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Two Reformulationsfor the Dynamic Quadratic Assignment Problem
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Abstract: Problem statement: The Dynamic Quadratic Assignment Problem (DQAP),Nd&hard
problem, is outlined and reformulated in two altgive models: Linearized model and logic-based
model. Approach: The solution methods for both models based on amattrial methods (Benders’
Decomposition and Approximate Dynamic Programmirgg)d constraint logic programming,
respectively, are propose®esults. Proofs of model equivalence and solution methagiplare
presented.Conclusion: Both proposed models are more simplified leadingpbssible hybrid
adaptations of existing techniques for more prattpproaches.
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INTRODUCTION T = Represents the number of discrete time

) ) ) periods
A Dynamic Quadratic Assignment Problem ~

< ' Cy =fi *d, = Represents the cost of assigning
(DQAP), mathematically formulated as a modified N L .
QAP, is defined as follows: giver{>t cost coefficients faC|I|t_y I to Iocapon J and facility k to
G (] K 1=1,2,..,nand t=1,2,., T), datne an B '%fa“on 'k"]i‘lt period t-f ity
n°xt solution matrix X = || || so as to: st T e workflow cost from facility 1 to
acility k at period t
Minimize: djc = The _ distance . from location | to
' location | at period t

o A Riit = Represents the rearranging cost when
I X X F DD N Ry X X (1) fa_icility i located on location j at period
i71 7 k=L =1 =1 ==t tis moved to location | at period (t+1)

Xijt = 1, if facility i is assigned to location j

Subject to: at period t. Otherwise, is 0

n L Since the DQAP is NP-hard problem that is
;xiﬂ =Lt @ difficult to deal with in case of solving directfpr an

optimal solution. The objective of this study is to

. reformulate the DQAP into two alternative forms:
DXy =100 t 3) Linearized model and logic-based model and to psepo
1= solution methods for both models.

X 0{0,3 i, j, t (4) MATERIALSAND METHODS
Where: Linearized model: The DQAP can be linearized by
N = Represents  the  number  of defining rixt variables Yy, and rix(t-1) variables

facilities/locations in each period t Mijiera):
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Yijklt injt X 71 and:
Mijl(t+l) EXijt +xil(t 4) -1 Mijl(t+1) :Xijtxil(tﬂ)

Since all of the variables are restricted to thkie

Model 1: The linearized DQAP therefore becomes: of 0 and 1, these relations are equivalent to:

Minimize: Y =1 = Xy =X =1
n n n n T n n n F1 and
Zzzzzcijklt Yijkll + ZZRth MI(I %) (5)
i=l j=1 k=1 I=1 t=1 i=1 =1 I=1 t=1 _ _ _
Mijl(l+1) =le xijt _Xil(t+1) =1
Subject to: . .
: It follows immediately from:
Yia 2 X +X Li=L.,n, j=1,..,nt=1.. T (6) Vi 2X,, Xy -
My 2 Xy Xy g Li=Lon, j=Lont=1.T (7).
n Yia =12 X, =X =1
X =Lj=1..,n,t= 1.1 8) . oo
i=1
and:
injt =Li=1.,n,t= 1.1 ) Mijl(t+l) 2 X +Xi|(l+1) -1
j=1
o That:
Vi My o 20,010, |, t (10)
Mijl(l+1) =1= Xy =Xil(t+1) =1
X, 0{0,.3 .01, j, t (11)
In order to prove the converse, Xgt=X,, =1.
RESULTSAND DISCUSSION Then, from the constraints:
Extending the theorem and proof in Law(£963), _
L. . . . . Yijklt ZXijl +an 1
it is possible to demonstrate that the linearizatid
DQAP is equivalent to DQAP. Let the DQAP defined
in (1-4) be designated problem Q and the MILP dfin Mijea) 2 X5 + X)L
in (5-11) be designated problem L. The following
theorem assures the equivalence of Q and L for any follows that:
given set of cost coefficients.
) , Y 21 12
Theorem 1: The feasible solutions of problems Q and ™ (12)
L can be placed in one-to-one correspondence Wi”M 51 (13)
equal values of the cost functions. A feasible tmfu i) =
X@ of Q corresponds to a feasible solutiod-(X,V) _ L o o
of L if and only if XQ@=x® Since the objective function is to minimize:
Proof: It is sufficient to show that the constraints of Shsheielc S Shulor
Co Yorr T )
problem L are such that for any given permutation ;;;%; ke ,-;létﬁ"‘ M s

