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Abstract: Problem statement: This article emphasized on the construction of valid inferential 
procedures for an estimator θ̂  as a measure of its statistical precision for dependent data structure. 
Approach: The truncated geometric bootstrap estimates of standard error and other measures of 
statistical precision such as bias, coefficient of variation, ratio and root mean square error are 
considered. Results: We extend it to other measures of statistical precision such as bootstrap 
confidence interval for an estimator ̂θ  and illustrate with real geological data. 
Conclusion/Recommendations: The bootstrap estimates of standard error and other measures of 
statistical accuracy such as bias, ratio, coefficient of variation and root mean square error reveals the 
suitability of the method for dependent data structure. 
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INTRODUCTION 
 
 Ever since its introduction by Efron (1979), 
considerable attention has been given to bootstrap 
methods as an application of theoretical and 
methodological problems for statistics. The bootstrap 
method for estimating the distribution of an estimator or 
test statistic by resampling one’s data or a model 
estimated from the data, are available for implementing 
the bootstrap and the accuracy of  bootstrap estimates 
depend on whether the data are a random sample from a 
distribution or a time series process. 
 A typical problem in applied statistics involves the 
estimation of an unknown parameter θ. The two main 
questions asked are (i) what estimator θ̂  should be 

used? (ii) Having chosen to use a particular θ̂ , how 
accurate is it as an estimator of θ? (Efron and Tibshiran, 
1993). The bootstrap is a general methodology for 
answering the second question. It is a computer based 
method, which substitutes considerable amounts of 
computation in place of theoretical analysis. 
 This study is concerned with application of 
bootstrap method to stochastic time series process and 
we proposed a non-parametric bootstrap method called 
a truncated geometric bootstrap method for stationary 

time series data. The procedure attempts to mimic the 
original model by retaining the stationarity property of 
the original series in the resample pseudo-time series. 
The pseudo time series is generated by resampling 
blocks of random size at each truncation, where the 
length L of each blocks has a truncated geometric 
distribution with appropriate probability attached to it. 
This method shares the construction of resampling 
blocks of observation with replacement to form pseudo-
time series of equal or less, with the original series, so 
that the statistics of interest may be recalculated base on 
the resampled data set. The method has two major 
components, the construction of a bootstrap samples 
and the computation of statistics on the bootstrap 
samples, through some kind of a loop. 
 The procedure provides and estimates different 
measures of statistical accuracy for an estimator θ̂ , 
such as standard error, bias, coefficient of variation and 
root mean square error. We extended it to other 
measure of statistical accuracy by application of 
bootstrap-t confidence interval with a goal to improve 
by an order of magnitude upon the accuracy of the 

standard intervals ( )
ˆ

ˆ Z α
σθ ± , in a way that allows routine 

application even to a complicated problems and it 
produced good approximate confidence interval. Most 
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of the proofs and technical details are omitted, these can 
be found in the references given, particular (Diciccio 
and Efron, 1996; Efron, 1984; Efron and Gong, 1983; 
Efron and Tibshiran, 1986).  
 We described how the bootstrap works, assessing 
the accuracy or precision of the sample mean. Efron 
and Tibshiran (1986) described the accuracy of the 
sample mean for independent data, while in this study it 
was extended to dependent data structure. Then, a 
description of the resampling algorithm is as follows: 
Let Bi, b = [Xi, Xi+1, ---,Xi+b-1] be the block consisting 
of be observations starting from Xi. In the preceding, if 
j > N, Xj is defined to be Xk, where k = j(mod N) and 
Xo = XN. Let P be a fixed number in [0,1]. Independent 
of X1, ---,XN, let L1,L2, --- be a sequence of independent 
and identically distributed (iid) random variables 
having a truncated geometric distribution, so that the 
probability  of   the   event [Li = r}   is K  (1-P)r−1  p for 
r = 1,2,---,N where K is a constant found, using the 
condition ΣP(L = r) = 1, to be 1/[1-(1-P)N]. Independent 
of the Xi and Li, let I1, I2, --- be a sequence of iid 
random variables that have the discrete uniform 
distribution on {0,---,N}. Now, a pseudo time series 

* * *

1 2 N
X , X , , X− − −  is generated in the following way. 

