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Abstract: Problem statement: In this study, a numerical solution for singular integral equations of 
the first kind with Cauchy kernel over the finite segment [-1,1] is presented. The numerical solution is 
bounded at x =1 and unbounded at x = -1. Approach: The numerical solution is derived by approximating 
the unknown density function using the weighted Chebyshev polynomials of the fourth kind.  Results: The 
force function is approximated by using the Chebyshev polynomials of the third kind. Conclusion: The 
exactness of the numerical solution is shown for characteristic equation when the force function is a cubic. 
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INTRODUCTION 

 
     Consider the Cauchy type singular integral equations 
of the first kind: 
 

1 1

1 1

( t ) dt K (x , t ) ( t )dt = f (x )
t x− −

ϕ
+ ϕ

−∫ ∫  (1) 

 
where K(x, t)  and f (x)  are assumed to be real-valued 
functions belong to the class of Hölder on the sets 
[ 1,1] [ 1,1]− × −  and [ 1,1]− , respectively. (x)φ  is unknown 
function to be determined. The theories and applications 
of singular integral equations are described in many 
references as well as in Gakhov (1990), Ladopoulos 
(2000), Lifanov (1996) and Nandhakumar et al. (2009). 
     The characteristic singular integral equation is of the 
form (Lifanov (1996): 
 

1

1

(t) dt = f (x), 1 < x < 1
t x−

ϕ
−

−∫  (2) 

 
 It is well known that the analytical solution of 
characteristic equation (2) which is bounded at the 
endpoint x = 1 is given by the following formula: 
 

1

2
1

1 1 x 1 t f (t)(x) = dt
1 x 1 t t x−

− +
φ −

π + − −∫  (3) 

 
By solving equation (1) with respect to its characteristic 
part, we will find that it is equivalent to the Fredholm 
equation of the second kind: 

1

1
1

2
1

1

2
1

(t) N(t, ) ( )d =F(t),

1 1 t 1 x K(x, )N(t, ) = dx,
1 t 1 x x t

1 1 t 1 x f (x)F(t) = dx,
1 t 1 x x t

−

−

−

⎫ϕ + τ ϕ τ τ ⎪
⎪
⎪− + τ ⎪τ − ⎬

π + − − ⎪
⎪− +

− ⎪
π + − − ⎪⎭

∫

∫

∫

 (4) 

 
in the sense of obtaining the solution, which one can 
apply the Fredholm's theorems. 
     Mahiub et al. (2009) presented a numerical solution 
of equation (1) which is unbounded at both the 
endpoints x = ± 1. They used Chebyshev polynomials of 
the first kind with the corresponding weight function to 
approximate the unknown density function. They 
proved that the numerical solution of characteristic 
equation is identical to the exact solution when the force 
function is a cubic. 
     Abdulkawi et al. (2009a) discussed a numerical 
solution of equation (1) which is bounded at the both 
endpoints x = ± 1. They used Chebyshev polynomials of 
the second kind with the corresponding weight function 
to approximate the density function. They showed that 
the numerical solution of characteristic equation is 
identical with the exact solution when the force function 
is a cubic. 
     Abdulkawi et al. (2009b) presented an approximate 
solution of equation (1) which is bounded at the 
endpoint x = -1, but unbounded at the endpoint x = 1. 
They used Chebyshev polynomials of the third kind 
with the corresponding weight function to approximate 
the unknown density function. They proved that the 
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approximate solution of characteristic equation is 
identical to the exact solution when the force function is 
a cubic. 
     In this study, we present a numerical solution of 
equation (1) which is bounded at the endpoint x = 1 and 
unbounded at the endpoint x = -1.  
 

MATERIALS AND METHODS 
 
Numerical solution: The Chebyshev polynomials of 
the third kind jV  and fourth kind jW  with the 
corresponding weight functions 1ω  and 2ω  are defined 
as : 
 

i 1

i 2

1

2i 1
cos

2

cos
2

2i 1
sin

2

sin
2

1 xV (x) = , (x) = ,
1 x

1 xW (x) = , (x) = ,
1 x

= x.cos−

+
θ

θ

+
θ

θ

⎫⎛ ⎞
⎜ ⎟ ⎪+⎝ ⎠ ω ⎪

−⎛ ⎞ ⎪⎜ ⎟ ⎪⎝ ⎠
⎪

⎛ ⎞ ⎪⎜ ⎟ − ⎪⎝ ⎠ ω ⎬
+⎛ ⎞ ⎪⎜ ⎟ ⎪⎝ ⎠

⎪θ ⎪
⎪
⎪
⎪
⎭

 (5) 