matrix X" at a given period t, Y at period t and V from

period t to t+1 are determined uniquely by thetretes: and C,, 20 and R,, 2 0by definition, Y and M1,

must choose the minimum feasible values accordingly
i Kue to (12) and (13). Therefore, it follows that:
450
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Yy =1 and M) =1 Minimize Z (17)
Whenever: Subject to:
Xip =X =1 non on . n T .
Z2 ZZZZ (xijt + X _1)Uijk|t
i=1 j=1 k=1 I=1 t=1

The proposed solution method: For solving large (18)

scale MILP, Benders’ Decomposition (BD) technique, +ZZZ X * X ) Vi o

which is presented by Benddd962), can be applied.

The algorithm solves a MILP problem via structure |

exploitation by decomposing a MILP into two Y X, =1j=1..,n,t= 1. T (29)
problems-an integer master problem and a linear®

programming sub-problem-which are solved iterayivel

N(_)te that the solution of MILP in the master proble eZn:Xm =li=1..n.t= 1.7 (20)
this approach can further be approximated by the=

round-up of the solution from the relaxed linear

assignment pro_blem using.the original .Hungarianxm 0{0,3 i i, j, t (21)
method. Dynamic Programming (DP) technique based

on Rosenblatt (1986) can also be applied to théodet ¢, . .
. . . . given u ijkit
in order to determine the sub-optimal solution and . .
accelerate the convergence rate. BD generates The solution procedur_e_ _starts by solymg the sub-
database of a subset of feasible solutions for P tProPlem (14-16) from an initial layouk; either from
determine an approximate optimal solution. In orger an initial guess value in the first iteration os@ution
accelerate BD, a trust-region constraint can bdrom the previous step (from the master probleng an
implemented into the master problem with a sucwessi then solving the master problem (17-21) from the

and Vv,

ijl(t ) *

adaptation  procedure (Muenvanichakul ~ and solution of the sub-problemu’,, and V., . The
Charnsethikul, 2009) to improve its performance. procedure repeats until the different between theeu
Implementation of BD to linearized DQAP (5-11) bound UB, the minimum of the current upper bound
lead to: and the sub-problem objective value and the lower
A linear programming sub-problem (dual bound LB, the maximum of the current lower bound
problem): and the master problem objective value , is leas th
given tolerancé i.e.:
Maximize:
UB-LB<dgp
n n n n T
22222 (X X DUy + The cost of the total layout is the sub-problem
i=1 j=1 k=1 I=1 t=1 . . .
P, (14)  objective value and the layout is, from the master
ZZZZ(X it T Xy "DV g problem.
e Note that the constraint (18) in the master pnoble
] is corresponding to the optimality cut of the lireed
Subject to:

DQAP. Theorem 2 assures that there exists no
feasibility cut in BD of linearized DQAP (5-11);
0sUy <Gy i=lL.,n, FL.,nE L. T (15) thereby the sub-problem (14-16) can be determined
from (22) and (23) given below.

0<Vyuw SRy =L, =1,..,nE 1. T (16) Theorem 2: There exists no feasibility cut in BD of the
linearization DQAP.
for a given layoux”, 0{0,4 ,0 i, j,tand Proof: It is sufficient to show that given,,X,, for the
A mixed-integer-linear-programming  master- corresponding the sub problem (14-16), to maximize
problem: the objective function (14):
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(X*ijl + X*klt _1)Uijkll

*ijt +X*i|(t+1) _1)\/ijl(t 4)

It follows that (X, +X,, -1) and (X; +X;, 4, —1)
must be equal to either-1, 0 or 1 with,, >0 and
R

ijlt

iit

>0 by definition. The optimal solution of the sub

problem is forced to the maximum value of the

bound as:

Ui*jklt =G IF (X +Xe -1 =1

. (22)
=0 otherwise
and:
Vi;l(t+1) :Rijlt if (Xijl +Xi|(1 1) _l) =1 (23)
=0 otherwise

all - different{ Y,,,Y,,, Yay,.... Y, }
all - different{ Y;,,Y,,, Ya5..... Yo 3

121

(25)

all - different{ Y;; , Y1, Yar,.... Yy}

Where:
Cikit = e * DBy, v

In this form, the constraints with (nxT) real
variables consist of entirely checkable constraand
search variables. A logic-based method can treaalth
different constraint directly without converting ib
inequalities as well as constraint satisfactionksea
feasible solution to a set of constraints.

