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Abstract: Problem statement: We presented option pricing when the stock priodlsws a jump-
diffusion model and their stochastic volatility lfolvs a fractional stochastic volatility model. This
proposed model exhibits the a memory of a stoahastiatility model that is not expressed in the
classical stochastic volatility modekpproach: We introduce an approximated method to fractional
stochastic volatility model perturbed by the fraptl Brownian motion. A relationship between
stochastic differential equations and partial défgial equations for a bivariate model is presgnte
Results: By using an approximate method, we provide the @pprate solution of the fractional
stochastic volatility model. And European optiong g@riced by using the risk-neutral valuation.
Conclusion/Recommendations. The formula of European option is calculated bygshe technique
base on the characteristic function of an undeglyasset which can be expressed in an explicit
formula. A numerical integration technique to siatidn fractional stochastic volatility are presehte
in this study.

Key words: Fractional Brownian motion, approximate methodctienal stochastic volatility, jump
diffusion model, option pricing model

INTRODUCTION where,w > 0 is the mean long-term volatilitgo0O is
the rate at which the volatility reverts toward lisg-

Let (Q,F,P)be a probability space with filtration term mean§>0 is the volatility of the volatility process
F =(R JosteT- All' processes that we shall_consider in gnq g ) s a fractional Brownian motion.
this section will be defined in this space. Far {0, T]

tco,T]

and T < a geometric Brownian motion (gBm) model ~ Assume that the processes)(&nd (V) are
with jumps and with fractional stochastic volailis a ~ measurable.
model of the form: The notation S means that whenever there is a

jump, the value of the process before the jumpsidu

on the left-hand side of the formula.
d§ = S(“ der [y dW)+ 2 YdN (1) The fractional version of Eq. 1 is given by:
where p00,S= (S )0 IS @ process representing a dS = S(H de [y d5)+ S YadN (3)

price of the underlying risky assets; = (W, ) is the

_ wom . The process Sin (3) can be approximated in
e 1S @ Poisson L,(Q) by a semimartingaleS in the sense that
process with intensityA and Y. represents the

amplitude of the jump which occurs at time t. We
assume that the processes W and N are independefallowing equation (Intarasit and Sattayatham, 240

The volatility processy, :=%in (1) is modeled by: more details):

standard Brownian motionN =(N,)

HS_SHLZ(Q) -0 ase- 0 where S satisfies the

dv, =(w-8v,)dt+Ev, dB ) ds = 3(“ dt+ [ ¢ d5)+ s Y dN
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The purpose of this study is to consider the ¢
problem of option pricing for the gBm model with B:=](t-s)™dw (4)
jumps (1) and with fractional stochastic volatilig). 0
Since driving process (Bof v in Eq. 2 is not a

semimartingale, thus we cannot apply Itd calculusthat has a long-range dependence.

directly. We shall thus work in another directiog b Note thatB, can be approximated by:
introducing an approximate model of SDE (1) and (2)
then using it to price European call option. The Bf:I;(t—s+e)_“ dw, 5)

advantage of these approximate model is there me mo

arbitrage. In order to find such a formula, we bhalrk

in the space of a risk-neutral probability measurein the sense thaB: converges to Bin L,(Q) as€ - 0,

Indeed, there are some authors who have investigatniform with respect ta ([0, T] (Thao, 2006).

this problem before but not in the fractional cafse, _ . : _ . .

example (Heston, 1993). In fact, there are mankaut Since (B)upr IS @ continuous semimartingale

studies a volatility and fractional volatility press. For then [t6 calculus can be applied to the following

example (Magnus and Fosu, 2006) use GARCH tdtochastic Differential Equation (SDE):

model and forecast volatility returns on the Ghsiwek

exchange and (Shamiri and Isa, 2009) study modelingds = 3(“ dt+o d$) & K T

and forecasting of volatility of the Malaysian dtoc

markets. An empirical study of fractional volatiliare . _

presented in (Cheong, 2008) for example. Let S be the solution of the above equation.
Recall that the fractional Brownian motion with Because of the convergenceBif to B in L,(Q) when

