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Abstract: Problem statement: Modeling of the Dow Jones Industrial Average is frequently attempted in 
order to determine trading strategies with maximum payoff.  Changes in the DJIA are important since 
movements may affect both individuals and corporations profoundly.  Previous work showed that modeling 
a market as a random walk was valid and that a market may be viewed as having the Markov property.  
Approach: The aim of this research was to determine the relationship between a diverse portfolio of stocks 
and the market as a whole.  To that end, the DJIA was analyzed using a discrete time stochastic model, 
namely a Markov Chain. Two models were highlighted, where the DJIA was considered as being in a state 
of (1) gain or loss and (2) small, moderate, or large gain or loss. A portfolio of five stocks was then 
considered and two models of the portfolio much the same as those for the DJIA. These models were used 
to obtain transitional probabilities and steady state probabilities. Results: Our results indicated that the 
portfolio behaved similarly to the entire DJIA, both in the simple model and the partitioned model.  
Conclusion: When treated as a Markov process, the entire market was useful in gauging how a diverse 
portfolio of stocks might behave.  Future work may include different classifications of states to refine the 
transition matrices.   
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INTRODUCTION 

 
 As infamously stated by Adam Smith in Wealth of 
Nations, “and he is in this...led by an invisible hand to 
promote an end that was no part of his intention.” That 
is, markets are unpredictable, pure and simple and a 
working model cannot be constructed which reflects 
their movements. This, however, does not discourage 
the creation of such models whose aim is to accurately 
predict movements in the various markets (Agwuegbo 
et al., 2010). This research analyzes market trends by 
determining probabilities that the market transitions 
between various states. A similar study was conducted 
by Agwuegbo et al. (2010). Closing prices of the 
market are considered so that analysis can be done in a 
discrete manner and the transition probabilities are 
utilized as parts of Markov chains to model the market. 
First, the concept of a random variable and a random 
walk is introduced. Second, Markov theory and 
properties of Markov chains are discussed. Finally, two 
models of the Dow Jones Industrial Average (DJIA) and 
two models of a specific portfolio of stocks in the DJIA 
are introduced and analyzed (Jones and Smith, 2009). 

MATERIALS AND METHODS 
 
 A random walk is said to exhibit the Markov 
property if the position of the walk at time n depends 
only upon the position of the walk at time n-1 
(Winston, 2004). If we call our random variable Xn, 
then Eq. 1: 
  

n n 1 ijP(X j X i) p−= = =  (1) 

 
 Is independent of Xn-2, Xn-3,…,X1 so that the state 
of X at time n depends only upon the state of X at step 
n-1. Here each pij for j =1,2,… is a probability row 
vector describing every possible trasition from state i to 
any other available state in the system.  
 
Then Eq. 2: 
 

m
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=
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for every i. Notice that this describes a random walk 
existing in m possible states Eq. 3.  
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Thus: 
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 The process of moving from one state of the 
system to another with the associated probabilities of 
each transition is known as the chain (Winston, 2004). 
It is said that every step taken in a chain possessing the 
Markov property depends only upon the immediately 
preceding step. It can easily be seen how calculating 
probabilities of a series, or chain, of events in a Markov 
system is greatly simplified due to this Markov 
property. Instead of concerning ourselves with the 
entire path a random variable might have taken to arrive 
at its current state, we need only consider its state 
directly before a given point of interest.  
 The transition probabilities form an m_m 
transitional probability matrix T, where: 
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 Each row of T is the probability distribution 
relating to a transition from state i to state j.  
 States i and j are said to communicate if there 
exists a path between them (Winston, 2004). It must be 
true that i is reachable from j in a finite number of 
transitions and also that j is reachable from i in a finite 
number of transitions for any two states i and j to 
communicate. A state i is said to be periodic if all paths 
leading from state i back to i have a length that is a 
multiple of some integer k, such that k > 0 for the 
smallest possible k (Winston, 2004). If all states of a 
chain communicate a nd are not periodic, then the chain 
is said to be ergodic.  
 A chain is said to have a steady state distribution if 
there exists a vector p such that given a transition 
matrix T we have Eq. 4: 
 