Sample a sequence of blocks of random length by the 
prescription BI1, L1, BI2,L2, ---. The first L1 observations 

in the pseudo time series 
1

* * *

2 N
X , X , , X− − −  are 

determined by the first block BI1, L1 of observations 
X I1, ---, XI1 + L1-1; the next L2 observations in the 
pseudo time series are the observations in the second 
sampled block BI2,L2, namely XI2, ---, XI2 + L2-1. This 
process is stopped once n observations in the pseudo 

time series have been generated. Once 
1

* * *

2 N
X , X , , X− − −  

has been generated, one can compute the quantity of 
interest for the pseudo-time series. This method of 

resampling and generating 
1

* * *

2 N
X , X , , X− − −  defines 

conditionally on the original data X1,---,XN or 
probability measure P* and the number of block b at 
each truncation. It shares the same properties with the 
stationary bootstrap method of Politis and Romano 
(1994), since the average length of these blocks is 1/p, 
it is expected that the quantity 1/p should play a similar 
role as the parameter b in the moving blocks bootstrap 
method of Kunsch (1989). Most common statistical 
methods were developed in the 1920s and 1930s, when 
computation was slow and expensive. Now that 
computation is fast and cheap we can hope for and 
expect changes in statistical methodology. This study 
discusses one such potential change and evaluates the 

statistical accuracy or precision of the estimated 
parameter. 
 

MATERIALS AND METHODS 
 
 The description of the bootstrap estimates, as we 
applied the algorithm described above to a real 
geological data from a Batan well at regular interval is 
presented. They are the principal oxide of sand or 
sandstone, which is SiO2 or Silicon oxide. The point is 
that the bulk of oil reservoir rocks in Nigeria 
sedimentary basins is sandstone and shale, a product of 
sill stone Olanrewaju (2007) and Nwachukwu (2007). 
Therefore, having chosen to use a particular θ̂ , how 
accurate is it as an estimator of θ? We present and test 
how accurate it is for dependent data structure. 
 
Bootstrap method for standard errors: The bootstrap 
algorithm works by drawing many independent 
bootstrap samples, evaluating the corresponding 
bootstrap replications and estimating the standard error 

of 
∧
θ  by the empirical standard deviation of the 

replications. The result is the bootstrap estimate of 
standard error denoted by eBŝ , where B is the number of 

bootstrap samples used. The bootstrap algorithm for 
estimating standard errors and coefficient of variation is 
as follows: 
 
• Select B independent bootstrap samples, each 

consisting of n data drawn with replacement from 
X 

• Estimate the standard error sef(θ) by the sample 
standard deviation of the B replications: 

 

 

2
B

b 1

1
2

*ˆ

ˆse

ˆ(b) (.)

B
(B 1)

=
θ

  
  − θ∑  

  =
 − 
 
 

 (1) 

 
Where: 

 
B

*

b 1

ˆ
ˆ

(b)
(.) B

=
θ

θ
∑

=  

 
 The limit of 

B
ˆseB  as B goes to infinity is the ideal 

bootstrap estimate of sef(θ): 
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*
lim B

ˆse ˆse ( )fB
= θ

→∞
 (2) 

 
 The non parametric algorithm has the virtues of 
avoiding all parametric assumptions, all approximations 
and in fact all analytical difficulties of any kind. The 
Coefficient of Variation (CV) of a random variable X, 
is defined to be the ratio of its standard error to be the 
absolute value of its mean: 
 

f f f
ˆ ˆCV (.) se ( ) /= θ θ  (3) 

 
 This measures the randomness or variability in X 
relative to the magnitude of its deterministic part θf, 
which refers to variation both at the resampling 
(bootstrap) level and at a the population sampling level. 
 
Bootstrap estimates of bias: Bias is another measure 
of statistical accuracy, measuring different aspects of 
θ̂ ’s behavior. Bias is the difference between the 

expectation of an estimator θ̂  and the quantity θ being 
estimated: 
 

BiasF = BiasF ( θ̂ θ) = EF[s(X)]–t(F) 
 
 We generated the bootstrap samples, evaluate the 
bootstrap replications θ̂ * (b) = s(X*b) and approximate 
the bootstrap expectation EF[s(X*)] by the average: 
 

*

*b
B B

*

b 1 b 1

ˆ ˆ(.) (b) B s(X ) B
= =

θ θ= =∑ ∑  (4) 

 
 The bootstrap estimate bias based on the B 

replications is (4) with *ˆ (.)θ substituted for *

F̂
E [s(X )] : 

 
*

B
ˆˆBais ˆ(.) E(F)θ= −  (5) 

 
 The ratio of estimate bias to standard error, 

BB
ˆBais ˆ/ se  are also calculated as another measure of 

statistical accuracy and the smaller the ratio, the higher 
the efficiency of the estimates. If bias is large compared 
to the standard error, then it may be an indication that 

the statistic ̂ s(X)θ =  is not an approximate estimate of 
the parameter θ. 
 