Hurst coefficient is a Gaussian proceBS =(B!'),,, € -0, we shall define the solution of a fractional
with zero mean and the covariance function is gimgn  stochastic differential equation of the form:

R.9)= B8 ]=Z(8"+ -] v §) d§ = §(udirodg) & & 1

to be a process; defined on the probability spac@,(

If H = 1/2, then R(t, s) = min(t, s) and! is the
H F, P) such that the process converges toS in

usual standard Brownian motion. In the case 1/2 <
1 the fractional Brownian motion exhibits statiatic L,(Q)as € -~ 0 and the convergence is uniform with
long-range  dependency in the sense  thajggpect tao,T]. This definition will be applied to the

P, = E[B?(B':u_ Bi)}o foralln=1,2 3, ..and  qther similar fractional stochastic differentialuatjons
which will appear later.

A risk-neutral model for a gBm model combining
assumes that0(1/2,1). Put a= 1/2-H. It is known  jumps with stochastic volatility is introduced neks
that a fractional Brownian motionB'can be solution will also be discussefirstly, let us rewrite the

Zrzlpn = . Hence, in financial modeling, one usually

decomposed as follows: model (1) into an integral form as follows:
¢ t t t

gt Iz ife-saw S=S+[usds [ ysaws] § YN )

rl+a) o 0 0 0

. ) Note that the last term on the right hand sidEaf

where,l" is the gamma function: 6 is defined by:

0 a ~ t N,
z,=[I(t-s)" - ()" 1AW, [s. YN =Y as,

hes 0 n=1

We suppose from now on that Ooc< 1/2. The Where:
process Zhas absolutely continuous trajectories, so it
suffices to consider only the term: AS, =ST-ST. =38 Y
231



J. Math. & Stat., 7 (3): 230-238, 2011

The assumption y¥> 0 always leads to positive By using the same initial condition as in Eq. @@,
values of the stock prices. The proceg§),, is have:

assumed to be independently identically distributed

(i.i.d.) with densityg, (y) and (T,),.,is a sequence of j'(r—)\E v ])ds—lj.vsds+
jump time. 0 e 25 "
Jump . .. §=§ex (12)
In order to solve Eqg. 6 with an initial condition Lo ¢
; [\Jvidw, + [log(a+ Y,dN,)
Sy = SWe assume thaE[J'O vssids}mo. Then, by o >

an application of 1té’s formula for the jump proses
(Cont and Tankov, 2009, Theorem 8.14) on Eq. 6 wit

£(S,.t) = log (S ) we get:

hand one can prove th& converges to Sof Eq. 9 in
L,(Q) as € - 0and uniformly on tO[0, T]. Moreover,
one can show that the solutioriof Eq. 11 converges
in L,(Q) to the process:

S =5 ex;Ep t—%j % d&jﬂ dvy+.t[ log@d Y )dl\Jj

t
It is assumed that a risk-neutral probability Vi :(Vo’fwj.exp(vs-i Q)d% exd( B-y t
measure M exists; the asset prige Uhder this risk- °
neutral measure, follows a jump-diffusion procesish

. ) for some real constagt. Hence, by definition, s the
zero-mean, risk-free rate r:

solution of Eq. 8 (Intarasit and Sattayatham, 2010,

Lemma 2).

ds =S(-AE, [Y ) dt+/y dw »+ S Y dN @)
MATERIALSAND METHODS

and the stochastic variance satisfies the following

fractional SDE: The relationship between the stochastic deferdentia

equation and the partial differential equation for
bivarate model is presented.

Consider the proces¥, =(X},X? where X! and
X? are processes ir] and satisfy the following
equations:

dv, :(m—evt)dt+EvldB, (8)

with an initial conditionv, .o, = v, 0L (Q) .

