
Journal of Mathematics and Statistics 6 (1): 60-63, 2010 
ISSN 1549-3644 
© 2010 Science Publications 

Corresponding Author: S.J. Kayode, Department of Mathematical Sciences, School of Sciences, 
 Federal University of Technology, Postal Code: +234, PMB 704, Akure, Ondo State, Nigeria 
 Tel: +2348033974438 

60 

 
A Multiderivative Collocation Method for 5th Order Ordinary 

Differential Equations 
 

S.J. Kayode and D.O. Awoyemi 
Department of Mathematical Sciences, School of Sciences,  

Federal University of Technology, Postal Code: +234, PMB 704, Akure, Ondo State, Nigeria 
 

Abstract: Problem statement: The conventional methods of solving higher order differential 
equations have been by reducing them to systems of first order equations. This approach is 
cumbersome and increases computational time. Approach: To address this problem, a numerical 
algorithm for direct solution of 5th order initial value problems in ordinary differential equations 
(odes), using power series as basis function, is proposed in this research. Collocation of the differential 
system is taken at selected grid points to reduce the number of functions to be evaluated per iteration. 
A number of predictors and their derivatives having the same order of accuracy with the main method 
are proposed. Results: The approach yields a multiderivative method of order six. Numerical examples 
solved show increased efficiency of the method with increased number of iterations, converging to the 
theoretical solutions. Conclusion/Recommendations: The new mutiderivative method is efficient to 
solve linear and nonlinear fifth order odes without reduction to system of lower order equations.  
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INTRODUCTION 

 
 In this research, numerical method of solution of 
higher order differential equations of the form: 
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is considered for step number k≥5. This class of 
Problems (1) has a lot of applications in Science and 
Engineering, especially in mechanical systems, control 
theory and celestial mechanics. 
 The practice of solving this type of problems has 
been the reduction to systems of first-order equations and 
the resulting equations solved by applying any suitable 
method for first order equations (Awoyemi, 2003). In the 
same article, it is extensively discussed that due to the 
dimension of the problem after it has been reduced to a 
system of first order equations, the approach waste a lot 
of human efforts and computer time. 
 Eminent scholars have contributed significantly in 
their works in this area of research to solving Problem 
(1) using different numerical methods (Lambert, 1973; 
Jacques and Judd, 1987; Adee et al., 2005; Awoyemi, 
2005; Kayode and Awoyemi, 2005; Awoyemi and 
Idowu, 2005; Fatunla, 1988; 1994; Kayode, 2008a). 

Attempts have been made by some researchers to solve 
directly Problem (1) for m = 4 by developing methods 
of step number k = 4 with varying order of accuracy 
(Awoyemi, 2005; Kayode, 2008b). But none of these 
could handle Problem (1) directly when m>4 without 
reducing it to a system of lower order problems. 
 In this article, Problem (1) is solved directly by 
developing a 5 step multiderivative method for m = 5.  
 

MATERIALS AND METHODS 
 
 A power series of a single variable x in the form: 
 

j
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is used as trial function to produce the approximate 
solution as: 
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j R, j 0(1)k 1, x [a,b], y C (a,b) P(x).λ ∈ = + ∈ ∈ ⊂   

 
 The 5th derivative of (3) is: 
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 Thus from Eq. 1 and 4 we have: 
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 Collocating Eq. 5 at n 2 j 1x x , j 0(1)2+ += =  and 

interpolating (3) at n jx x , j 0(1)4+= =  yield the following 

systems of equations: 
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 After solving the system of Eq. 7 and 8 for the 
values of λj’s and substituting these values into Eq. 3, 
with the necessary algebraic manipulations, our method 
is obtained to be: 
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 From (8) the coefficients αj(x) and βj(x) are given 
as follows: 
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 The discrete scheme and its first, second, third and 
fourth derivatives arising from Eq. 9 are as put below 
when t = 1, which implies that x = xn+4: 
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 Order p = 6, error constant p 2c 0.2083+ =  and 

interval of absolute stability is X(θ) = (0, 32): 
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with: 
 
p = 6, p 2c 0.400297619+ = −  
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p = 6, cp+2 = - 0.442890211 
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p = 6 p 2c 0.09583333.+ = −  
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p = 6, p 2c 0.35972222.+ =  

 
Predictors:  Except  that  collocation   is not taken at 
x = xn+5, the procedure for the development of the main 
predictor to calculate yn+5 and its required derivatives is 
the same as for the main method. For yn+j, j = 1(1)4, the 
predictors are derived by Taylor series method. The 
discrete schemes and their required derivatives arising 
from the predictors are as listed below: 
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p = 6, error constant p 2c 0.2083333,+ = −  interval of 

absolute stability X( ) ( 31.94, 0)θ = − : 
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p = 6, error constant p 2c 0.49156746+ = : 
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p = 6, error constant p 2c 0.800165343+ = : 
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 Order p = 6, error constant p 2c 0.69716666+ = : 
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p = 6, error constant p 2c 0.47361111+ = − . 