Root mean square error: This is another measure of 
statistical accuracy that takes into account both bias and 
standard error. The root mean square error of an 

estimator ̂θ  for θ, is 2
F

ˆE [( ) ]θ − θ . It can be shown that 

the root mean square equals: 
 

F

2

2 2 2
F F

2

F
F

F

F
F

F

ˆ ˆ ˆE [( ) ] se ( ) bias ( , )

biasˆse ( ). 1
se

1 biasˆse ( ). 1
2 se

θ − θ = θ + θ θ

 
= θ +  

 

  
 = θ +  
   

 (6) 

 
 If biasF = 0 then the  root mean square error 

MSE  = its minimum value seF. 
 

RESULTS AND DISCUSSION 
 
 The summary of our findings on the performances 
of a truncated geometric bootstrap method for 
dependent data structure based on the implementation 
of the prescribed algorithm and for block sizes of 
(1,2,3,4)   and    bootstrap   replicates    of (B = 50, 100, 
250, 500 and 1000)  is   given in the Table 1. In Table 1 
the measures for statistical accuracy of an estimator 
θ̂ from the geological data is presented. 
 From Table 1 it is observed that the bootstrap 
estimate of ̂θ is nearly unbiased. The standard error are 
crude but useful measures of statistical accuracy, if the 
true sampling distribution F is (0, 1), then the true 
standard error are in the column SE. The Coefficient of 
Variation (CV)) in each bootstrap replications at 
different block sizes are moderate with less bias and 
ratio. The bootstrap bias estimates and the ratio of 
estimated bias to standard error are small with MSE   

of an estimator ̂θ . This moderate minimum values in 
each column, indicate that in each replication we do not 
have to worry about the bias of θ̂ .  
 As a rule of thumb, a bias of less than 0.25 
standard errors can be ignored, unless one are trying to 
do careful confidence interval calculation Efron and 
Tibshiran (1993). 
 The situation is more complicated when the data 
are time series, because bootstrap sampling must be 
carried out in a way that suitably captures the 
dependence structure of the Data Generation Process 
(DCP). The block bootstrap is the best known method 
for implementing the bootstrap with time series data 
when one does not have a finite dimensional parametric 
model that reduces the DGP to independent random 
sampling. 
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Table 1: Summary statistics for bootstrap estimates of Standard Error (SE), Coefficient of Variation (CV), bias, root means square error 

( MSE ) and ratio for ̂θ  

Bootstrap replicates Ave SE CV Bias Ratio MSE  

B = 50:   

Block of 1 55.29069 0.5618 0.0102 0.00060 0.00110 0.5618 
b = 2 55.29990 0.6836 0.0124 0.00880 0.01430 0.6836 
b = 3 55.36110 0.7603 0.0137 0.00710 0.93400 0.7636 
b = 4 55.25310 0.8619 0.0156 -0.03700 -0.00429 0.8630 
B = 100:  
b = 1 55.36090 0.6095 0.0110 0.07080 0.11620 0.7852 
b = 2 55.31530 0.7816 0.0141 0.02520 0.03220 0.8179 
b = 3 55.09860 0.7319 0.0133 -0.19150 -0.26170 0.8552 
b = 4 55.07470 0.6809 0.0156 -0.25020 -0.25020 0.8807 
B = 250:             
b = 1 55.32420 0.7035 0.0127 0.03410 0.04850 0.7852 
b = 2 55.30600 0.8177 0.0148 0.01590 0.01950 0.8179 
b = 3 55.16120 0.8454 0.0153 -0.12890 -0.15470 0.8552 
b = 4 55.17860 0.8736 0.0158 -0.11500 -0.12760 0.8807 
B = 500:             
b = 1 55.20390 0.7789 0.0141 -0.08620 -0.11070 0.7837 
b = 2 55.25320 0.7966 0.0144 -0.03690 -0.04630 0.7975 
b = 3 55.26640 0.7833 0.0142 -0.02370 -0.03030 0.7837 
b = 4 55.28540 0.8705 0.0158 -0.00470 -0.00540 0.8705 
B =1000:             
b = 1 55.26330 0.9831 0.0177 -0.02680 -0.02730 0.9835 
b = 2 55.26680 0.9752 0.0177 -0.02330 -0.02390 0.9755 
b = 3 55.26890 0.6751 0.0122 -0.02120 -0.03140 0.6754 
b = 4 55.25310 0.6641 0.0122 -0.03700 -0.05330 0.6651 

