approximately Histributed with a-1 and
f, degrees of freedom, where:
MS, =uMS, +(1-u) MS. and

f,=(M8,) v*(MS;)" | (1-v)’(MS.)
DSOS S fL

271

The hypothesis &:B;;=0 is tested by:

F, S,
MS,

where, F is approximately Hlistributed with § and §
degrees of freedom.

The hypothesis §:0,=0 is tested by% .
E

Modd Il (Mixed effect model; where factor C is
fixed): The hypotheses to be tested are:

*  Hg:o,=0
* Hgioy=0
* HociA) =0

The hypothesis §i:0,=0 is tested by:

MS,

Fo=—s
b Ms,

where, F is approximately Histributed with a-1 and
Fe degrees of freedom, where:

MS, =8,MS, +(1-6,) MS. and

= (s, | S -6 ()

fB E

-1
2

and the hypothesisdetA =0 is tested by:

MS,

F~=
“7 s,

Model 1115c (Mixed effect model; where factor A
and factor C are fixed): The hypotheses to be tested
are:

. Hoa:0, =0
* Hgioy=0
* HociA) =0

The hypothesis §i: 0, = 0 is tested by:

MS,

Fo=—s
" Ms,

where, I is approximately Hlistributed with a-1
andf, degrees of freedom, where:

MS, =8,MS, +(1-6,) MS. and

s, )| s’ L (1-8) (us,)

fB E

2—1
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column five are obtained by the approximate F-test
developed in this study. No exact F-test existsstarh
tests.

The hypothesisi,, :0, =0 is by F; = sz and the

E

hypothesis lt:A;)=0 is tested by'\LS‘: .
MSe How the degrees of freedom are calculated:

RESULTSAND DISCUSSION f,=Yb-a=h+b-a= 2 3 = 3

Numerical example: We give illustrative example with o~ _ _
hypothetical data on the hardness (crushing stngradgt fo= ;C” Z‘b‘ =(Gu* Ga* Cut Gt G =( i+ )
a particular tablet produced by a pharmaceutical(2+ 2+3+2+1)-(2+ 4= 5

company. The company has two production sites withi

a particular region. Two of the machines for pradgc e =N ~2.C, =78~ 10= 68

the tablet are randomly selected from site onetharek !

machines from site two. Based on the productioncgculation of the weighting factors: The values of
capacity of each machine, two batches of the pediuc o n's in Table 2 are used for computing the
tablets are randomly selected from each of the mash weighting factors as follows:

at site one. At site two, two batches are seletimah
machine one, three batches from machine two and one

batch from machine three. The measures of the ioish Kq :(N -NTY ij/a—l
strength of the tablets randomly selected from ediche i
batches are recorded in Table 1 below. The company :[78_i(322+ 45)}/39: 37743589
wants to investigate if the batch to batch varigbil 78
within machines, machine to machine variability hivit ~ PR
sites and site effect are significant sources dftian in k= N _ZNi ;”u fy
the crushing strength of the tablet. This is a aalsere
the site is fixed, machines and batches are random. :{78—(1(182 n 14?) +i( 24+ 16+ 12))}/
We now proceed to construct thg-table (Table 32 46
3) to make the computation easier. Tm_atable is =14.64130435
table of counts of the number of observations fer ff
Site, {" Machine and R batch. K, :(Z YR =Y N R ]/f,3
ij k i ik
Computation of sum of squares:
Let: Lig+10)+L(6+ 8)+(16+ 6+ §)
18 14 24
R=T2/N=(369.14/ 78= 1746.978713, +i(62 +42)+i(12)
. (152.77)*  (216.3) _|\ 10 12

R, =ZTi__/N‘ Syt ae T L74T.07215( = 1 3

‘ S (8+10+ 6+ 8)+
R, =ZT,Jﬁ/n,J =(85.279"/ 18+ ( 67.5)/ 14 32

ij 1 2
(113.66)°/10+ ( 58.3)°/ 12 1748.129827 %(10% 6+8+ 6+ 4+ 17)
Ru= T T [ = (368970 .

. = 8.309535312.
+(58.30)°/12= 1751.519083 13163
Ryo = X vi = (4.08 + .+ (3.9° = 1836.7302 ks {78‘ 315 }/ 5= 7:24253968:

ijkl

3135 670
Therefore, the sums of squares are: = [E ‘@} =16.8965997¢

SS.= R- R= 0.093443,55,..= R R 1.057671,
SSum= Ry~ R = 3.389256,55,= R- = 85.2111
SSw = Ry — R= 89.751487

k, =| 2211101 g 397157101
92 13

6, =1.154036518, = - 0.1646314679.

