
Journal of Mathematics and Statistics 6 (4): 425-430, 2010 
ISSN 1549-3644 
© 2010 Science Publications 

Corresponding Author: M. Matinfar, Department of Mathematics, University of Mazandaran,  
 P.O. Box: 47416-95447 Babolsar, Iran 

425 

 
Variational Homotopy Perturbation Method for the  

Zakharove-Kuznetsov Equations 
 

Mashaallah  Matinfar and Maryam  Ghasemi 
Department of Mathematics, University of Mazandaran, 

P.O. Box: 47416-95447 Babolsar, Iran 
 

Abstract: Problem statement: In this research, the Variational Homotopy Perturbation Method 
(VHPM) which is a combination of Variational Iteration Method (VIM) and Homotopy Perturbation 
Method (HPM) used for the Zakharove-Kuznetsov equations (ZK-equations). Approach:  These two 
methods are proposed by chinese researcher J.H.He. M.A.Noor improved these two methods and 
established the VHPM. The numerical solution of ZK-equation is of great importance dut to it’s ability 
to model of traveling wave and nuclear fusion so, finding it’s solution is very important. Results: In 
this study we presented an efficient and reliable treatment of the VHPM for this nonlinear Partial 
Differential Equations (PDEs). This method is based on Lagrange multipliers for identification of 
optimal value of parameters in a functional and Homotopy Perturbation Method. By applying this 
method we found the solution of ZK-equations with simple and reliable method and without time 
consuming calculations.  Comparisons were made among the Variational Iteration Method (VIM), 
Adomian Decomposition Method (ADM) and the proposed method. Conclusion: The results revealed 
that the proposed method is very effective and can be used for other nonlinear problems in applied 
mathematics. In following sections, first we introduce the applied method , then we used that for 
finding the solution of our equations and finally the effectiveness and usefulness of proposed method 
was shown in comparison with other methods. 
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INTRODUCTION 

 
 Traveling waves are very important because 
various phenomena in nature such as vibration and 
solitons or self-reinforcing solitary waves are described 
by them. So investigation of traveling wave solution 
plays an important role in nonlinear science. Rosenau 
and Hyman (1993) introduced a class of Partial 
Differential Equations (PDEs): 
 
K(m, n): ut + a (um)x + (un)xxx = 0, m > 0, 1<n≤3 (1)  
 
which is a generalization of the Korteweg-de Vries 
(KdV) equation such that describes the theory of water 
waves in shallow channels, for more information we 
can see (Saut, 1979). In Eq. 1: 
 

 
m 3 n

m n
t x xxx 3

u u u
u ,u and u

t x x

∂ ∂ ∂= = =
∂ ∂ ∂

 

 
 For m = n these are solitary waves or so-called 
compactons. Recently, Wazwaz (2002a; Osman and 

Beech, 2004) has given the new solitary patterns for the 
nonlinear dispersive K(m,n) equations: 
 
ut - a(um)x + (un)xxx = 0, m > 0, n > 0 (2) 
 
 The new solitary wave special solutions with 
compact support for the nonlinear dispersive K(m,n) 
equations: 

 
ut + a(um)x + (un)xxx = 0, m > 0, n > 0 (3) 

 
are presented by Ismail and Taha (1998) and Wazwaz 
(2002b) and Ganjavi et al. (2008). They use a finite 
difference method and a finite element method to 
investigate the approximate solutions of K(2,2) and 
K(3,3) in (1). In this study we investigate the ZK-
equation of the form (shortly called ZK(m,n,k)): 

 
ut + a(um)x + b(un)xxx + c(uk)yyx = 0, mnk ≠ 0 (4) 
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where, m, n, k are integers and a, b, c are arbitrary 
constants. This equation governs the behavior of 
weakly nonlinear ion-acoustic waves in plasma 
comprising cold ions and hot isothermal electrons in the 
present of a uniform magnetic field (Zhu, 2004); Yan 
(2002) Osman and Beech (2004) ZK-equation was 
solved by the sine-cosine and the hyperbolic 
tangent(tanh)-function methods. In this study, we 
applyied the variational homotopy perturbation method 
and variational iteration method to ZK-equation. 
 

