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Split-Quater nionic Representation of the Moving Frame for
Timelike Surfacesin 3-Dimensional Minkowski Spacetime
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Abstract: The moving frame and associated Gauss-Codazziiegador surfaces in Minkowski three
space are introduced. A split-quaternionic repriegiEm is used to identify the Gauss-Weingarten
equations with a Lax pair representation. This pai representaion is calculated and given explicit
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INTRODUCTION timelike surface M determines a conformal structure
with ¢ as a conformal immersion. On a timelike surface
The study of surfaces in higher-dimensional spaceM, there exists a local coordinate system (x, yhsu

and in non-Euclidean spaces has been an activeofreathat:
study recently due to the variety of applicatiorfs o
surfaces to the areas of integrable systems ang= e”(-dx*+dy?) (1)
mathematical physics (Bracken and Grundland, 1999;
Bracken et al., 1999). Recently, the Gauss-Codazzi  This is referred to as a Lorentz isothermal
equations for surfaces in Euclidean three-spacee wercoordinate system. Let (u, v) be the null coordinat

established from a three by three matrix represienta system obtained from (x, y) by a rotation, such:tha
and a quaternionic representation was introduced fo

the moving frame of the conformally parametrizedy=x+y;v=-x+y 2

surface (Konopelchenko and Taimanov, 1996). This

work is extended here in what is intended to be a The partial derivatives df satisfy:

companion paper (Konopelchenko and Taimanov,

1996; Bracken, 2004). Here a hyperbolic version of 1

what was done in (Bracken, 2004) is presentedttisr <¢u'¢u> =<¢w¢v> =0, <¢u?¢v> =5 e (3)

other case, it will be shown that a Lax pair can be

derived for the Gauss-Codazzi equations by using a |1 4

representation of the split-quaternions (Brackemn any -,

Hayes, 2002). This algebraic structure will be wiedi

and some of their relevant properties will be givin

will be shown how the frame equations can be writte

down using a matrix representation for the split-

guaternions (Inoguchi, 1998; 1999). 40
To begin to introduce Minkowski three-space, let M, :ew[o ]

E;=(R%(.)) denote  Minkowski three-space 1

(Dorfmeisteret al., 2002; Inoguchi, 1998) under the M, :_<d¢,dN>:(Q+ R+ He Q-R ]
natural metric(.,.) which can be expressed in terms of Q-R Q+ R+ He

the natural coordinate system @s)=-d? + &2+ &3.

is the mean curvature functiothen
€%y, Ny and Q and R will be given as Q(é,,

Ny and R =(¢,, N). The first and second fundamental
forms are given with respect to the Lorentz isatiedr
coordinate system as follows:

(4)

. From these, the product,;1,* can be calculated:
Let M be a connected two-manifold agdM - E? an : S

immersion. The immersion is said to be timelike if Q+R- He’ o R
the induced metric | on M is Lorentzian (Weinstein, M, [M,'l:( ]e"" (5)
1996) R—Q Q+ R+ Hé&
Let us assume M is an orientable time-like surface
in E} immersed by$. The Lorentzian metric of a The matrix in (5) has the characteristic polyndmia
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t*-2Ht+H-4QRe* = 0 ® (¢, 0, wg,+QN
. . . ¢vu =U ¢V = %HNew !
The roots of (6) give the principal curvatureshu# N N ~6.H-20 Q€
surface, namely, , =H+2,/QRe® . ’ ’ ’ (13)
1 @
The average of these two just yield H, the mean Ou o zHINe
curvature and the product gives the Gaussian ameat | ®w |=Y| ¢, [5] @@, +RN
N, N| (-¢,H-20,Re®

K = H-4QRe™ 7)
It will now be shown how this frame can be
A moving frame is defined by = (¢, ¢,, N)',  described within the context of a new algebraic
which is required to satisfy the following Gauss- structure and that this new form can be used to

Weingarten equations: determine a two-by-two representation of (12).
o, = Uo, o, = Vo (8) Theorem 1. Every nontotally umbilic timelike constant
mean curvature surface has a one parameter farily o
where, U and V are defined to be the matrices: nontrivial isometric deformations preserving theame
curvature.
W, 0 Q 0 0 L1HE& This is easy to see. On a constant mean curvature

timelike surface M, the Gauss-Codazzi equations are
invariant under the deformation -@Q, = AQ,
R- R, =A'R. Integrating the deformed Gauss-Codazzi
equation, one obtains a one-parameter family oétim

It is required that system (8) satisfy the like surfaces. This deformation does not effect the
compatibility conditiono,, = 0,,. This in turn implies induced metric and the mean curvature. Hence all th

Usl0 0 iHe|V=| 0 « R |(9

u

-H —2Q¢ 0 -2R& -H 0

that U and V in (9) satisfy the condition: surfaces are isometric and have the same constat m
curvature.
U-V+UV-VU =0 (20) There is a quaternionic description of surfaces in

this space. Letp:M - E? be a timelike surface with

moving frame ¢,, ¢,, N) and define a frame& by
means of:

Taking the two matrices in (9) and substituting
them into (10), the left-hand side of (10) takese th
following form:

