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Abstract: Problem statement: In this research, the Variational Homotopy Perttidra Method
(VHPM) which is a combination of Variational Iterat Method (VIM) and Homotopy Perturbation
Method (HPM) used for the Zakharove-Kuznetsov eiquat(ZK-equations)Approach: These two
methods are proposed by chinese researcher J.WHeNoor improved these two methods and
established the VHPM. The numerical solution of @ftation is of great importance dut to it's ability
to model of traveling wave and nuclear fusion $odihg it's solution is very importanResults: In

this study we presented an efficient and reliabdatment of the VHPM for this nonlinear Partial
Differential Equations (PDEs). This method is basedLagrange multipliers for identification of
optimal value of parameters in a functional and ldtopy Perturbation Method. By applying this
method we found the solution of ZK-equations witm@e and reliable method and without time
consuming calculations. Comparisons were made gntloe Variational Iteration Method (VIM),
Adomian Decomposition Method (ADM) and the propossethod.Conclusion: The results revealed
that the proposed method is very effective and lmamsed for other nonlinear problems in applied
mathematics. In following sections, first we intuoé the applied method , then we used that for
finding the solution of our equations and finalheteffectiveness and usefulness of proposed method
was shown in comparison with other methods.

Key words: Variational homotopy perturbation method, Variaibniteration Method (VIM),
Zakharove-Kuznetsov equation), Adomian Decompasitidethod (ADM), Partial
Differential Equations (PDESs), lon Acoustic WavA\(V)

INTRODUCTION Beech, 2004) has given the new solitary patterngi®
nonlinear dispersive K(m,n) equations:
Traveling waves are very important because

various phenomena in nature such as vibration and, - a(u"), + ()xx =0, m>0,n>0 2
solitons or self-reinforcing solitary waves are adésed
by them. So investigation of traveling wave solatio The new solitary wave special solutions with

plays an important role in nonlinear science. Ra@sen compact support for the nonlinear dispersive K(m,n)
and Hyman (1993) introduced a class of Part'alequations:

Differential Equations (PDES):
K(m, n):y+a )y + (N =0, m>0, 1<a3 1) w+ra+ ux=0,m>0,n>0 (3)

which is a generalization of the Korteweg-de Vries i
(KdV) equation such that describes the theory aewa are presented by Ismail and Taha (1998) and Wazwaz
waves in shallow channels, for more information we(2002b) and Ganjavét al. (2008). They use a finite

can see (Saut, 1979). In Eq. 1: difference method and a finite element method to

i . investigate the approximate solutions of K(2,2) and

u = =0 anag, :67“3 K(3,3) in (1). In this study we investigate the ZK-
ot ox ox equation of the form (shortly called ZK(m,n,k)):

For m = nthese are solitary waves or so-called
compactons. Recently, Wazwaz (2002a; Osman and + a(U")y + b(U)x + c(LJ‘)yyX =0, mnkz 0 4)
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where, m, n, k are integers and a, b, ¢ are arpitra Where:

constants. This equation governs the behavior oA = A differential operator

weakly nonlinear ion-acoustic waves in plasmaB A boundary operator

comprising cold ions and hot isothermal electranthe  f(r) = A known analytic function

present of a uniform magnetic field (Zhu, 2004);nYa ' = The boundary of the domath

(2002) Osman and Beech (2004) ZK-equation was . o
solved by the sine-cosine and the hyperbolic ~ Generally speaking the operator A can be divided
tangent(tanh)-function methods. In this study, weinto two parts L and Nwhere L is a linear and N is a
applyied the variational homotopy perturbation roeth nonlinear operator. Therefore (7) can be rewritisn

and variational iteration method to ZK-equation. follows:
MATERIALSAND METHODS L(U) + N(U) - f(r) =0 ()
Variational iteration and homotopy perturbation We construct a homotopy

method: To illustrate the basic concepts of the VIM v(r p):Qx[0,1] - R",which satisfies:
and HPM, at first we consider the following nonkmne

differential equation: H(V,p) = (L -P)(L(V) - L(W)] +p[A(V) - f(1] =0, p U
Lu + Nu = g(x) s) [0, 1], 10Q

Where: or equivalently:

L = Alinear operator H(V,p) = L(V)-L(Ug)+pL(Uo)+p[N(V)-f(r)] = 0 (8)

N = A nonlinear operator . o . )
g(x) = An inhomogeneous term where, U is an initial approximation of (7). In this

method, using the homotopy parametewp, have the
According to the VIM (He, 2000a; 2000b; He, following power series presentation for V:
2002; Batiha, 2007) we can construct a correction
functional as follows: V =VotpV1+pVot. ...

The approximate solution can be obtained by

U100 = U, ()+ [ A (OfL , +Na, - g(0)dt ) setting p= 1, ie.

where,A(1) is a general Lagrange multiplier. We know U = Uy + Ui+ U, + . . . .