 
     It is known that (Mason and Handscomb, 2003): 
 

1
i

i
1

1 t W (t) dt = V (x), 1 < x < 1
1 t t x−

−
−π −

+ −∫  (6) 

 
     Interpolating the known force function f (x)  as 
follows: 
 

n

kn k
k=0

f (x) f (x) = f V (x)≈ ∑  (7) 

 
Where: 
 

1

k k
1

1 1 tf = f (t)V (t)dt
1 t−

+
π −∫  (8) 

 
     Approximating the unknown density function φ  by 

nφ , in which: 
 

n

n j j
j=0

1 x(x) = b W (x)
1 x
−

φ
+ ∑  (9) 

 
where the unknown coefficients { }n

j 0
b  are to be 

determined. 

     Substituting (9) into (1) we obtain: 
  

1n
j

j
j=0 1

1n

j j
j=0 1

W (t)1 tb dt
1 t t x

1 tb K(x, t)W (t)dt = f (x)
1 t

−

−

−
+ −

−
+

+

∑ ∫

∑ ∫
 (10) 

      
 Using (6) into (10) we obtain: 
 

n n

j j j j
j=0 j=0

b V (x) b (x) = f (x)−π + η∑ ∑  (11) 

  
where: 
 

1

j j
1

1 t(x) = K(x, t)W (t)dt
1 t−

−
η

+∫  (12) 

 
     Now, we approximate the function j(x)η  as: 
 

 
n

j jk k
k=0

(x) V (x)η ≈ λ∑  (13) 

 
Where: 
 

1 1

jk 1 2 j k
1 1

1= (x) (t)K(x, t)W (t)V (x)dtdx
− −

λ ω ω
π ∫ ∫  (14) 

 
 Due to (7) and (13), equation (11) becomes: 
 

n n n n

kj j j jk k k
j=0 k=0 j=0 k=0

1 1b V (x) b V (x) = f V (x)− λ −
π π∑ ∑∑ ∑  (15) 

 
    The unknown coefficients { }n

j 0
b  are determined by 

solving the following system of linear equations 
obtained by comparing the coefficients of 

jV , j = 0,1,2,...,n  in both sides of equation (15): 
 

 

n

00 j j0
j= 0

n

11 j j1
j= 0

n

nn j jn
j= 0

1 1b b = f ,

1 1b b = f ,

1 1b a = f ,

− λ −
π π

− λ −
π π

− λ −
π π

∑

∑

∑

 (16) 

 
where the coefficients if  and jkλ  are given by (8) and 
(14), respectively.  
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Exactness of the numerical solution: 
Proposition 1. If ( )f x  in equation (2) is a cubic 
function, then the approximate solution (9) of 
characteristic equation (2)  is exact.  
 Proof: Let ( )f x  in equation (2) be a cubic function, 
i.e: 
 

2 3
0 1 2 3f (x) = c c x c x c x+ + +  (17) 

 
     Substituting (17)  into (2), we have: 
  

1
2 3

0 1 2 3
1

(t) dt = c c x c x c x , 1 < x < 1
t x−

φ
+ + + −

−∫  (18) 

 
     Substitution (17) into (8) yields: 
 

( )
1

2 3
k 0 1 2 3 k

1

1 1 tf = c c t c t c t V (t)dt
1 t−

+
+ + +

π −∫  (19) 

 
     The Chebyshev recurrence relations of the third and 
fourth kinds, respectively, are: 
  

0 1

n n 1 n 2

V (x) = 1, V (x) = 2x 1,
V (x) = 2xV (x) V (x), n 2,− −

− ⎫
⎬− ≥ ⎭

 (20) 

 
and: 
 

0 1

n n 1 n 2

W (x) = 1, W (x) = 2x 1,
W (x) = 2xW (x) W (x), n 2.− −

+ ⎫
⎬− ≥ ⎭

 (21) 

 
     With help of (20) and (21), we have: 
 

 