It is only necessary to know that the risk-neutral
measure exists .
(Cont and Tanko_v, 2009) Hence, albx}:fl(t)dugl(t)dw + XY, dN,
processes to be discussed after this will be thegzses

under the risk-neutral probability measure M. dXt =f,(t)dt + g, (t)d W (13)
Using an initial conditios ., =S0LQ), the
solution of Eq. 7 is given by: where, {, g, f, and g are all continuous functions from
[0, T]into O .

t 1t t Since every compound Poisson process can be

J(f —AEy [Y, ])dS—EJ‘VstJfJ‘\/Vs dw, represented as an integral form of Poisson random
S=sexp’, 0 0 . (9) measure (Cont and Tankov, 2009) then the last term

+j|og(1+ Y, )dN, the right hand side of Eq. 13 can be written aled:

0

t N N,
. XLYAN =)' XY =>[XE X!
Under approximate method, for each > O, ! T nz; mr nzl[ n Xl

consider an approximate model of Eq. 7 and 8

respectively: = [[ Xt 23, (dsd2)
oo
a5 = $( (=M E T¥ DOIH\/;W)+ - YoN (10) where, Y, are i.i.d. random variables with densipy
(y) and 3 is a Poisson random measure of the process
dv; = (00— 0v;)dt+EVidE (11)  z =" Y, with intensity measuraag, (d,)dt .
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Let U(X) be a bounded real function di?> and where, k is the expectation with respect to the risk-
twice continuously differentiable in = (x,,x,)00% and: ~ heutral probability measure,R,(§ [$.v. is the
corresponding conditional density given, (& and:
u(x,t)= E[ U(X)X = 7(} (14) )
RSV ,t;K,T):(J SR sw )qs] IE {8 IS
By the two dimensional Dynkin’s formula «
(Hanson, 2007, Theorem 7.7), u is a solution of the

Partial Integro-Differential Equation (PIDE): Note that_l?is the rigk-neutral prpbability thatr.S
K (since the integrand is nonnegative and the nafeg

" over [0,) is one) and finally, that:
0= % + AV(X,t) +)\J [V(X+7.t) = (X, )], (y)dy
O o
RS % .tKT)=[ R ($.v)ds= Probs K|S,
subject to the final conditionu(x,T)=U(x) and K
y =(y,0). The notationA is defined by:
is the risk-neutral in-the-money probability. Moveo,

. - 2 E VIE &V S fore (.
Au(xt):fl(t)aua(x,t)+fz(t)0u(x,t)+}gi(t)0 u(Z(,t) wlS 1S .Y ] S .
X, ox, 2 ox’ Note that we do not have a formulation for these
Pu(.t) 1 a2u(x.t probab_|I|t|e§ thus we will calculate some
+pg, (1)g, (1) ™ (ax )+5922(t) ai—z ) approximations of Pand B. Indeed, these probabilities
1 2 2

are related to characteristic functions which have
formulation as will be seen in Lemma 2.
and the correlatiop defined byp = Corr[dW, ,dW ].

Next, we present the classical method to pricing of RESULTS
European call option. The European call option fgem
in terms of characteristic function is given in thext

. In order to calculate the price of a European call
section.

q h : . ¢ e option with strike priceK and maturity T of the model
Let C denote the price at time t of a Europealesty (7) ¢or which its fractional stochastic volatiligatisfies
call option on the currergrice of the underlying asset Eq. 8, we consider the approximate model (10) and

S with strike price K and expiration time Trhe . . .
terminal payoff of a European call option on the(ll)' Firstly, we consider logarithm ofs; namely

underling stock Swith strike price K ismax (S§- K; 0). L%,ie. L® =log(§) where S satisfies Eq. 12 (the
This means that the holder will exercise his righlty if  solution of Eq. 10) and its inverss = exp(L ). Denote

Sr > K and then higain is § -K. Otherwise, if $> K, = 54 (k) the logarithm of the strike price. Sedty,
then the holder will buy the underlyiragset from the o ow refer toSDE (11), since this approximate

market and the value of the option is zeASSuming  ,qe| is driven by a semimartingale! and hence
the risk-free interest rate r is constant overlifeéime . . . .
there is no opportunity of arbitrage (for more dsta

gf tr;? ?c?ttlr?:’ dFQ(?oprr:(t::Id?r]:dt'T% rllf;lrgpe:;ecgll :t;'f?_]e t IS(Thao, 2006)). Thiss the advantage of our approximate
qu Iscou “ xp payott: approach and we will use this model foricing the

European call option instead of SDE (8).