T .π = π  (4) 
 
 If a chain is ergodic then we are guaranteed the 
existence of this steady state vector p (Isaacson and 
Madsen, 1985; Winston, 2004). This steady state vector 
can be viewed as the distribution of a random variable 
in the long run. 
 This steady state probability vector p of an m state 
random walk can also be obtained as (Isaacson and 
Madsen, 1985) Eq. 5: 
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π π π⎢ ⎥⎣ ⎦

 (5) 

 
 Given this formulation of a transition matrix and its 
steady state, we can set up a system of classification of 
the Dow Jones Industrial Average (DJIA). The idea of 
using Markov chains to forecast the behavior of stock 
prices is popular since potential investors are interested 
in market trends which might lead to an optimum 
investment strategy[?]. For this study, three applications 
of Markov analysis will be considered, namely: 
 
• Probabilities of the entire Dow Jones Industrial 

Average (DJIA) moving up or down 
• Probabilities of DJIA moving between partitions of 

the possible gains and losses 
• Probabilities of a specific portfolio of stocks 

moving up or down 
• Probabilities of a specific portfolio of stocks 

moving between partitions of possible gains and 
losses 

 
 Closing values of the DJIA were gathered for all 
253 trading days of the year 2010, January 4, 2010 to 
December 31, 2010 from msnmoney.com. The closing 
values were entered in Microsoft Excel and categorized. 
For application (1), each day was classified as having 
closed higher or lower than the previous day, thus 
allowing classification of two states, namely: 
 
State 1: Closing value is less than closing value of the 

previous day 
State 2: Closing value is greater than or equal to the 

closing value of the previous day 
 
 Since an investor is generally creating a portfolio 
of stocks, application (2) compiles a portfolio of 
popular companies and models the portfolio in the same 
ways which application (1) modeled the entire DJIA. 
The portfolio of choice consisted of JP Morgan Chase, 
Apple, Google, Intel and Qualcomm. Closing prices of 
these five companies were gathered from January 4, 
2010 to December 31, 2010. Then, the states are: 
 
State 1:  Value of the portfolio closes lower than 

previous day 
State 2: Value of the portfolio closes higher than 

previous day 
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 The transition and steady state probabilities were 
then compared to closing price data for the portfolio 
gathered from January 3, 2011 to February 18, 2011 to 
test the integrity of the model.  
 For application (3), the average change in the 
closing value of the DJIA was examined. Based on the 
2010 data, gains and losses were each partitioned into 
three subcategories each, namely, small, moderate and 
large. Transitions for this experiment consisted of 
moving from a category of gain or loss one day to a 
category of gain or loss the next, namely: 
 
State 1: Large jump up (gain greater than 167) 
State 2: Moderate jump up (gain between 83 and 167) 
State 3: Small jump up (gain less than 83) 
State 4: Small jump down (loss less than 83) 
State 5: Moderate jump down (loss between 83 and 

167) 
State 6: Large jump down (loss greater than 167) 
 
 The intervals indicated in parentheses were 
obtained by determining the absolute average of the 
market’s daily changes. This experiment is meant to be 
more precise than the first since the concept of the 
market moving ‘up’ or ‘down’ is now better defined.  
 For model (4), a portfolio partitioned gain and loss 
model was constructed in the same manner as model 
(3). The same portfolio described in application (2) was 
partitioned into six transitional states, namely: 
 
State 1: Large jump up (gain greater than 47.41) 
State 2: Moderate jump up (gain between 23.71 and 

47.41) 
State 3: Small jump up (gain less than 23.71) 
State 4: Small jump down (loss less than 16.40) 
State 5: Moderate jump down (loss between 16.40 and 

32.80) 
State 6: Large jump down (loss greater than 32.80) 
 