MATERIALS AND METHODS 
 
Variational iteration and homotopy perturbation 
method: To illustrate the basic concepts of the VIM 
and HPM, at first we consider the following nonlinear 
differential equation: 
 
 Lu + Nu = g(x) (5)  
 
Where: 
L = A linear operator 
N = A nonlinear operator 
g(x) = An inhomogeneous term 
 
 According to the VIM (He, 2000a; 2000b; He, 
2002; Batiha, 2007) we can construct a correction 
functional as follows: 
 

 
t

n 1 n n n0
u (x) u (x) ( ){Lu Nu g( )}d+ = + λ τ + − τ τ∫ ɶ  (6) 

 
where, λ(τ) is a general Lagrange multiplier. We know 
λ(τ) can be identified optimally via the variational 
theory, the subscript n denotes the nth-order approx-
imation and un is considered as a restricted variation 
i.e. nuδɶ  = 0. We know the essential idea of this method 
is to introduce a homotopy parameter, say p, which 
takes the values from 0 to 1. When p = 0, the system of 
equations is in sufficiently simplified form, which 
normally admits a rather simple solution. As p 
gradually increases to 1, the system goes through a 
sequence of “deformation”, the solution of each is 
“close” to that at the previous stage of “deformation”. 
Eventually at p = 1, the system takes the original form 
of equation and the final stage of “deformation” gives 
the desired solution. To illustrate the basic concept of 
homotopy perturbation method, consider the following 
nonlinear system of differential equations: 
 

( ) ( ) A U   f r , r= ∈ Ω   
 
with boundary conditions: 
 

 
u

B(U, ) 0,r
n

∂ = ∈ Γ
∂

   

Where: 
A = A differential operator 
B = A boundary operator 
f(r) = A known analytic function 
Γ = The boundary of the domain Ω 
 
 Generally speaking the operator A can be divided 
into two parts L and N, where L is a linear and N is a 
nonlinear operator. Therefore (7) can be rewritten as 
follows: 
 
L(U) + N(U) - f(r) = 0 (7) 
 
 We construct a homotopy 

nV(r,p) : [0,1] R ,Ω × → which satisfies: 
 
H(V,p) = (1 -P)(L(V) - L(U0)] +p[A(V) - f(r)] =0, p ∈  
[0, 1], r∈Ω 
 
or equivalently: 
 
H(V,p) = L(V)-L(U0)+PL(U0)+p[N(V)-f(r)] = 0 (8) 
 
where, U0 is an initial approximation of (7). In this 
method, using the homotopy parameter p, we have the 
following power series presentation for V: 
 
V =V0+pV1+p2V2+…. 
 
 The approximate solution can be obtained by 
setting p = 1, i.e.: 
 
U = U0 + U1+ U2 + . . . . 
 
 In following variational iteration method has been 
successfully used to study ZK-equation. 
 
Variational homotopy perturbation method: To 
illustrate the basic idea of the VHPM, we consider the 
following general differential equation: 
 
 Lu + Nu = g(x) (9)   
 
Where: 
L = A linear operator 
N = A nonlinear operator  
g(x) = An inhomogeneous term 
 
 According to the VIM as illustrated in previous 
subsection we can construct a correction functional as 
follows: 
  

 
t

n 1 n n n0
u (x) u (x) ( ){Lu Nu g( )}d+ = + λ τ + − τ τ∫ ɶ  (10) 

 
where, λ(τ) is a general Lagrange multiplier. Now we 
apply the homotopy perturbation method: 
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t tn n
n 0 n0 0

n 0 n 0

p u u (x) p ( ) N P u d ( )g( )d
∞ ∞

= =

  = + λ τ τ − λ τ τ τ  
  

∑ ∑∫ ∫ɶ  (11) 

 
which is the coupling of VIM and He’s polynamials 
and is called the Modified Variational Iteration Method 
(MVIM). The comparison of like powers of p gives 
solutions of various orders. For more information about 
VHPM we can see (Matinfar et al., 2010). 
 