C(§ v 6K T)= €TV E, [ max(S- K,4)S Note that we can write:
=e"T (F[ S -KR S |5 )dSJ dBF = agidt+e® dw (16)
1 K t
:3[E (s|s tJJ.SFF“)" ® |S,lv)d,8] (15) where ¢; = [ (t-u+e)dW,,a=1/2- H and 0< a <
Mw 1/2 ((Thao, 2006), Lemma 2.1).
_Ke"“’”J‘pM (S |S.v)ds Substituting (16) into Eg. 11, we obtain:
=SR(S,V.tK< T Ke"' P (S,v.tk T) dve = (w+ (a&¢° - B)V:)dt+ e Vi dW, (17)
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Consider the SDE (10) and (17). Define a function 9

U on 0?2 as follows:

—r(T t)

U(X;,X,) = maX(EXpOf_K ),0;

By virtue of Eq. 14:
u(x, )= &, [ U(%)|% =x]

= "(T“)EM[max(exp((t.)-K ).Q)Ff b= ﬂ
=C(¢°, v, tk,T)

satisfies the following PIDE:

aCc ,4C , aC 1, 9°C
0="2+f . —g? :
ot tart Pov 27 ()
0°C !
+ = 18
PoG, ot 922 10 )2 (18)

AJ[CE +y, vtk )= OVt T @y (v)dy

In the current state variable, the last line of Eg
becomes:

C(t*,v',tk,T)=€ P (* ,V ,tix , T (19)
- TUp ¢,V ,tk ,T).
The following lemma shows the relationship

between Pand B in the option value of the Eq. 19.

Lemma 1: The probability P in the option value of the

Eq. 19 satisfies the following PIDE:
0= aaPl + AP, 1(¢5, v t,K,T)+\f 98 +pE (\f)map
+(r-AE, (Y )R

(20)

[ -DR €+ y,¥ 1k, T, (v)dy

= % +A[P (5, VE 6K, T)

subject to the boundary condition at expirationetitre
T:

R,V Tk T=1_. (21)

And the probability P in the option value of the
Eq. 19 satisfies the following PIDE:
234

0-£(€5,\/E K, T)+ 1B
(22)

_ 0P,

SEHA o[ P ]Vt T)

subject to the boundary condition at expiratioretirs T:

P(*,V, Tk, T)=1_ (23)

Where:

of

1.
—V
) or*

2
1, 9%
+ —
2 a(f)2

A[F]Ce5ve 6k, T) = (r = AE[Y,] =

of

VE

+(0o+ (a0 -0)v*)

0% (24)
orcov*

f(0f +y,vE tK,T)

—f (05, Ve, 1K, T)

+pge (v¥)* *EZ ()22

—rf+)\£|:

Note thatl,

0(\/s )

} @, (y)dy

=1if ¢* >k and otherwisg

18>k

=0.

Proof: Calculating the partial derivatives of function
C(#*,v,tik,T)in Eqg. 19 and substituting it's in Eq. 18
then separating it by assumed independent tesrasdP

P,. This gives two PIDEs for the risk-neutralized

probability P (*,V,tk,T), j=1, 2. For j=1 we have:
AE, (Y,)-= R

(r () V j(wg 1j

oP, +;-v{62|31 L

ENG (5 "
aaj 1

P,

ot

0= oR

+(m+(0(£q>lE —e)vs) 1J 25)
25

2
OB LR, sy OB _p
arfve  ovt ) 2 a(v%)
-1k ¢+ yv, t;T
EEOR YV ED  lev(ydy
HP (Y, VL ET) = R(C+y, V5, ET)

+pE£a (V£)3/2{ (VS)Z

+)\£ {

subject to the boundary condition at the expiratiore
t = T according to Eq. 21. By using the notatiorEp
24 to PIDE (25) we get Eq. 20:

For B, (¢*,V ,tk,T),we have:

+(@(aEP! - V) 2 +
ov
w2 0°P o°R
arc9v* a(ve)?
P, ((° +y,V ,tk,T)
P, (* +y,V,tiK

oP,

—2Z+1PB, + 1
t

r=AEy (%)= v

. 0°B
6(1{5)2

oo oy ey2
+—¢ €T (V
SeET (V)

R
arf

0=

\_/

1
=v
2 (26)

+p&e’ (V%)

-rP, +)\j{

j @, (y)dy
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subject to the boundary condition at expirationetitre
T according to Eq. 23. Again, by using the nota(@#)
to PIDE (26) we get Eq. 22. The proof is now
completed.