Ad(®)(i, i, k) = (€0, €%, ,N), deb= &> (14)

w,, +1H%" - 2RQE® 0
0 -w,, —iH%"+ 2RQE" The 3-dimensional Minkowski spacetimg’ is
-H, +2R,€E° H,+ 2Q & (11) naturally identified with the imaginary part of thglit-
Q, +1iH,e quaternion algebra:
-R, +3H¢"
¢ 02 Y ImH'={aj +oj' +ak'| o, OR (15)

o . . . The split-quaternion algebra H' is a real algebra
The matrix in (11) will be the zero matrix provitle  spanned by the basis {1, i, j, k’}. The multiplican in
the following equations hold: H' is defined as follows:

i =it =k, k=K =4, Kok S,

1
w, +=H%€"-2RQE“= 0
2 (12) 2=, j?=k?=1

H,-2Q,e, H, - 2R &

(16)

For a split quaterniorg = 1+&,i+¢&,j'+& k', the

These equations will be referred to as the Gausssyhigate¥ of £ is defined bvE =& 1-£.i—&.i'—£ k'

Codazzi equations. Based on the matrices U and Vonjugaez of & is _ emf {E 50 251'2521 Ek ‘

given in (9), the equations for the frame (8) can b and clearly they satisfy-€€ =~¢;-¢7-¢;-&;. Thus H
written down as well: can be identified with a semi-Euclidean space:
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(24)

Let G={¢0H'|E€=] be the multiplication group o, =2 +4 ):eoo/ZCD—l[o 1](1)
\ X y
of the timelike unit split-quaternions. The Lie eliga g 2 00

of G is the imaginary part H": . ] . )
It is now possible to obtain a two-by-two matrix

9= IMH'={&j +Ej +EK'| £, OR) (18) representation of (12) by first introducing theldaling
. ' HO-valued pair:

The Lie bracket of g is simply the commutator of _ _
the split-quaternion product and the commutatidasu v~ ue, ¢, =Ve (25)
for g are given byfi,jT =2k"[j',k] =-2i,[k'i] =2j' . The
Lie algebra g is naturally identified with MinkowisB-
space:

- [Ull UIZJ’ V = [Vll V lj (26)
B ={R(5, &,8,) -2+ &2+ &) (19) Ua Uz Va Ve

where U and V are defined to be the traceless oestri

Explicit forms for the matrix elements of U and V
can be obtained by enforcing both sides of (13hgisi
the representation (24) and the forms given by {@6)
U and V. Requiring thap,, = ¢, implies that U and V
must satisfy:

1H[1 Oj'iﬁ[o -1}1-'“(0 l},k'ﬁ(_l jj (20)  UyV+UV-VU =0 (27)
01 1 0 1 0 0

as a metric linear space and recall (15) as weinedt

is most important here to know that there is a ixatr
representation for H'. The basis elements can lteewr
as:

To carry out this procedure, begin wiph in (24)
Let the last three matrices in (20) be called f,,  and differentiate it with respect to u to obtain:
T3}. Therefore, an arbitrary element of H' takes the

form:
¢uu=1wuem,2¢_1(0 OJGD—é"’ZCD'lL(O OJqH
2 10 10

EO_E::, _E]_+Ez
= 21 (0 O
E (zl—éz &+, b (] @9

Under the identification (20), the group G of = w/zqyl[l Ve qu;
timelike unit split-quaternions corresponds to an 20, +U;,-Uy, U

algebra MR of all real matrices of degree two. The
semi-Euclidean matrix of H' corresponds to the Using the matrix representation (24) and (23) for

following scalar product: N, it is also clear that:
(X Y>=1(tr(XY) =tr(X)tr(Y)) (22) w0, +QN=e"%7 e 0 o} (29)
' 2 utu wu _Qe—wlz
Now let us take®OH' to be a matrix valued The results in (13) imply that (28) and (29) be th
function which transforms the basis i, ', k' inlee = same. This serves to fix two of the elements of the
framed,, ¢y, N: matrix U, namely Y = w/4 = -Uy, and U, = Qe“2. In

a similar way, the second derivativesgofvith respect
6, =€, ¢, =D, N=o kO  (23) to v can be evaluated using (24) and we find that:

1 -
Using the matrix representation (20), it follows ¢, = “’an‘l[vﬂ 2% V“+V22]<D (30)

that: 0 =V,
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. Yy 0 simple mathematical models of rigid strings in juéet
9, =€"°® 1(1% —V12+V v ]q’ (31)  theories as well.
2 22 11 12
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As a simple example of a solution to the frame
Eq. 25 can be solved explicitly for the vacuum
solutionw = 0. The matrixPH' corresponding to the
vacuum solution is given by:

coshg (u- v)) sinhf (u V)
sinhg (u- v)) coshf (u Vv))’ (34)

1
==, R=1 H=-1
Q=3

The Gauss-Codazzi Eq. 12 imply that for every
simply connected timelike constant mean curvature
surface inE?, there exists a timelike extremal surface

in S which is isometric to the original. Of course,
timelike extremal surfaces iI5; can be regarded as
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