The VIM and VHPM for ZK-equation: 
The VIM for ZK-equation: Using the VIM, for n ≥0 
we have: 
 

 

t m
n 1 n n nx0

n k
xxxx nyyx

u (x, t) u (x, t) ( ){u (x, y, ) au

(x,y, ) bu (x, y, ) cu (x, y, )d

+ τ= + λ τ τ +

τ + τ + τ τ
∫ ɶ

ɶ ɶ

 (12)  

  
where, nuɶ  is considered as restricted variations, i.e., 

nu 0∂δ =ɶ .  

 To find optimal value of λ(τ), we have: 
 

 

t

n 1 n n0

m n k
nx nxxx nyyx

u (x, t) u (x, t) ( ){u (x, y, )

au (x, y, ) bu (x,y, ) cu (x, y, )d

+ τδ = δ + δ λ τ τ +

τ + τ + τ τ
∫

ɶ ɶ ɶ

 (13)  

 
Or: 
 

 
t

n 1 n n0
u (x, y, t) u (x,y, t) ( ){u }d+ τδ = δ + δ λ τ τ∫  (14) 

 
which results: 
 

 
n 1 n n t

t

n0

u (x, t) u (x, y, t) ( )u (x, y, ) |

`( )u (x, y, )d 0.

+ τ=δ = δ + δλ τ τ

− λ τ τ τ =∫
 (15)  

 
 Therefore, the stationary conditions are obtained in 
the following form: 
 

t t1 ( ) 0 | , `( ) 0 |τ= τ=+ λ τ = λ τ =  (16) 
 
which results λ(τ) = -1. Substituting this value of the 
Lagrange multiplier into functional (12) gives the 
iteration formula: 
 

t

n 1 n n0

m n k
nx nxxx nyyx

u (x, y, t) u (x, y, t) {u (x, y, )

au (x, y, ) bu (x,y, ) cu (x, y, )d

+ τ= − τ +

τ + τ + τ τ
∫  

 
 The iteration formula (12) will give several 
approximations and the exact solution is obtained at the 
limit of the resulting successive approximations. 

The VHPM for ZK-equation: In order to solve the 
ZK-equation with initial conditions: 
 
L(u) = ut , N(u) = a(um)x + b(un)xxx + c(uk)yyx 
 
Where: 
L = A linear operator  
N = A nonlinear operator 
 
 According to the VIM we can construct a correct 
functional as follows: 
 

t

n 1 n nt0

m n k
nx nxxx nyyx

u (x, t) u (x, t) ( ){u (x, y, )

au (x, y, ) bu (x,y, ) cu (x, y, )d

+ = + λ τ τ +

τ + τ + τ τ
∫

ɶ ɶ ɶ

 

 
 Making the above functional stationary, the 
Lagrange multiplier can be determined as λ = -1. 
Applying the VHPM, we have: 
 

2
0 1 2

t 2 m
0 1 2 x0

t 2 n
0 1 2 xxx0

t 2 k
0 1 2 yyx0

 u  p u   p u   ...  f (x,  y)

ap ((u pu p u ...) ) d

bp ((u pu p u ...) ) d

cp ((u pu p u ...) ) d

+ + + =

− + + + τ

− + + + τ

− + + + τ

∫

∫

∫

 

  
  The comparison of like powers of p gives solutions 
of various orders and the component which constitute 
u(x, y, t) are written like this u(x, y, t) = u0 + + u1 + u2 
+.... For later numerical computation, we let the 

expression 
n

n ii 0
u (x,y, t)

=
ϕ =∑  to denote the n-term 

approximation to u(x,y,t). 
 