Next, an approximate formula of European call
option is calculated. For j = 1, 2 the charactarist

functions for B (*,V,tx,T) with respect to the
variable k are defined by:

£ (5,510, T) :=—j é“dp (¢ V¥ ,tx T,

with a minus sign to account for the negativitytio¢
measure dP. Note thatfalso satisfies similar PIDEs:

of, € \,E t. -
a—t’+Aj[fj Jerve kT =0 (27)

with the respective boundary conditions:

fj(fs,vs,T;x,T)=—J' e“dp ¢* v, Tk ,T)

:—jei“ 3(F —K)k )= &
Since:
dR (*,V ., TK,T)=dl_ = dH( -k -3 (" -k )d
Note that the probabilities;Pj = 1, 2 are the
conditional probabilities that the option expiresthe-
money that is:
P = M{L5 2logK | L =/%vi =v}
where againL’ =logS and (S;,V) evolves according

to Eg. 10 and 11 respectively.
Using a Fourier transform method one gets:

1

where, j 1, 2 and the characteristic function
f,(¢5,v5,tx,T)also satisfy the PIDEs in lemma 1,

e (VLT
dP ((E,\f,t:|<,T)=%+E eV txT) : )
T

IX

:‘ dx (28)

o

to calculate the probabilities, Bnd B as they appeared
in Lemma 1.

Lemma 2: The probabilities P and B can be
calculated by Eq. 28 where the explicit expressiohs

the characteristic functions is given as follow}.The
characteristic function fis given by:

f,(5 v Ex t+1)=exp(g €)+ Vh €+ )°)
where,1=T-t:

9, (@M =[r-AE, (Y,)ix -AE, (Y,) ]t
+TAJ (€7 - 19, (y)dy
)+t

log| 1
e

(n -AH(E™ - 1)
Va(ﬂl +4, - (Th - Al)eAlT ) '

N, = pEe“ YV (L1+ ix) + (a&/% - 6)

and A, =4/n? —&%Xix(ix +1)

(ii) The characteristic function fs given by:

2w
EZSZGVS

)} @, +n1)1]

hl (T) = EZSZGS

fz(ég,vs,t;x,t+r) =exp(g @)+ Vh ¢+ X+ 1)
Where:

9, () = [r = AE, [Y,Jy ~r] T+ 1A [(e™ ~L)g, (y)dy
2w _ (A2+I']2)+(1— & )

2 o]
(nz-A)E™ -1)

VE("]2+A2‘(ﬂz‘Az)eA2T) ,
N, = pEe“JVFix + (ag¢; - 6)
and A, =\/r]§ +E%2veix(ix -1)

h2 (T) = EZEZG

Proof: Proof of (i). To solve for the characteristic
explicitly, letting t=T -t be the time-to-go. Following
(Heston, 1993), we conjecture that the functignsf
given by:

BV e D) =expl (@)E)*F Vh € ) (29)

namely Egq. 20 and 22 and Re[.] denoting the real
component of a complex number. The practice taand the boundary condition(@) = 0 = Rh(0). This

solving of this kind of equations is to guess teaeral
form of the solution. The following lemma shows how

235
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Note that the characteristic functions efafways
exists. In order to substitute (29) into (27), tiyswe
calculate the partial derivative of &nd substitute it's
into Eq. 27. After canceling the common factor gf f
we get a simplified form as follows:

0=0, ()~ V) (AE, IY 1+3 V)i
+w+ (a&d; —B)V°) +p&e’ (v¥)¥?h, (1)
—%vsx2 +p&e” (v*)*%ixh, (1) + %E () /()

SAE, Y, ] +A[(e™™ ~1)g, (y)dy

By separating the order®vand ordering the

remaining terms, we can reduce it to two Ordinary

Differential Equations (ODES):

hy(t)== zz “h? @)+ (PEE"V V (1+ ix)
(30)

e _ 1. 1.
+Hager ~Oh, (1) +Six-ox

6 (1) = wh, (U)+ (r=AE, [Y, Dix —AE[Y,]

(€ - Do, )y (1)

Let n, = pEE“\/F (1+ix) + (a&¢; —-8) and substitute
it to Eq. 30.

