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Abstract: Problem statement: This article emphasized on the construction of dvaliferential

procedures for an estimat@ as a measure of its statistical precision for ddpat data structure.
Approach: The truncated geometric bootstrap estimates ofdatanerror and other measures of
statistical precision such as bias, coefficientvafiation, ratio and root mean square error are
considered.Results: We extend it to other measures of statistical greni such as bootstrap
confidence interval for an estimatord and illustrate with real geological data.
Conclusion/Recommendations. The bootstrap estimates of standard error andr atteasures of
statistical accuracy such as bias, ratio, coefficaf variation and root mean square error reveas
suitability of the method for dependent data strret

Key words: Truncated geometric bootstrap, standard error, lzi@sfficient of variation, ratio, root
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INTRODUCTION time series data. The procedure attempts to mihec t
original model by retaining the stationarity progyeof

Ever since its introduction by Efron (1979), the original series in the resample pseudo-timeeser
considerable attention has been given to bootstraphe pseudo time series is generated by resampling
methods as an application of theoretical andPlocks of random size at each truncation, where the
methodological problems for statistics. The boatstr length L of each blocks has a truncated geometric
method for estimating the distribution of an estinar  distribution with appropriate probability attachemlit.
test statistic by resampling one’s data or a modefhis method shares the construction of resampling
estimated from the data, are available for impleingn  blocks of observation with replacement to form pieu
the bootstrap and the accuracy of bootstrap etgtna time series .of.equall or less, with the originalesrso
depend on whether the data are a random sampleafronihat the statistics of interest may be recalculaise on .
distribution or a time series process. the resampled data set. The method has two major

A typical problem in applied statistics involvémet Ccomponents, the construction of a bootstrap samples
estimation of an unknown parameterThe two main and the computation of statistics on the bootstrap

questions asked are (i) what estimabrshould be ~Samples, through some kind of a loop. .
used? (i) Having chosen to use a particularhow The procedure provides and estimates different

accurate is it as an estimatoro@f (Efron and Tibshiran, mear\]surest of d stgtlsncal bE_lCCUI'aC);rf(_)I’ ?n fe_stl_ma&gr
1993). The bootstrap is a general methodology 1‘0|5uct as standard error, |asi/\</:oe |ct|end0d “m’.t'aﬂt n h
answering the second question. It is a computeedas root mean square error. We extended it 1o other

method, which substitutes considerable amounts ogmist”e tOf s]'c[%tmtlcal_ tacculracxh by aplptllcgtlon of
computation in place of theoretical analysis. ootstrap-t confidence intérval with a goal 1o Ioye

This study is concerned with application of by an order of rpagnitude upon the accuracy of the
bootstrap method to stochastic time series proaeds ~Standard interval®+Z{”, in a way that allows routine
we proposed a non-parametric bootstrap methoddcalleapplication even to a complicated problems and it
a truncated geometric bootstrap method for statjona produced good approximate confidence interval. Most
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of the proofs and technical details are omittedséhcan statistical accuracy or precision of the estimated
be found in the references given, particular (igc parameter.
and Efron, 1996; Efron, 1984; Efron and Gong, 1983;
Efron and Tibshiran, 1986). MATERIALSAND METHODS