Implementation of VIM and VHPM for ZK-
equation: Now we would like to choose two special 
equations, namely ZK(2,2,2) and ZK(3,3,3) with 
specific initial conditions. At first we consider the 
ZK(2,2,2) equation: 
 

 2 2 2
t x xxxx yyx

1 1
u (u ) (u ) (u ) 0

8 8
+ + + =  (17) 

 
 With specific initial conditions: 
 

( ) 24
u(x,  y,0)  f x,y   cosh (x  y)

3
= = − η +  

 
where, η is an arbitrary constant. We assume η = 1 and 
proceeding as before, by using VIM the Lagrange 
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multiplier was determined as λ = -1. Based on VHPM 
we have: 
 

( )2
0 1 2

t 2 2
0 1 2 x0

t 2 2
0 1 2 xxx0

t 2 2
0 1 2 yyx0

u   p u   p u    f x,  y

p ((u pu p u ...) ) d

1
p ((u pu p u ...) ) d

8
1

p ((u pu p u ...) ) d
8

+ + + … =

− + + + τ

− + + + τ

− + + + τ

∫

∫

∫

  (18)  

 
 Comparing the coefficient of like power of p, we 
have: 
 

0 2
0

t1 2
1 0 x0

t t2 2
0 xxx 0 yyx0 0

3

3

6

2 4

6

4
p : u (x, y, t) cosh (x y)

3

p : u (x,y, t) (u ) d

1 1
(u ) d (u ) d

8 8
224

( cosh (x y)sinh(x y)
9

32
cosh(x y)sinh (x y))t

3
5056 46784

( cosh (x y)
27 27

sinh (x y)cosh (x y)

5056
( cosh (x y)

27

= − +

= − τ

− τ − τ

= − + +

− + +

= − + −

+ +

= − +

∫

∫ ∫

2 4

t2
2 0 1 x0

t t

0 1 xxx 0 1 yyx0 0

4 2

6 2

t3 2
3 0 2 1 x0

t 2 2
0 2 1 xxx 0 2 10

46784

27

sinh (x y)cosh (x y)

1
p : u (x, y, t) (2u u ) d

8
1

(2u u ) d (2u u ) d
8

8128
sinh (x y)cosh (x y)

9
64

sinh (x y))t
3

1
p : u (x,y, t) (2u u u ) d

8
1

(2u u u ) d (2u u u
8

−

+ +

= − τ −

τ − τ

− + +

− +

= − + τ −

+ τ − +

∫

∫ ∫

∫

∫
t

yyx0

7

3 5

5 3

7 3

) d

12869632
( sinh(x y)cosh (x y)

243
6025216

sinh (x y)cosh (x y)
27

9551872
sinh (x y)cosh (x y)

81
192512

sinh (x y)cosh (x y))t
21

τ

= − + +

− + +

− + +

− + +

∫  (19) 

Table 1: The numerical results for  φ3VHPM , u3VM and ADM 
 at t = 0.001 and y = 0.1 
 ----------------------------------------------------------------- 
x VHPM VIM ADM 
0.1 -1.4664 -1.4664 -1.3868 
0.2 -1.4664 -1.4664 -1.4561 
0.3 -1.4664 -1.4664 -1.5571 
0.4 -1.7170 -1.7170 -1.6938 
0.5 -1.9058 -1.9058 -1.8718 
Table 2: Numerical results for φ3VHPM, u3VM and ADM 
 at t = 0.001 and y = 0.1 
 ------------------------------------------------------------------- 
x VHPM VIM ADM 
0.1 0.0496 0.1496 0.0498 
0.2 0.0746 0.1746 0.1748 
0.3 0.0997 0.0997 0.0998 
0.4 0.1247 0.1247 0.1249 
0.5 0.1498 0.1498 0.1500 

 
 Thus the components which constitute u(x, y, t) are 
written like this: 
 

2

3

3

6

2 4

4 2

6 2

7

4
u(x, y, t) cosh (x y)

3
224

( cosh (x y)sinh(x y)
9

32
cosh(x y)sinh (x y))t

3
5056

( cosh (x y)
27

46784
sinh (x y)cosh (x y)

27
8128

sinh (x y)cosh (x y)
9

64
sinh (x y))t

3
12869632

( sinh(x y)cosh (x y)
243

602

= − + +

− + +

− + +

+ − +

− + +

− + +

− +

+ − + +

− 3 5

5 3

7 3

5216
sinh (x y)cosh (x y)

27
9551872

sinh (x y)cosh (x y)
81

192512
sinh (x y)cosh (x y))t

21

+ +

− + +

− + +
 (20)  