RESULTS 
 
 The transition matrix T1 for model 1, accurate to 
four decimal places, was found to be: 
 

1 2
1

1
2

S S
S

T 0.4074 0.5926
S

0.4857 0.5143

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎝ ⎠

 

 
 We found that: 
 

5
1

0.4504 0.5496
T

0.4504 0.5496
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

indicating that π1 = (0.4504, 0.5496). 
 The transition matrix for model 2 was found to be: 
 

2

0.4310 0.5690
T

0.4815 0.5185
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
We found: 
 

4
2

0.4584 0.5416
T

0.4584 0.5416
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
so that π2 = (0.4584, 0.5416). Comparing (1) and (2) we 
see that the entire market and the portfolio achieve 
roughly the same steady state, indicating that in the 
long run both will have similar probability distributions 
with a slightly higher chance of any given day being a 
day of gains. This bodes well for investors, as they can 
see that a diversified portfolio will behave similarly to 
the entire market and that over a long period of time the 
number of gain days will outnumber the days of loss. 
 For the third model, the transition matrix was 
found to be: 
 

1 2 3 4 5 6
1

2

3
3

4

5

6

S S S S S S
S

0 0.200 0.533 0.200 0.067 0
S

0 0.077 0.346 0.269 0.269 0.039
S

T 0.030 0.080 0.460 0.310 0.090 0.03
S

0.129 0.071 0.386 0.257 0.071 0.086
S

0.111 0.259 0.260 0.259 0.074 0.037
S

0 0.083 0.333 0.250 0.250 0.083

⎛
⎜
⎜
⎜
⎜

= ⎜
⎜
⎜
⎜

⎝
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⎟
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 We found: 
 

7
3

0.0597 0.1038 0.4043 2761 1079 0.0479
0.0597 0.1038 0.4043 2761 1079 0.0479
0.0597 0.1038 0.4043 2761 1079 0.0479

T
0.0597 0.1038 0.4043 2761 1079 0.0479
0.0597 0.1038 0.4043 2761 1079 0.0479
0.0597 0.1038 0.4043 2761 1079 0.0479

⎛
⎜
⎜

=

⎝

⎞
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

 

 
indicating that π3 =(0.0597, 0.1038, 0.4043, 0.2761, 
0.1079, 0.0479). For the fourth model, the transition 
matrix was found to be: 
 

4

0 0 0.429 0.571 0 0
0 0.071 0.500 0.429 0 0

0.043 0.085 0.287 0.543 0.21 0.21
T

0.023 0.039 0.419 0.504 0.016 0
0 0 0.500 0.500 0 0
0 0 0.500 0.500 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
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DISCUSSION 
 
 The matrices T1 and T2 indicate that given a day is 
in either state there is a greater chance of transitioning 
to a state of gain than a state of loss. The good news for 
investors is that the steady state probability vectors p1 
and p2 show that there is a greater probability of a day 
being a day of gains than a day of losses. This was found 
to be true of both the portfolio and the entire DJIA.  
 There was no steady state obtained for model 4, 
indicating that the chain is not ergodic. Notice that in 
both T3 and T4 each row vector contains a majority of 
the probabilities in columns three and four, indicating 
that as not matter what state a day occupies, there is a 
high probability that the next day will be a day of small 
loss or small gain. This is encouraging for investors 
since the market will not be prone to large, sustained 
swings either up or down. We also found that the steady 
state distribution of model 3 resembled a discrete 
normal distribution with roughly 68.04% of the days 
predicted to be in states three and four, or the middle of 
the distribution and roughly 89.21% of the data falling 
within the middle four states.  
 

CONCLUSION 
 
 This research shows that a diverse portfolio of 
stocks will mirror the movements of the entire market. 
That is, the portfolio will show a great propensity to 
have small gains and losses and show probabilistic 
immunity to consecutive days of great loss and gain. 
Therefore, a portfolio of this nature will yield a slow 
steady growth as there are likely to be more days of 
gain than days of loss. 
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