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Abstract: Problem statement: Let the sequenca,ib,...,in, denoted by 8 be an increasing ordered
word of length n taken from the set of the n pusitintegers S= {1,2,...,n}, m, N", nen..
Approach: That is EKi<i,<...<i;<n. Treating §' as a sequence of weak records £Li}, i, j =
1,2,...,n, the distribution of the single weak recasiwell as the joint distribution of weak records
were found beforeResults: By defining the notion of strong records on thguence {L = i}, the
distribution of a single strong record was found fio=n. In another aspect, it can be shown that the
lattice path in the plane from (0,1) to (m, n) nsisting of unit segments up and to the right, lsan
represented by a sequengeid,..., in Where ki <i<...<im<n, m, nON* m > n. That is, such lattice
paths can be represented, in one to one correspoadey ordered increasing words of length m taken
from the set SConclusion/Recommendations: In this article, we are going to extend the notidn
weak and strong records to these sequences repingsdaitice paths for m>n and obtain their
distributions. This result allows us to study legtpaths via ordered words of non negative integers
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INTRODUCTION P(L =j.L =j..L =j)=

ip+j;—2 iytjHd 2 Tkt e et 2n 4 F (2)
An ordered word of length m taken from the set S( i J( i j( A j[ i J
={1,2,...,n} Alahmadi (2009), is a set of m integéss

i..., im such that &i;<i<...<in<n, m, nON* . For In th > simil . ) ‘
n=m, the element ,ii, j=1,2,...,n. is denoted by the n i € ca§e m>n, S',m' ar. gxpresgos are given for
weak record |the probability distribution of a singlg L P((L;, =iuLy, =i Ly, =h) SISjoS...Sjisn, sksm.,

as well as the joint probability distribution of We notice that 4L, <L, < ...<L, <n, thus they
Ll Ly, where Xiisi;<...<i<n, were given by the - form some kind of weak records, the strong reaord
following theorem, for other results on orderedthe sequencejp...j, or alternately on_ L, ,...,L, was

i ki

sequences El-Faheem and Mahmoud (2010), Khidr angiroduced as a parallel to record values in the
Radwan (2000). continuous case. For records from continuous

) . . distributions, Ahsanullah and Ragab (2006) Ahsatull
.Theore'”.” L L_et P(tL' =) t_)e the probabll!ty t_hat Ehe (1995) for discrete records, Dembinska (2007).
integer j falls in the'l place in the sequencgyj..jn, | =

1,2,...,n. then we have Eqgn. 1: MATERIALSAND METHODS

P =) :(H_J ZJ(ZH l_ Jj,j =1,2,...,n Q) Definition 1: For nen.
AN Let R(1)=1 and R(i+1)= min{k>R(): L > X
L ) _ ) ) when L exists, otherwise R(i+t)= R(i), t=1,2,..., m-i },
Similarly, it P((L, =ji.L, =Ji..LiJ) be the the  yhen x X ... Xem are called the strong record
probability that the numbers, jjy,..., jk falling in the  values on L, L,,..., Ln. and P(&u) = K) is given by
locations §, iy, ..., Iy, respectively, then Eq. 2: the following theorem Eqn. 3.
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Theorem 2: xR(l).x R(Z)"X R(r?( R(r 12( R(# 2)'x R(m): (5)
k-1\ [ 2n-k-1 bzl KKK
s == )
L (3) When r = 0, (5), reduces to the sequence kkk....k
172 (n-1 k-1
Z( )( )i =12,..,n; k= 1,2,.. ,r _ , . .
= ANUVAN Type 2, sequences with the first (i-1) entries are

formed of strictly increasing words from the set
In this article, we generalize Theorem 2 for mten. {1,2,...,(k-1)} , the i entry equals k and the remaining
get. (m-i) entries are formed of strictly increasing ered
word formed from the set {k,(k+1),...,n.}. These
Theorem 3: For m>n, the distribution of the record sequences are of the form Eqgn. 6:
value X -« is equal to Eqgn. 4:
XR(1).X R(Z)"X R(i—l?( R(i?( R(i 1')~-X R(m)™

k-1 m+n-k-1 .. . . . .
P(Xgq) =k):(__1j( B )+ Wz 1K ey With ©)
2 /mo1\ / k1 (4) I <jp<..<jiys(k-1),j =k
ZO( r j[ , ji =1,2,...,m; k=1,2..,r K<y < Sjp<n