We get:

N6 e
2— %™ Vix(ix +1)
ZEZSZG\f

\fix(ix+1)]

(1) =;Ezsz‘1v€(hf O+ |x(ix+1)J

|

Ez 2av£
_1ézez{hlm+ 20, +/4n;

"2
_ 2 _ g2
x[hl () 2~ &
ZEZSZKXVS

_1 2 2a E
=tee o B ol

Where:

0= T

Vex(ix +1)

By method of variable separation, we have:

)

2dh @)

A][ (X)+

Ez 20, &

— EZSZUI E

-
EZEZ!X €

(h @)+
236

Using partial fractions, we get:

1

Al )+

1

-A,
Ez 2a a

h O+

Integrating both sides, we obtain:

h
(T) EZ& €

log
h, @)+ 1+ As

=AT+C

EZE

Using boundary conditiom, (t = 0)= 0 we get:

)

Solving for h, we obtain:

n, -

C=lo
o

e -
(fh - Al)eAlT )

(n; -4
gt n, +4, -

h (1)=

In order to solve g(t) explicitly, we substitute h
into Eq. 31 and integrate with respect to T on both
sides.

Then we get:

9, (1) =[ (r=AE, (Y, )ix = AE(Y, )]t
+TAJ (" - 1)g, (y)dy

{Iog[l— (@, +n)+ (=€ )J 0+, )T}

2w
_Ez 2aye

Proof of (ii). The details of the proof are simita
case (i). Hence, we have:

f, (05 VE Gy, t+T)=exp(g € )+ V h € )+ iy + 1)

where, g,(1),h,@),n, andA,are as given in the
Lemma.

We can thus evaluate the characteristic functions
explicit form. However, we are interested in theksi
neutral probabilities P These can be inverted from the
characteristic functions by performing the follogin

integration:
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|5.($,\f;KT)=P(25\?tK,T) C(S .V, tKT)=38P (5.V .tKT
J e f, (zi, th)} -Ke" IR (§ . LK T)
where, R and B are as given in Lemma 2.
for j = 1, 2, where ¢ =log(§),V = log(y ), and DISCUSSION
=log(K).
To verify the above equation, firstly we note that A simple and efficient numerical scheme for
determining the approximate processS and viis
[éx (oS st og ($ )= £,V = \ﬂ presented.
=EM[eix(’“K> V= vﬂ In order to compute the value @S,V tK,T)

according to the formula as given in Theorem 3, we
firstly choose a real number> 0, the solution thaive

get is the value of a European call option of the
approximation model (10)ith (11) and this value can
be used as an approximating value of a call optibn
the fractional model (7) including model (8) as

. approaches zero. As tidonte-Carlo based technique,
_IXKI €m e KK )= € f (F g txT) it will generate discrete sample valussand v of the

- stock and its variance respectively, by discretjzine
associated SDH40) and (11). A natural choice for this

The computation of the right of above equation are

Je-'w AR ¢V Ltk TR é”I ¢ APt v kT

Then: purpose is the Euler scheme:
j f‘ft”)} dx §.= 5. (A [ Do VoW s YAN o)
= (W-68V))h +EVAB
oo x(log(S )-log(k )) = [ V=
1JR{EM[6 log($ )= & . V]dx}
o ix Where:
- n (k) AW, =Standard normal random variable with variance
=E, }+EI R{é } d% E=0 = \;} h, which is defined as the time mesh-size
|2 T, AN; =A Poisson process with intensii
1 1tesinx@-k), . .
=BS54 fdx L=0v -V} These processes, W and N are assumed
- o o independent. However, (Glasserman, 2004) suggests
=E, £+sgn(<9 — )} J‘f’ sm(X)d* E=e §=v that the_ second-ord_er schgme has a bef[ter conagrgen
12 (less bias) for option pricing applications but sthi
r scheme quite complex. For the simulation of Brownia
=Bl S+ sgn( -k J =V ,y= \7} motion there are numerous procedures see (Glasserma
- 2004). For a sample path of fractional Brownianiomot
=Ey[ L., | =r 0 = V] in Eq. 10, we can be simulated, for fixed t > 0, as