It is possible to demonstrate that the logic-based
model of DQAP is equivalent to DQAP. Let the DQAP
defined in (5-11) be designated problem Q and the
logic-based model of DQAP defined in (24-25) be
designated problem L. The following theorem assures
the equivalence of Q and L for any given set oft cos
coefficients.

Consequently, the problem is always feasible with

no feasibility cut.

L ogic-based mode!:

Model 2: A logic-based formulation of the DQAP with
nxt variables Yx{1, 2,.., n}. The constraint can be
written as a set of in equations:

Y, 2Y, 0k

with i # k at period t.
It requires that v,,..,Y, be a permutation of

1,2,3,...,n at period t. These constraints can bg anl
single global constraint for each period as:

all - different{ Y,,,Y,,, Y,....,Y,} atperiod

where, n is a number of facilities and locationsthed
problem and t is a number of considering time psio

Therefore, the logic-based model of DQAP is
much more compact as:

Minimize:

T-1

Z Yie s Yigea)

t=1

M-

n n T
Z Z Z Fikt DY\M« +

i=1 k=1 t=1 i

(24)

I
-

Subject to:
452

Theorem 3: The feasible solutions of problems Q and
L can be placed in one-to-one correspondence with
equal values of the cost functions. A feasible tsofu
Y@ of Q corresponds to a feasible solutiorf{¥ll-
different(Y)) of L if and only if ¥¥=y®).

Proof: It is sufficient to show that the constraints of
problem L are such that for any given permutation
matrix Y at a given period t, Y at period t are
determined uniquely by the relations:
all - differen Y,,,Y,,, ..., Y,} atperiod

where, Y1, 2,.., n} to represent the facility i
assigned to location and periog Y

Since the constraint for each period t requir@d th
Vi You Yaeo Y, all take distinct values. It covers the

idea that each facility is assigned exactly oncehe
location and vice versa. These relations are etgriva
to:

Y, 2 Y, O, kwithitk at period t

It follows immediately as:

Yn ith =Y

i(yik(yi)t

Yiokoat 2 Xy F X 71
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That:

Y =V =1= Xy =X =1

i(yi )k (i)t

t+1) in( ) +X

i) Yieay X Vi iYi)

That:

Migomeasn =Miea L= Xy =X 4 =1

In order to prove the converse, Xgt=X,, =1.

Then, from the constraint of ILP:

Yijklt injt +an -1

Mijl(t+1) 2 Xy +Xi|(t+1) -1

As proof in Theorem 1: then:
Y =1

Whenever:

Since:

Xig =X 1= Yy =1=Y,, DKy 9t

From the assignment constraints, therefore:

Yi(yn) * Yk(ym)

And the logic-based constraint can take over to:

all - different{ Y,,,Y,, Yy,..., Y} at period

The proposed solution method: For solving the logic
based model, the structural algorithm of finding
solution is therefore to branch on the search bt It
is impractical to keep branching until all search
variables are determined. Logical inference as dloma

language to specify at least the outline how ttodiem
is to be solved. In this problem, ECLiIPSe is a iobas
approach to solve the corresponding logic-basedeinod
A tree search method in ECLIiPSe is directly the vy
find the solution without adding special inference.
Especially, constraint propagation enforcing arc-
consistency for general array expression, develdpyed
Brand (2001), can be applied as the array constraint
library to the program.

Detail implementation of the method and result are
presented in Muenvanichak@009).

CONCLUSION

This study reformulated DQAP in two alternativ
forms: Linearized DQAP Model and Logic-Based
DQAP Model. Both approaches leading to more
simplified models can help developing more possible
solution methods.
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reduction algorithms can be applied to the cheekabl
constraint before the variable domains become
singletons. Then, Constraint Logic Programming (LCLP
(Hooker, 2000) is a way of implementing the conistra
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