The results of these computations are summarized y=1147323408p =1.159421634.

in Table 3 below. The values marked by asterlgk if MS, = 0.3085446029, MS =0.59310289
8
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Table 1: Drug hardness

Site | I
Machine 1 2 1 2
3
Batch a Bz Bl Bz Bl Bz B3 Bl BZ Bl
Hardness (kg) 4.08 5.69 355 467 4.79 3.84 313 343. 501 5.71
5.11 6.24 437 382 5.11 5.73 7.21 4.69 5.07 4.23
4.56 5.42 6.31  5.03 5.20 4.42 5.89 5.38 3.14 4.77
5.74 413 464  6.90 3.68 5.65 4.45 3.54 6.24 6.22
4.80 5.22 6.17  4.30 6.41 4.50 3.14 4.30 5.17
3.83 5.47 6.24  3.01 3.93 4.82 5.03 3.70 6.10
5.08 411 3.71 2.25 4.56 5.41
3.62 5.05 4.78 6.86 5.29 .08
4.98 4.70 3.22
2.14 3.07 3.76
Tik. 36.82 48.45 31.28 36.22 46.00 28.96 38.70 24.95 19.46 58.30
Tj. 85.27 67.50 113.66 444 58.30
Ti.. 152.77 216.37
T. 369.14
Table 2: §- table
N11:=8 N12:=6 n1:=10 ne21=6 npai=12
n11=10 Nn»=8 p1=6 Npo=4
14
n;;=18 n=14 ;=24 =10 =12
N;=32 Ni=46
N=78
Table 3: ANOVA Table for drug hardness
Source of variation  Degree of freedom  Sum of squaréviean square Expected mean square F-test
Site 1 0.093443 0.093443 > N;a?/a-1+16.9; + 8.47+02  0.3028509
i
Machine 3 1.057671 0.352557 14.60; + 8.3, + 0. 0.5944281
Batch 5 3.389256 0.6778512 7.202 +a? 0.5409374
Error 68 85.211117 1.2531047 o2
Total 77 89.751487
The values of the approximate F-tests for facfors ) ( 2
_ & = .———..—)\) 12
and B are obtained as follows: 2.8 =2t THA ~Byy Ay, (12)
F, = MS, / MS, = 0.302850! Differentiating (12) with respect t@ and equating
R to zero, we have:
R, =MS,/MS, = 0.5944281
Z(yijkl “H-G _Bj(i) _)\k(ij)) =0 (13)

On the basis of the results shown in Table 3, we
conclude that there is no difference in Sites,ghsmo
significant difference in machine-to-machine vailiap
within the Sites and there is no difference in bdts
batch variability within the machines at one petaam

five percent significant levels, respectively. %y”k' ~NH=0

Solve forp by summing oni ,j, k and I in (13), we
get:

Appendix |: Procedure for estimating model by Eq.2. Therefore:
parameters. We provide here procedure for estimating

the parameters of (1). The least squares method and > Vi
restriction (2) are used to estimate the modelrpatars ~ _ i _T

as follows Eq. 12 and 13: =" "N V-
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Solve fora; by summing on j, k and | in (4):

zyijkl NpA-Na =0
ki
Since
Zciij(i) :znjk)\k(ij) =0 by (2)
j ik
q =M %:y”kl -fi= T _ i=y, -y
1 N. N [

Solve forBj(i) by summing on k and I in (13):

;yijkl - rﬁq _ri}fgj(i) =

Since:
2 =0
ki
by(2):
2 T
Bj(i) =K (-4 =""-0-¢, =Y. ~ VY.
nij I}
Solve for)\ by summing on | in (13):
Vi ..
— 1 (] o
i = —R=0 =By — Ay
K(ii) Ny 10 k)
LIPS \ y
T R Byy mAG) TV T

Solve fore,, by substitutingi, &, B, andA,

in (1), we get:

€ =

~ Y

ukl

Appendix I1. Derivation of expected mean squares:

where, E(MS, /1) stands for expected mean square due

to factor A under Model I.
We obtain the equivalents ¢ andy

assumptions of the model and (1) as:

using the

Vi THtO +E,
And:
y.=pte;
Where:
Zeukl
= jkl
Ni
And:
Z ijkl
a — Kk ijkl
B
Therefore:
E(MS,/1)
ZN[G +(@ -e)| XN
= —_i +0_§
-1 a-1
— — 2
Znij (yi,, - y,)
E(MS;/1)=E Jf—
B

We obtain the equivalents fgr and y, using (1)
and (3) as:

V. =u+a; +§.
And:

We derive the expected mean squares for fixed teffecy; =u+a; +pB;;, +

model (model 1), random effect model (model II) and

mixed effect model (model IlI).
Fixed effect model (M oddl 1):

ZNi(V.

a-1

E(MS, /1) =

10

Therefore:

E(MS;/1)
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znuk( Y. ™ Y. )2
(s, /=g

We obtain the equivalents fgr and y, using (1)

and (3) as:
yij,. Sp+Q +Bj(i) +§..
And:

Vi, THHA + B + A ) + 6

Therefore:
E(MS,/ 1)
PN |:)\k(ij) +(8-% )T 2 BN
-E ijk - ijk +O.2
fC fC ¢
E(MS./1)
Z(yijkl _yijk. )2 Z(%kl _R- )2
- E ijkl f - E ijkl f - 0.5

Random effect model (M odd I1):

ZNi(V.