where we have wused the Dirichlet formula
B, = Z(t 7t) [W(k+l)‘ _Wk]

j Sln(X)dx 1 and the sgn function is defined as sgn k=t N
X N
sgn(x)= 1if x>0, 0if x=0andand-1 if x<0. Z ft)“([WM W,]
In summary, we have just proved the following =
. t
main theorem. = NZ( t) g,
k=1

Theorem 3: For eache > 0; the value of a European .
call option written on the model (10) and (11) is: where, g, ~ N(0,1) and G<a < 1/Z
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There are two basic estimation of the volatility Cont, R. and P. Tankov, 2009. Financial Modelinthwi
process of Eq. 32 in the cast the volatility preces Jump Processes. 2nd Edn., Taylor and Francis,
constant. The first method considers the functién o ISBN: 1420082191, 978-1420082197, pp: 606.
density of transition from solution of Eq. 32. The Fiorentini G., A. LeonandG. Rubio, 2002.Estimation
second method proposes the estimate of the panamete and empirical performance of Heston's stochastic
of the model via the observation. Khaled and Samia volatility model: The case of a thinly traded

(2010) for more details). In our case, the volgtibf market. J. Empirical Finance, 9: 225-255. DOI:
Eq. 32 is the stochastic process. There are maicjear 10.1016/S0927-5398(01)00052-4
provided the estimation procedure for example se&lasserman, P., 2004. Monte-Carlo in Financial
(Fiorentiniet al., 2002). Engineering. 1st Edn., Springer, ISBN:
0387004513, 978-0387004518, pp: 596.
CONCLUSION Hanson, F.B., 2007. Applied Stochastic Processds an
Control for Jump-Diffusions: Modeling, Analysis
An alternative fractional stochastic volatility ded and Computation. 1st Edn., SIAM Books, ISBN:

with jump is proposed in this study which the stock 0898716330, 978-0898716337, pp: 443.

prices follows a geometric Brownian motion combgnin Heston, S.L., 1993. A closed-form solution for ops

a compound Poisson processes and a stochastic with stochastic volatility with applications to bdn
volatility perturbed by a fractional Brownian matio and currency options. Rev. Financial Stud., 6: 327-
This proposed model exhibits a long memory of a  343.DOI: 10.1093/rfs/6.2.327

stochastic volatility model that is not expressedhe Intarasit, A. and P. Sattayatham, 2010. A geometric
classical stochastic volatility model. By using a Brownian motion model with compound Poisson

fundamental result of the “approximation of a process and fractional stochastic volatility. Adv.
fractional Brownian motion, we provide an Appli. Stat., 16: 25-47.
approximate solution of bivariate diffusion moddl. http://risklabbkk.com/images/PDF _files/IntarasitO1
relationship between stochastic differential eoureti .pdf

and partial differential equations for a bivarimedel Khaled, K. and M. Samia, 2010. Estimation of the
is presented. The risk-neutral method for valuatién parameters of the stochastic differential equations
options are reviewed. By using the technique base o  black-scholes model share price of gold. J. Math.
the characteristic function of an underlying assats Stat., 6: 421-424. DOI:

approximate formula of a European options is defrive 10.3844/jmssp.2010.421.424
in an explicit formula. Finally a numerical intetjom Magnus, F.J. and O.E. Fosu, 2006. Modeling and
technique to simulation the fractional stochastic  forecasting volatility of returns on the ghana &toc

volatility are present. exchange using garch models. Am. J. Applied Sci.,
3: 2042-2048. DOl:
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