The case m<n, can be obtained from (3) by After determining the reduced sequences that
interchanging m and nin ). contribute to the eventg§ =k, i>1, k=1,2,...,n. as in
(1-2) , we have to look for the original sequentiest

Proof of theorem 3: We call the sequence of random give these reduced sequences when applying definiti

variables L L,...L (alternatively the ordered word 3 )
j1i2-.jm) the original sequence and its corresponding FOr the reduced sequences in (2.1), we can
sequence of the record valuesg¥Kre)... Xrqmy the construct the original sequences that give them as

reduced sequences. For example, for n = 6, m he7, t follows: From the set of integers {1,2,..,(k-1)},ew

. . .. k-1
sequence of random variables 2234666 is an originalelect r integers without replacement En j ways,
sequence and its corresponding records 234666&is t '
corresponding reduced sequence. We notice that th#enote these r integers ,...j, 0< r < (i-1). From the
value of the record Xy is equal to the’ientry inthe m places reserved for the sequengelL} Ls...L,, we
reduced sequence, | = 1,2,...,m Therefore, to oltkein save the last location for the integer k and chdos®
number of original sequences; LL, Ls...L, or the remaining (n-1) places, r places for the presip
filtler(n?c)t;\/iezli/'ﬂé)./. 'é"é’ﬁf,ci)t?;rr:bfng%ﬁ Ti)e\:/engf ):_kl;: selected r integers iﬁmr 1) ways. Place these r integers
we have to look for the reduced sequences whick hayp, the r selected places to get the following ageament
the # entry equal to k, k=1,2,..,n. These reducedye|iow:
sequences are one of two types.

Type 1, sequences which have the first r entries
XrayXre)---Xr@ form an strictly increasing ordered
word from the set {1,2,...,(k-1)}, & r < (i-2), i>1. The
remaining elements of the sequence are all equkl to
These sequences will be of the form:

ji j2 jr k

Now we fill in the empty places by the integer
succeeding it to get the following arrangement:

XR(l).X R(2)"X R(r?( R(H-l?( R(# 2)'X R(m)= jl jl jl j2 j2 j2 jr jr jr k k k k K k
JlJZ‘JrJ (r+1J (r+2)"j m L.
Clearly, the above arrangement, as original
With: sequence, gives a reduced sequence as in (1). The
number of such original sequences, for particulés r
1< j1<j2<---<jr5(k_1)-js=k- n-1\/ k-1 . )
( )( j Summing over r = 0,2, ...,(i-2), we see that
s=(r+3) (r+2,...m r )

the number of original sequences that give reduced

Or what is the same: sequences as in (7) is equal to:
185



J. Math. & Stat., 7 (3): 184-186, 2011

iz—2: (mr—lj(kr—lj 7) Table 1: (mmlj P(Xgqy = K)

r=0

kil 1 2 3 4 5
For the reduced sequences in (8), we can see that 21? 12;‘ ﬁi o o
the original sequences that can give the reduce 1 7 83 124 115
sequences of type 2, as in (8), are of the forimetmw: 4 1 7 28 99 195
5 1 7 28 84 210
jr e iz el ey o deny KO dery o Im ? i ; gg gj 318
Where:
DISCUSSION
1<j <j,<..<jips(k-1),j =k, . . o
h=Ja S ey (k=] (8) It is interesting to proof a similar theorem to
K<y S S <0 theorem 1 and 2, in case the sequertie<i,<...<i,<n

represents the order statistics from the discratfoum

The number of the arrangements (2.4) can belistribution on S = { 1,2,...,n}. The result if obied,
obtained as follows: chose (i-1) strictly incre@sin can be used together with current result in testing
positive integers, 9;<j.<...<ji1) < (k-1), out the set hypotheses concerning records.

k-1

{1,2,..,k} in (Hj ways. Then we take the first s places, CONCLUSION
| < s< m, we save the®splace for the integer k and
choose from the remaining (s-1) places , (i-1) gdafor
the (i-1) integers , 9)1<j.<...<j4y) < (k-1) and fill in the
empty (s-i) places ,as before, by the integersesdiag
each. This gives us the first part of the schemeT8
obtain the arrangement (9), we fill in the remagn{m-
s) places by ordered words of length (m-s) formeadf
the set {k,k+1,...,n}.

The total number of original sequences of type
will be equal to:

The study of lattice paths is closely relatedhe t
study of increasing ordered words of non negative
integers, this relation can facilitate the studyedher
via the other.
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From (3) and (6), the theorem follows.
RESULTS
Theorem 2 is an extension to theorem 1 and the

following Table 1 can be used to justify the theore
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