 Finally yn+j = j1(1)4 and their first, second , third 
and fourth derivatives are determined by Taylor’s 
method as follows: 
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 Furthermore, nf ′  and nf ′′  are expressed in partial 

derivatives as follows: 
 

1v i
1v

i

i

df f f f f f f
f y y y y f , y

dx x y y y y y

d y
,i  1,2,3,4

dx

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′′ ′′′= = + + + + +
′ ′′ ′′′∂ ∂ ∂ ∂ ∂ ∂

= = …

 (21) 

 
2

1v
2

d f
f 2(Ay By Cy Df Ef ) F G H

dx
′′ ′ ′′ ′′′= = + + + + + + +  (22) 

 
Where: 

2 2 2 2 2
1v

1v

f f f f f
A y y y f

x y y y y y y y y y

∂ ∂ ∂ ∂ ∂′′ ′′′= + + + +
′ ′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2 2 2
1v

1v

f f f f
B y y f

x y y y y y y y

∂ ∂ ∂ ∂′′′= + + +
′ ′ ′′ ′ ′′′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

2 2 2
1v

1v

f f f
C y f

x y y y y y

∂ ∂ ∂= + +
′′ ′′ ′′′ ′′∂ ∂ ∂ ∂ ∂ ∂

 

2 2

1v

f f
D f

x y y y

∂ ∂= +
′′′ ′′′∂ ∂ ∂ ∂

 

2

1v

f
E

x y

∂=
∂ ∂

 

1v
1v

f f f f f
F y y y f f

y y y y y

∂ ∂ ∂ ∂ ∂′′ ′′′ ′= + + + +
′ ′′ ′′′∂ ∂ ∂ ∂ ∂

  

2

2 2 2 2 2
2 2 2 1v 2 2

2 2 2 2 1v

f f f f f
G (y ) (y ) (y ) (y ) f

y y y y y

∂ ∂ ∂ ∂ ∂′ ′′ ′′′= + + + +
′ ′′ ′′′∂ ∂ ∂ ∂ ∂

 

2

2

f
H

x

∂=
∂

 

 
RESULTS AND DISCUSSION 

 
Numerical examples: Two non-linear numerical 
examples are solved to demonstrate the accuracy and 
convergence of the new method (10) per iteration for a 
given value of x.  
 
Problem 1:  
 

v 1v 2 xy 2y y yy y y 8x (x 2x 3)e ,0 x 1,y(0)′ ′′ ′ ′′′= − − − + − − ≤ ≤ =
1v1, y (0) 1, y (0) 3,y (0) 1,y (0) 1′ ′′ ′′′= = = = . 

 
Theoretical solution is y(x) = ex + x2. 
 
Problem 2: 
 

v 3 2y 6(2(y ) 6yy y y y ),1 x 2, y(1) 1,y (1) 1,′ ′ ′′ ′′′ ′= + + ≤ ≤ = = −
1vy (1) 2, y (1) 6, y (1) 24′′ ′′′= = − = . 

 

 Theoretical solution is 
1

y(x)
x

= . 
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Table 1: Solution to Problem 1 
(n) Exact Sol  method Sol Error 
 3 0.3936D+01 0.3930D+01 5.753D-03  
 5 0.3808D+01 0.3808D+01 8.563D-04 
 7 0.3770D+01 0.3770D+01 1.996D-05 
 9 0.3753D+01 0.3753D+01 3.293D-06 
 11 0.3744D+01 0.3744D+01 1.638D-06  

 
Table 2: Solution to Problem 2 
(n)  Exact Sol Comp Sol Error 
 3 0.4915D+00 0.4912D+00 3.172D-04 
 5 0.4969D+00 0.4969D+00 1.512D-06 
 7 0.4984D+00 0.4984D+00 5.303D-07 
 9 0.4990D+00 0.4990D+00 2.631D-07 
 11 0.4994D+00 0.4994D+00 2.225D-07 

 
 The Table 1 and 2 show the results of Problems 1 
and 2 solved with the developed method.  
 These results Table 1 are recorded at x = 1 only for 
n-iterations. 
 The results Table 1 and 2 were only recorded for 
Problems (1) and (2) at x = 1 and x = 2 respectively, 
which showed that as the number of iterations (n) are 
increasing, the new method is converging to the 
theoretical solutions. 

 
CONCLUSION 

 
 A collocation method with step numbers k = 5 has 
been proposed to solve Problem (1) when m = 5. Two 
non-linear test problems were solved by the new 
method. The results were only recorded for Problems 
(1) and (2) at x = 1 and x = 2 respectively, which 
showed that as the number of iterations (n) are 
increasing, the new method is converging to the 
theoretical solutions. 
 In our next article for step number k = 6 we will 
compare the accuracy of the present method with that 
one to ascertain whether an odd or even step number 
method will be better in terms of accuracy for general 
purpose use.  
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