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

3
3 2 1 0

3 2 1 0

2
2 1 0

2 1 0

1 0

1 0

1t = V (t) V (t) 3(V (t) V (t))
8

1= W (t) W (t) 3(W (t) W (t)) ,
8

1t = V (t) V (t) 2V (t)
4

1= W (t) W (t) 2W (t) ,
4
1t = V (t) V (t)
2
1= W (t) W (t) .
2

⎫+ + + ⎪
⎪
⎪− + − ⎪
⎪
⎪+ + ⎪
⎬
⎪− +
⎪
⎪
⎪+
⎪
⎪
⎪−
⎭

 (22) 

 
     It is known that the Chebyshev polynomials of the 
third and fourth kinds are orthogonals with respect to 
the weight functions 1ω  and 2ω , respectively, i.e.: 
 

1

m n
1

0, n m,1 t V (t)V (t)dt =
, n = m,1 t−

≠⎧+
⎨π− ⎩

∫  (23) 

and:  
 

1

m n
1

0, n m,1 t W (t)W (t)dt =
, n = m.1 t−

≠⎧−
⎨π+ ⎩

∫  (24) 

 
     Taking into account (22) and using the orthogonal 
property (23) into (19), we obtain: 
 

 

1 2 3
0 0

1 2 3
1

2 3
2

3
3

c c 3cf = c ,
2 8

2c c 3cf = ,
4 8

2c cf = ,
8

cf = .
8

+ ⎫+ + ⎪
⎪

+ ⎪+ ⎪⎪
⎬+ ⎪
⎪
⎪
⎪
⎪⎭

 (25) 

 
     From the system (16) where K(x, t) = 0  yields: 
 

jj
1b = f , j = 0,..., n−
π

 (26) 
 
     Substituting (26) into (9) for n = 3 , we get: 
 

n

0 1 2 31 2 3

1 1 x(x) =
1 x

f f W (x) f W (x) f W (x)

−
ϕ − ×

π +
⎡ ⎤+ + +⎣ ⎦

 (27) 

 
     Thus the approximate solution of equation (18) is: 
 

n

0 1 2 3

2 3
1 2 3 2 3 3

1 1 x(x ) = p(x),
1 x

1p(x) = c c (c c )
2

1(c c c )x (c c )x c x .
2

⎫−
φ − ⎪

π + ⎪
⎪

+ + + ⎬
⎪
⎪

+ + + + + + ⎪
⎭

 (28) 

 
      In order to obtain the exact solution of equation 
(18), we substitute (17) into (3) which gives: 
 

2

1 2 3
0 1 2 3

1

1 1 x(x ) =
1 x

1 t c c t c t c t dt
1 t t x−

−
ϕ − ×

π +

+ + + +
− −∫

 (29) 

 
     It is easy to see that: 
  

1

1

1

1

1 2
2

1

1 3
2 3

1

1 t 1 dt = ,
1 t t x

1 t t dt = (1 x),
1 t t x

1 t t dt = (0.5 x x ),
1 t t x

1 t t dt = (0.5 0.5x x x ).
1 t t x

−

−

−

−

⎫+
π ⎪

− − ⎪
⎪+ ⎪π +
⎪− − ⎪
⎬

+ ⎪π + + ⎪− − ⎪
⎪+

π + + + ⎪
− − ⎪⎭

∫

∫

∫

∫

 (30) 
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     From (29)-(30) we obtain the exact solution of 
equation (18) which is identical to the approximate 
solution given by (28). The proof is complete.  
 

RESULTS AND DISCUSSION 
 
     In this section, we discuss a particular example to 
show the accuracy of our numerical solution. 
     Let us consider the integral equation (1) with 
degenerate kernel 5 5k(x, t) = x t  and polynomial function 

5 3f (x) = x x x+ + , i.e.: 

 
1 1

5 5 5 3

1 1

(t) dt x t (t)dt = x x x
t x− −

ϕ
+ ϕ + +

−∫ ∫  (31) 

 
and we seek the solution of this equation, which is 
bounded at the endpoint x = 1 and unbounded at the 
endpoint x = -1. 
     Due to (8), we have: 
 

1
5 3

k k
1

1 1 tf = (t t t)V (t)dt
1 t−

+
+ +

π −∫  (32) 

     
 It is easy to see that: 
 

[

]

[

]

5
5 4 3 2

1 0

5 4 3 2

1 0

1t = V (t) V (t) 5(V (t) V (t))
32
10(V (t) V (t))

1= W (t) W (t) 5(W (t) W (t))
32

10(W (t) V (t)) .