 
 We now consider the ZK(3,3,3) equation: 
 

3 3 3
t x xxxx yyxu (u ) 2(u ) 2(u ) 0+ + + =  (21)  

 
with specific initial conditions u(x, y, 0) = f(x, y) = 1.5 
η sinh((x + y)/6), as mentioned in previous example we 
assume η = 1. By using VIM the Lagrange multiplier is 
determined as λ = -1. Applying VHPM and substituting 
the series in nonlinear section of this equation we have: 
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0 2
0

t1 3
1 0 x0

t t3 3
0 xxx 0 yyx0 0

2

3

t2 2
2 0 1 x0

t t2 2
0 1 xxx 0 1 yyx0 0

p : u (x,y, t) 1.5sinh (x y) / 6),

p : u (x, y, t) (u ) d

2 (u ) d 2 (u ) d

( 3cosh (x y) / 6)cosh((x y) / 6)

3
cosh ((x y) / 6)t

8

p : u (x, y, t) (3u u ) d 2

(3u u ) d 2 (3u u ) d

2
(

= +

= − τ

− τ − τ

= − + +

− +

= − τ −

τ − τ

=

∫

∫ ∫

∫

∫ ∫
5 2

2

4 2

t3 2
3 0 1 x0

t t2 2 2
0 2 1 xxx 0 1 0 2 xxx0 0

6

73 1641
sinh ((x y) / 6) sinh ((x y) / 6)

64 64

cosh ((x y) / 6)

381
sinh((x y) / 6)cosh ((x y) / 6))t

64
1

p : u (x,y, t) (3u u u ) d
8

(2u u u ) d 2 (3u u 3u u ) d

39851
( sinh ((x y) / 6)cosh(x y)

256

+ + +

+

+ + +

= − + τ −

+ τ − + τ

= − + +

∫

∫ ∫

4 3

2 5

7 3

/ 6)

114915
sinh ((x y) / 6)cosh ((x y) / 6)

256
16455

sinh ((x y) / 6)cosh ((x y) / 6)
128

505
cosh ((x y) / 6))t

256

− + +

− + +

− +

 (22) 

 
and proceeding as before u(x, y, t) = u0 + u1 + u2 + …. 
 

RESULTS 
 
 To illustrate the accuracy of applied method 
comparison of the VHPM with other approaches is 
presented  in Table 1 and 2 and Fig. 1-4. 
 

 
 
Fig. 1: Comparison between VHPM, VIM and ADM at 

y = 0.1 and t = 0.0010 

 By studding Fig. 1 and 2 and Table 1  we find that 
there is excellent agreement with our method and  VIM 
and ADM for ZK(2,2,2) (Ganjavi et al., 2008; Inc, 2008). 
 As we can see in Fig. 3 and 4 and Table 2 the 
obtained results for ZK(3,3,3) by using the VHPM is 
very close to the results that were obtained by VIM and 
ADM  (Ganjavi et al., 2008; Inc, 2008). 
 This is important that one application of ZK-
equation is describing Ion Acoustic Wave (IAW) in 
inertial fusion and Tokamak. As we know interaction 
time in bullet and creating high density plasma in 
Tokamak is short, so we plot our figures and set our tables 
in short time (Miyamoto, 2005; Osman et al., 2005). 
 

 
 
Fig. 2: VHPM at t = 0.001 
 

 
 
Fig. 3: Comparison between VHPM, VIM and ADM at 

y = 0.1 and t = 0.001 
 

 
 
Fig. 4: VHPM at t = 0.001 
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DISCUSSION 
 
 In this study we carefully applied the VHPM to 
solve the ZK-equations. In the VHPM we should ignore 
the time derivative section so, it has less amount of 
computation in comparison with VIM and ADM. By 
studying the examples it is clear that there is no need to 
calculate difficult integration that exists in VIM so, we 
can use this method in solving other nonlinear or linear 
problems without time consuming computations. 
 

CONCLUSION 
 
 In this Letter, Variational homotopy perturbation 
method is proposed for solving the ZK-equation. By 
studying the tables and figures it is clear that the small 
amount of computation is required compared to other 
methods such as VIM and ADM. In our study we use 
the MATLAB software to calculate the series obtained 
from the VIM and VHPM. 
 