We described how the bootstrap works, assessing
the accuracy or precision of the sample mean. Efron The description of the bootstrap estimates, as we
and Tibshiran (1986) described the accuracy of thapplied the algorithm described above to a real
sample mean for independent data, while in thidysiu  geological data from a Batan well at regular indérig
was extended to dependent data structure. Then, mesented. They are the principal oxide of sand or
description of the resampling algorithm is as fao  sandstone, which is Si®r Silicon oxide. The point is
Let Bi, b = [X, Xi+1, ---,Xi+b-1] be the block consisting that the bulk of oil reservoir rocks in Nigeria
of be observations starting from.Xn the preceding, if sedimentary basins is sandstone and shale, a profluc
i >N, X is defined to be ¥ where k = j(mod N) and sill stone Olanrewaju (2007) and Nwachukwu (2007).
Xo = Xy. Let P be a fixed number in [0,1]. IndependentTherefore, having chosen to use a particiiarhow
of Xy, --- Xy, let Ly, L, --- be a sequence of independentaccurate is it as an estimatorad We present and test
and identically distributed (iid) random variables how accurate it is for dependent data structure.
having a truncated geometric distribution, so ttiest
probability of the event{l=r} isK (1-PJ" pfor  Bootstrap method for standard errors: The bootstrap
r =1,2,---,N where K is a constant found, using th algorithm works by drawing many independent
conditionZP(L = r) = 1, to be 1/[1-(1-P). Independent hootstrap samples, evaluating the corresponding
of the X and L, let I, I, --- be a sequence of iid bootstrap replications and estimating the stanéamr
random variables that have the discrete uniform © . o
distribution on {0,--,N}. Now, a pseudo time sexie Of 6 by the empirical standard deviation of the
replications. The result is the bootstrap estimate

standard error denoted By, , where B is the number of

S?erggrl? t%rs]eéquliencBe Ef b_l_ciclfrsh:ff.Z\tngoorgslgrnggthogg thSootstrap samples used. The bootstrap algorithm for
prescription f, L1, BiaLz, == The 1IFS rvatl estimating standard errors and coefficient of \amais
in the pseudo time seriesX ,X, ---, X, are as follows:

determined by the first block B L, of observations

X, —, Xp + L;-1; the next L observations in the * Select B independent bootstrap samples, each
pseudo time series are the observations in thendeco ~ consisting of n data drawn with replacement from
sampled block B,L,, namely X, ---, X + L,-1 This X

process is stopped once n observations in the pseud Estimate the standard error;(8¢ by the sample

time series have been generated. ON§;9<;, S X*N standard deviation of the B replications:

has been generated, one can compute the quantity of

interest for the pseudo-time series. This method of e (. R
resampling and generating;, X,,---, X, defines bZ_l[e (b) e(')]
conditionally on the original data %--,Xy or
probability measure ‘Pand the number of block b at
each truncation. It shares the same properties tivigh
stationary bootstrap method of Politis and Romano
(1994), since the average length of these blocH3ps Where:

it is expected that the quantity 1/p should plasrailar

role as the parameter b in the moving blocks bragist

method of Kunsch (1989). Most common statistical ié*(b/

methods were developed in the 1920s and 1930s, when 8(.) =b=1 B

computation was slow and expensive. Now that

computation is fast and cheap we can hope for and o R o ]
expect changes in statistical methodology. Thislystu The limit of seB, as B goes to infinity is the ideal
discusses one such potential change and evallses thootstrap estimate of $@):

X, X,—-—-= X, is generated in the following way.

1)

o
1

(8-
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B oo S = SG ) (2) estimator® for 0, is 4/E.[(6-6)] . It can be shown that
the root mean square equals:

The non parametric algorithm has the virtues of
avoiding all parametric assumptions, all approxioret E.[(6-6)%] =(se. @) + bias 6 0 §
and in fact all analytical difficulties of any kindhe \/ i \/ & ?

Coefficient of Variation (CV) of a random variabie —se )1+ bias. ’ ©6)
is defined to be the ratio of its standard errobéothe =se0) e
absolute value of its mean: ,
. s 3]
CV.()=se @)/6, (3) 2\ se

This measures the randomness or variability in X |f bias = 0 then the root mean square error
relative to the magnitude of its deterministic p@gt
which refers to variation both at the resampling
(bootstrap) level and at a the population sampéngl.

MSE = its minimum value se

RESULTSAND DISCUSSION

Bootstrap estimates of bias: Bias is another measure
of statistical accuracy, measuring different aspexft .
y g ¥ of a truncated geometric bootstrap method for

9’s behavior. Bias is the difference between theyo,ongent data structure based on the implementatio
expectation of an estimat@ and the quantity being  of the prescribed algorithm and for block sizes of
estimated: (1,2,3,4) and bootstrap replicates of(80, 100,
250, 500 and 1000) is given in the Table 1. &bl€ 1
Bias: = Biag (660) = E[s(X)]-t(F) the measures for statistical accuracy of an estimat
6 from the geological data is presented.