 
Table 2: Summary statistics of 90% bootstrap confidence interval 

for θ̂ , when B = 500 and 1000 

  B =5 00 B = 1000 
  ------------------------ ------------------------- 
  95% confidence  95% confidence 
 Methods Interval Interval 
b = 1 Standard [53.9226, 56.4852] [53.6773, 56.7305] 
 Boostrap-t [53.6461, 56.8805] [53.3364, 57.1902] 
b = 2 Standard [53.9428, 56.7305] [53.6626, 56.8710] 
 Boostrap-t [53.6919, 56.8145] [53.3554, 57.1782] 
b = 3 Standard [53.9779, 56.5549] [53.7311, 56.8017] 
 Boostrap-t [54.1584, 56.3794] [53.9457, 56.5921] 
b = 4 Standard [53.8457, 56.7174] [53.5792, 57.5601] 
 Boostrap-t [54.1113, 56.3949] [53.8927, 56.6135] 

 
 The trouble with standard intervals is that they are 
based on and asymptotic approximation that can be 
quite inaccurate in practice. We implemented bootstrap 
-t confidence interval for producing good approximate 
confidence intervals. The goal is to improve by an order 
of magnitude upon the accuracy of the standard 

intervals θ̂ ( )
ˆZ α
σ± , in a way that allows routine 

application even to very complicated problems. The 
bootstrap-t procedure is a useful and interesting 
generation of the usual student’s t method and it is 
particularly applicable to location statistics like the 
sample mean. The method was suggested in Efron 
(1983), but some poor numerical results reduced its 
appeal. Hall (1988) study showing the bootstrap-t’s 
good second-order properties has revived interest in its 

use. Babu and Singh (1983) gave the first proof of 
second-order accuracy for the bootstrap-t and Diciccio 
and Efron (1992) showed that they are also second 
order correct. 
 A practicable t confidence interval for θ at level 1-
α is: 

  
* *

1 1
2 2

ˆ ˆˆ ˆ[ s t , s t ]α α− −
θ − θ +θ θ  

 
Where: 

ŝθ  = The standard error of θ̂   

*tσ  = The σ quantile of the bootstrap t statistics 

 

 It should not be used if ŝθ  is unreliable, especially 

if strongly dependent on θ̂  . Therefore if ̂sθ  is reliable 

we can use: 
 

* *
* *1 12 2

ˆ ˆ ˆ ˆˆ ˆ[ s ( t , s ( )t ]e eα α− −
θ − θ θ + θ  

 
 From the Table 2, it is revealed that bootstrap-t 
confidence interval at 95% level of significance has a 
wider range than the standard normal confidence 
interval. The distributions are positively skewed. A 
confidence interval is desired for the scale parameter θ. 
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In this case the bootstrap-t confidence interval based on 
θ̂  is a definite improvement over the standard interval. 
Therefore with the above results of different methods of 
measure of statistical accuracy of θ̂ , we can fit a time 
series model to the available data for effective 
description and predication purposes. 
 To determine the bottom bootstrap confidence 

interval. By applying these methods to estimated θ̂  
estimator, we have the Table 2. 

  
CONCLUSION 

 
 The truncated geometric bootstrap method for 
dependent data structure is justified by concentrating on 
basic ideas and applications rather than theoretical 
consideration. The bootstrap estimates of standard error 
and other measures of statistical accuracy such as bias, 
ratio, coefficient of variation and root mean square 
error reveals the suitability of the method for dependent 
data structure. 
 The bootstrap-t confidence interval also produces 
good approximate confidence intervals for the estimator 
θ̂  which is suitable for model fitting and predictive 
purposes. 
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