REFERENCES 
  
Batiha, K., 2007. Approximate Analytical Solutions For 

Time-Dependent Emden-Fowler-Type Equations  
By Variational Iteration Method. Am. J. Applied 
Sci., 4: 439-443. DOI: 10.3844/.2007.439.443 

Ganjavi, B., H. Mohammadi, D.D. Ganji and A. Barari, 
2008. Homotopy perturbation method and 
variational iteration method for solving Zakharov-
Kuznetsov equation. Am. J. Applied Sci., 5: 811-817. 
ISSN: 1546-9239 

He, J.H., 2000a. A coupling method of a homotopy 
technique and a perturbation technique for 
nonlinear problems. Int. J. Non. Mech., 35: 37-43. 
http://works.bepress.com/ji_huan_he/13 

He, J.H., 2000b. Variational iteration method for 
autonomous ordinary differential systems. Applied 
Math. Comput., 114: 3115-3123. DOI: 
10.1016/S0096-3003(99)00104-6 

He, J.H., 2002. Homotopy perturbation method: A new 
nonlinear analytical technique. Applied Math. 
Comput., 135: 73-79. DOI: 10.1016/S0096-
3003(01)00312-5 

 
 
 
 
 
 
 
 

Inc, M., 2008. Exact solutions with solitary patterns for 
the Zakharov-Kuznetsov equations with fully 
nonlinear dispersion. Chao. Soli. Frac., 33: 1783-1790. 
DOI: 10.1016/j.chaos.2006.03.017 

Ismail, M.S. and T.R. Taha, 1998. A numerical study of 
Compactions. Math. Comput. Simul., 47: 519-550. 

Matinfar, M., M. Mahdavi and Z. Raeisi, 2010. The 
variational homotopy perturbation method for 
solving analytic treatment of the linear and 
nonlinear ordinary differential equations. J. 
Applied Math. Inform., 28: 845-862. 

Miyamoto, K., 2005. Plasma Physics and Controlled 
Nuclear Fusion. 1st Edn., Springer, New York, pp: 
371. ISBN: 3-540-24217-1 

Osman, F. and R. Beech, 2004. Programming of the 
Generalised Nonlinear Paraxial Equation for the 
Formation of Solitons with Mathematica. Am. J. 
Applied Sci., 1: 100-106. DOI: 
10.3844/.2004.100.106 

Osman. F, P. Evans, P. Toups and H. Hora, 2005. Laser 
Interaction and Related Plasma Phenomena. Am. J. 
Applied Sci., 2: 403-409. 
http://findarticles.com/p/articles/mi_7109/is_1_2/ai
_n28319063/ 

Rosenau, D. and J.M. Hyman, 1993. Compactons 
Solitons with finite wavelengths, Phys. Rev. Lett., 
70: 564-567. 

Saut, J.C., 1979. Quelques gnralisations de l’quation de 
Korteweg-de Vries. J. Differential Eq., 33: 320-335. 

Wazwaz, A.M., 2002a. Exact special solutions with 
solitary patterns for the nonlinear dispersive 
k(m,n)equations. Chao. Soli. Frac., 13: 161-170. 
DOI: 10.1016/S0960-0779(00)00248-4 

Wazwaz, A.M., 2002b. New solitary-wave special 
solution with compact support for the nonlinear 
dispersive k(m,n) equations. Chao. Soli. Frac., 13: 
321-330. DOI: 10.1016/S0960-0779(00)00249-6  

Yan, Z., 2002. New families of solitons with compact 
support for Boussinesq-Like B(m,n) equations with 
fully nonlinear dispersion. Chao. Soli. Frac., 14: 
1151-1158. DOI: 10.1016/S0960-0779(02)00062-0 

Zhu, Y., 2004. Exact special solutions with solitary 
patterns for Boussinesq-Like B(m,n) equations 
with fully nonlinear dispersion. Chao. Soli. Frac., 
22: 213-220. DOI: 10.1016/j.chaos.2003.12.101 