We generated the bootstrap samples, evaluate the From Table 1 it is observed that the bootstrap
bootstrap replication®” (b) = §(Xb) and approximate estimate offis nearly unbiased. The standard error are
the bootstrap expectation[E(X )] by the average: crude but useful measures of statistical accuridiie

true sampling distribution F is (0, 1), then theetr
. B, g " standard error are in the column SE. The Coefftaxn
0()=x6(b)/B=Xs(X )/B (4) Variation (CV)) in each bootstrap replications at
- - different block sizes are moderate with less biad a
atio. The bootstrap bias estimates and the ratio o
estimated bias to standard error are small WMSE

of an estimatorf. This moderate minimum values in
R each column, indicate that in each replication wenadt
Bais, = §()-E(P ) have to worry about the bias of
As a rule of thumb, a bias of less than 0.25
The ratio of estimate bias to standard errorstandard errors can be ignored, unless one argttyi

Bais /se are also calculated as another measure oflo careful confidence interval calculation Efrondan
B B " .

Tibshiran (1993).
The situation is more complicated when the data

The summary of our findings on the performances

The bootstrap estimate bias based on the
replications is (4) withé' () substituted forE[s(X )] :

statistical accuracy and the smaller the ratio,higder

the efficiency of the estimates. If bias is largenpared . . b b ? b
to the standard error, then it may be an indicatiat are time series, because bootstrap sampling must be
' carried out in a way that suitably captures the

the statisticd =s(X) is not an approximate estimate of dependence structure of the Data Generation Process
the parameted. (DCP). The block bootstrap is the best known method

for implementing the bootstrap with time seriesadat
Root mean square error: This is another measure of when one does not have a finite dimensional paménet
statistical accuracy that takes into account badh bnd  model that reduces the DGP to independent random
standard error. The root mean square error of agampling.
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Table 1: Summary statistics for bootstrap estimateStandard Error (SE), Coefficient of VariatioB\(), bias, root means square error
(/MSE) and ratio for®

Bootstrap replicates Ave SE CV Bias Ratio JVMSE

B =50:

Block of 1 55.29069 0.5618 0.0102 0.00060 0.00110 0.5618
b=2 55.29990 0.6836 0.0124 0.00880 0.01430 0.6836
b=3 55.36110 0.7603 0.0137 0.00710 0.93400 0.7636
b=4 55.25310 0.8619 0.0156 -0.03700 -0.00429 W86

B =100:

b=1 55.36090 0.6095 0.0110 0.07080 0.11620 0.7852
b=2 55.31530 0.7816 0.0141 0.02520 0.03220 0.8179
b=3 55.09860 0.7319 0.0133 -0.19150 -0.26170 5285
b=4 55.07470 0.6809 0.0156 -0.25020 -0.25020 .88

B = 250:

b=1 55.32420 0.7035 0.0127 0.03410 0.04850 0.7852
b=2 55.30600 0.8177 0.0148 0.01590 0.01950 0.8179
b=3 55.16120 0.8454 0.0153 -0.12890 -0.15470 5285
b=4 55.17860 0.8736 0.0158 -0.11500 -0.12760 07.88

B =500:

b=1 55.20390 0.7789 0.0141 -0.08620 -0.11070 778
b=2 55.25320 0.7966 0.0144 -0.03690 -0.04630 .79
b=3 55.26640 0.7833 0.0142 -0.02370 -0.03030 3778
b=4 55.28540 0.8705 0.0158 -0.00470 -0.00540 ;87

B =1000

b=1 55.26330 0.9831 0.0177 -0.02680 -0.02730 3598
b=2 55.26680 0.9752 0.0177 -0.02330 -0.02390 5597
b=3 55.26890 0.6751 0.0122 -0.02120 -0.03140 5467
b=4 55.25310 0.6641 0.0122 -0.03700 -0.05330 5166

Table 2: Summary statistics of 90% bootstrap camfited interval

for B, when B = 500 and 1000
B =5 00

use. Babu and Singh (1983) gave the first proof of
second-order accuracy for the bootstrap-t and Biic
and Efron (1992) showed that they are also second
order correct.