⎫+ + + ⎪
⎪

+ + ⎪
⎬
⎪− + −
⎪
⎪+ − ⎭

 (33) 

 
     From (22), (32) and (33) we obtain: 
  

0 1 2 3 4 5
19 9 1f f = ,f = f = ,f = f =
16 32 32

=  (34) 

 
     From (14) where 5 5K(x, t) = x t , we have: 
 

 

1 1
5 5

jk j k
1 1

1
5

k
1

1
5

j
1

1 1 x 1 t= x t W (t)V (x)dtdx
1 x 1 t

1 1 x= x V (x)dx
1 x

1 t t W (t)dt
1 t

− −

−

−

+ −
λ

π − +

⎡ ⎤+
⎢ ⎥

π −⎢ ⎥⎣ ⎦
⎡ ⎤−

× ⎢ ⎥
+⎢ ⎥⎣ ⎦

∫ ∫

∫

∫

 (35) 

 
     Due to (23), (24) and (33), yields: 

01 02 032 2

04 05 10 112 2

12 13 14 152 2

20 21 22 232 2

24 25 30 312 2

32 33 34 32

100 50= = , = = ,00 (32) (32)
10 100= = , = = ,
(32) (32)

50 10= = , = = ,
(32) (32)

50 25= = , = = ,
(32) (32)

5 50= = , = = ,
(32) (32)

25= = , =
(32)

π πλ λ − λ λ −

π π
λ λ − λ λ

π π
λ λ λ λ

π π
λ λ − λ λ −

π π
λ λ − λ λ

π
λ λ λ λ 5 2

40 41 42 432 2

44 4,5 50 512 2

52 53 54 552 2

5= ,
(32)

10 5= = , = = ,
(32) (32)

10= = , = = ,
(32) (32)

5= = , = = .
(32) (32)

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪π
⎪
⎪

π π ⎪λ λ − λ λ − ⎪
⎪

π π ⎪λ λ − λ λ ⎪
⎪

π π ⎪λ λ λ λ ⎪⎭

 (36) 

      
 Then the unknown coefficients jb , j = 0,...,5  are 
obtained by solving the following system of linear 
equations:  
 

0 1 22 2 2

3 4 52 2 2

1 0 1 22 2 2

3 4 52 2 2

2 0 1 22 2 2

3 42 2

100 100 50b b b b0 (32) (32) (32)
50 10 10 19b b b = ,

(32) (32) (32) 16
100 100 50b b b b
(32) (32) (32)

50 10 10 19b b b = ,
(32) (32) (32) 16

50 50 25b b b b
(32) (32) (32)

25 5 5b b
(32) (32) (32

+ − +

−
− + −

π

+ − +

−
− + −

π

+ − +

− + − 52

3 0 1 22 2 2

3 4 52 2 2

4 0 1 22 2 2

3 4 52 2 2

5 0 1 22 2 2

3 42 2 2

9b = ,
) 32

50 50 25b b b b
(32) (32) (32)

25 5 5 9b b b = ,
(32) (32) (32) 32

10 10 5b b b b
(32) (32) (32)

5 1 1 1b b b = ,
(32) (32) (32) 32

10 10 5b b b b
(32) (32) (32)

5 1 1b b b
(32) (32) (32)

−
π

+ − +

−
− + −

π

+ − +

−
− + −

π

+ − +

− + − 5
1= ,

32

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

− ⎪
⎪π ⎭

 (37) 

 
which are: 
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0 1 2 3

4 5

19 9b =b = ,b =b = ,
16 32

1b = b = .
32

⎫
− − ⎪⎪π π ⎬

⎪−
⎪⎭π

  (38) 

 
     Substituting the values of the coefficients { }5

j 0
b  into 

(9) yields the approximate solution of equation (31), 
which is: 
  

( ) ( )

n

5 4 3 2

1 1 x(x) =
1 x

3 15x x x x x 1
2 8

−
ϕ − ×

π +
⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦

 (39) 

 
     It is not difficult to see that the approximate solution 
(39) is exact. 
 

CONCLUSION 
 
     The Chebyshev orthogonal polynomials of the third 
and fourth kinds are used to approximate the known 
force function and unknown density function, 
respectively. Proposition 1 shows the exactness of the 
numerical solution for characteristic equation when the 
force function is a cubic. Particular results show that our 
numerical solution does not only give the exact solution 
for characteristic equation but also for other Cauchy 
singular integral equations.  
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