E(MS,/Il)= p—

We obtained the equivalentsyfand y

(1) and (4) as:

Vi SR B +A ) +8

And:

y By +A

Where

_ ZNiai _ JZniJBj(i) _ JZ”Jk
e I VR Ry
_ ;niij %njk

By = andhy ) = —

using

11

Therefore:
E(MS,/ 1)
_ _ _ 2
. N, (=) + By =Bp)+ (R -2))+ (3 -2
- a-1
{ZNiaf -NTY N‘Zaiz}
=E i i
a-1
Z Ni_lz niBji) N_IZ B
+EJ i ]
a-1
ZN lznuk)\zu -N 12 nlk li
*E a-1
Snfe )
+ |7
a-1
=k,0% +k,0: +k,07 +02
Where:

K, :[N - N'lz Nf}/a— 1
kg = {Z N> i =N r]f} / a-1
i i ij
And:
K, :[Z N;lzk:n;k - N‘fk; N }/a— 1
i i ij

E(MS, /1)

We obtained the equivalents fprand y; using
(1) and (4) as:

Vi THHa + B.(i) + )\.(i.) +8.

And:
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Vi SHHA + By +X_(ij) +§ Vi SHEO +By, +X.(ij) +§
Where: Therefore:
A= A ' _ _\T?
0=Z0hu o S [y R (5 )]
E(MS,/ 1) =E{ f
Therefore: ¢
E(MS,/ 1) Zk”.M ) Zﬂ[lZ A
=E l
_ _ _ R
;nij |:(B(i) _B.(i))+()\ (i) _)\.(i.)) +(Qj - ¢)J fc
=E ! )
fg Znijk (éik _71? )
+E{E 1= koP+0?
fe
Zn.,B ZN 12 B,
Where:
A 2
znlk k(i) ZN zqk)\u [N zn znjk}/ .
B
7?1 ,e Mixed effect model (Modél [11,):
f ZNI (y|
E(MS,/lll,)=E<{- -
=k,0; +k,0; +02 a
Where: We obtained the equivalentsyfand y using
(1) and (5) as:
kK, =| N=> N 'n? | /f _
' [ Z zJ: JJ/B Vi.THFo B tA G +E
And: And:
(g -swera i V. =ueBy 4R +E
ij Kk i ik
, Therefore:
%nuk( . ™ Y. )
E(MS./I)=E ’f E(MS,/1I1,)
—_ — — N
ZN Lo+ (B ~By) + (3 =X y) + (2. - =)
We obtained the equivalentsygf and y; using N a-1
(1) and (4) as:
~ ~ fo =1.6506917f, = 2.89596952
Vi, THH A +By + A + G > Na?
And: = ia_l +kyo5 +k,05 +0;

12
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N (yuu ~Y. )2

E(MS,/1ll,) =E{- .

We obtained the equivalents ypfand y, using
(1) and (5) as:

Vi SHHa By +X.(ij) +g -
Therefore:
E(MS,/11l,)
— — 2
Zn.,[(B,(.)—B(i))+(?\.(i,-)—>\@))+(% -® )}
— )
= T
=k,0; +k,0F +02
Znijk (yijk. _yu'.. )2
E(MS./Il,)=E{*—n——

fC
We obtained the equivalentsygf and y; using
(1) and (5) as:
yijk. =M + C(i + Bj(i) +)\k(ij) + éjk,
And:

Vi SH*Q +Bj(i) +X.(ij
e(is. /1)
Znijk |:()\k(j) _X.(ij)) +(§k. - ¢ )}

ijk
fe

45

=E

— 2 2
- k30>\ + O,

Z( i~ R )2

ijkl - 2
f =%
E

z(yijkl ~ Vi )2

E(MS./1l,)=E{X . =E

Using the same procedure as described above, the
expected mean squares for other models can be easil

derived.
13

CONCLUSION

We have attempted to provide solutions to
problems arising from three-way unbalanced nested
ANOVA resulting from a combination of missing data
and natural restriction on the design. A primanalgo
was to construct pseudo-F-test where exact F-teess d
not exact. The approximate degree of freedom derive
in this study often result in non-integer value ebfhin
turn leads to interpolation in the table of Peragst
points of the F-distribution. The layout for the
illustrative example has large degrees of freedom f
the estimation of the error component which
compensates for the high sum of squares due to erro
(that is experimental error).

The procedure provided here can be easily
implemented and extended to m-way unbalanced nested
analysis of variance.
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