A practicable t confidence interval férat level 1-

B = 1000

95% confidence
Interval

95% confidence

Methods Interval

b=1 Standard  [53.9226,56.4852]  [53.6773,567305 'S
Boostrap-t [53.6461, 56.8805] [563.3364, 57.1902]
b=2 Standard  [53.9428,56.7305]  [53.6626, 56.8710 A A
Boostrapt  [53.6919, 56.8145]  [53.3554, 57.1782] (6 56t g/ B+ fl_y ]
b=3 Standard [53.9779, 56.5549]  [53.7311, 56.B017 2 2
Boostrap-t  [54.1584, 56.3794]  [53.9457, 56.5921]
b=4 Standard  [53.8457,56.7174]  [53.5792,57.5601 \Where:
Boostrap-t  [54.1113, 56.3949]  [53.8927, 56.6135]

8, = The standard error df

based on and asymptotic approximation that can be

quite inaccurate in practice. We implemented boayst
-t confidence interval for producing good approxiena

confidence intervals. The goal is to improve byoaaher

of magnitude upon the accuracy of the standar(?N
in a way that allows

application even to very complicated problems. The
bootstrap-t procedure
generation of the usual student’'s t method ands it i

intervals 8 +z{,

is a useful

and

particularly applicable to location statistics likbe
sample mean. The method was suggested in Efrogonfidence interval at 95% level of significances rea
(1983), but some poor numerical results reduced itider range than the standard normal confidence
appeal. Hall (1988) study showing the bootstrap-t'snterval. The distributions are positively skewedl.
good second-order properties has revived interedsi

87

routine

interesting

It should not be used &, is unreliable, especially

if strongly dependent o® . Therefore ifs, is reliable
e can use:

[6-8, @t ,, 6+3, B)., ]

From the Table 2, it is revealed that bootstrap-t

confidence interval is desired for the scale patante
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In this case the bootstrap-t confidence intervakldeon  Efron, B., 1983. The Jacknife, the Boostrap ancioth
6 is a definite improvement over the standard irakrv Resampling Plans. Society for Industrial and
Therefore with the above results of different meighof Applied Mathematics, ISBN: 0898711797, pp: 92.
measure of statistical accuracy &f we can fit a ime 0N, B., 1984. Better boostrap confidence intirva
series model to the available data for effective Tech-Rep. Department of Statistics, Standford

- o University.
description and predication purposes. Efron, B. and G. Gong, 1983. A leisurely look atla

To determine the bottom bootstrap confidence ) o
P boostrap, the Jacknife and Cross-validation. Ann.

interval. By applying these methods to estimated Stat.. 37: 36-48.
estimator, we have the Table 2. Efron, B. and R. Tibshiran, 1986. Boostrap measures
for standard errors, confidence intervals and other
CONCLUSION measures of statistical accurasyat. Sci., 1: 54-77.

) http://projecteuclid.org/DPubS?service=Ul&versio
The truncated geometric bootstrap method for  n=1 ogverb=Display&handle=euclid.ss/11770138

dependent data structure is justified by concentyain 15
basic ideas and applications rather than theotetica=fon B. and R. Tibshiran, 1993. An Introductian t
consideration. The bootstrap estimates of staneliaud the Boostrap. Chapman and Hall/lCRC, London,
and other measures of statistical accuracy sudiiass ISBN: 0412042312, pp: 436.
ratio, coefficient of variation and root mean s@uar g p. 1988. Theoretical comparison of boostrap
error reveals the suitability of the method for eegent confidence intervals. Ann. Stat., 16: 927-985.
data structure. _ _ http://www.projecteuclid.org/DPubS?service=UI&

The bootstrap-t confidence interval also produces yegrsion=1.0&verb=Display&handle=euclid.aos/11
good approximate confidence intervals for the estim 76350933
6 which is suitable for model fitting and predictive Kunsch, H.R., 1989. The Jacknife and the boostoap f
purposes. general stationary observations. Ann. Stat.

17:1217-1241.
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