A(t) can be identified optimally via the variational

theory, the subscript denotes the nth-order approx- In following variational iteration method has been
imation and W is considered as a restricted variationsuccessfully used to study ZK-equation.

i.e.dl, = 0. We know the essential idea of this method = . . ,

is to introduce a homotopy parameter, saywpjch  Variational homotopy perturbation method: To
takes the values from 0 to 1. Wher 9, the system of |IIustr§1te the baS|c_|dea of the VH_PM/e consider the
equations is in sufficiently simplified form, which following general differential equation:

normally admits a rather simple solution. As p _

gradually increases to 1, the system goes through &u *Nu=g(x) )
sequence of “deformation”, the solution of each is\\pere:

“close” to that at the previous stage of “deforroati
Eventually at p= 1, the system takes the original form N =
of equation and the final stage of “deformationveg 9(%)
the desired solution. To illustrate the basic cphag

A linear operator
A nonlinear operator
= An inhomogeneous term

homotopy perturbation method, consider the follavin According to the VIM as illustrated in previous
nonlinear system of differential equations: subsection we can construct a correction functiasal
follows:
A(U) = f(r), rOQ
t ~
with boundary conditions: Upa(X) = un(x)+j0A(T){Lu ot NG, —g(m)}dt (10)
B ou, _ where,A(T) is a general Lagrange multiplier. Now we
w2 =o,r0r ;
on apply the homotopy perturbation method:
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>, =t (0+ A (r){ > FW]} d- [ g (11)

which is the coupling of VIM and He's polynamials
and is called the Modified Variational Iteration tied
(MVIM). The comparison of like powers of gives
solutions of various orders. For more informatidoat
VHPM we can see (Matinfat al., 2010).

TheVIM and VHPM for ZK-equation:
The VIM for ZK-equation: Using the VIM, for n=0
we have:

Uy (3,8 = U, (6, 0+ [ A @)U, (6, y,1)+ atf
(vavr)+ bNanxxx (levr )+ C~l‘1tyyx (X'yI )d

12)

where,
a3, =0.
To find optimal value ok(1), we have:

is considered as restricted variations, i.e.,

n

B3 (x,1)= B, (, 0+ 8 A €O)fu (x, ) +

(13)
atfy, (x,yx )+ b, (xy1 # e, (x,y )d
Or:
BU,.1(X, Y, )= 3U, (X, ¥, 1)+ 3] A € Yu, Jet (14)
which results:
du,,, (X, 1) =du, (X, y, 1)+ 3\ )y, (X,y1 )],
(15)

—I;A‘(T)un(x,y,r)dr = 0.

Therefore, the stationary conditions are obtained
the following form:

1+A(M)=0]., A €)= 0], (16)

which resultsA(t) = -1. Substituting this value of the
Lagrange multiplier into functional (12) gives the
iteration formula:

Uy (6, 0= U, (%Y, 0= [ U, Oy +
auy, (X, Y1)+ b, (¥} clf, (x,y0 )d

The iteration formula (12) will give several

The VHPM for ZK-equation: In order to solve the
ZK-equation with initial conditions:

L(u) = u, N(u) = a(@)x + b + c(U)yyx

Where:
L = Alinear operator
N = A nonlinear operator

According to the VIM we can construct a correct
functional as follows:

Uz (6,0 = Uy O D+ [ @Ofu (6, y,0)+

ally, (%, y1 )+ B, (%,Y7 ) €, (x, 0 )d

Making the above functional stationary, the
Lagrange multiplier can be determined &s= -1.
Applying the VHPM, we have:

U+ py+ Py -+ f(x, y)
-apf (w+py+ By+ .j)d
~bp[, (% + py+ Bu+ .) ), d
—cpf, (W +pu+ Bu+ ..y ), d

The comparison of like powers pfgives solutions
of various orders and the component which constitut
u(x, y, t) are written like this u(x, y, t) st + y + W,
+.... For later numerical computation, we let the
expression ¢, =zi”:0ui(x,y,t) to denote the n-term

approximation to u(x,y,t).

Implementation of VIM and VHPM for ZK-
equation: Now we would like to choose two special
equations, namely ZK(2,2,2) and ZzK(3,3,3) with
specific initial conditions. At first we considehe
ZK(2,2,2) equation:

Ut ()43 () +3 (), = O (17)
With specific initial conditions:

u(x, y,0) = f(x.y) —gr] cosh (¢ y

approximations and the exact solution is obtairtettiea ~ where,n is an arbitrary constant. We assume 1 and

limit of the resulting successive approximations.
427
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multiplier was determined as = -1. Based on VHPM Table 1: The numerical results f@gvrew , Usym and ADM

we have:

U + Py + pu+ .. = (xYy
~pf, (Ut pu+ Fu+ .J) d
—%pj;((uo+ put Bu+ . ) d

~2pl, (W Pyt Byt ), d

(18)

att=0.001andy=0.1

X VHPM VIM ADM

0.1 -1.4664 -1.4664 -1.3868
0.2 -1.4664 -1.4664 -1.4561
0.3 -1.4664 -1.4664 -1.5571
0.4 -1.7170 -1.7170 -1.6938
0.5 -1.9058 -1.9058 -1.8718

Table 2: Numerical results f@gyipm, Usyw and ADM

att=0.00landy=0.1

Comparing the coefficient of like power of p, we

have:

[T (X,y,t)=—g cosh (% y)
pu (Y. 0)=-] (@) d
Sl -2 ()t
=(—%cosh" (x+ y)sinh(x y)

_%Zcosh(x+ y)sinfi (¢ y)t

5056 46784
=(-—=—cosif (x+ yy——
( 27 Gy 27

sink? (x+ y)cost (& y)
_ (-5056 et (e y)- 26784
27
sink? (x+ y)cosh (& y)
. __f 1
P (Y, =] 2wy ) d -

[[euu)a -%j; 24y ), d

81280k (x+ y)cosh (% )

—6—34sinh6 (x+ y)t

5. —_f 1
POy, D=-f yu+ d)d-2

[iuu s 6 -2 @y us B,

12869632 .
= (-=———=sinh(x+ y)cosA (x+
( 243 (x+y) 0 y)

_60252163inh3(x+ y)cosh (& y)

_95518725inh’5 (x+ y)cosh (& )

(19)

X VHPM VIM ADM

0.1 0.0496 0.1496 0.0498
0.2 0.0746 0.1746 0.1748
0.3 0.0997 0.0997 0.0998
0.4 0.1247 0.1247 0.1249
0.5 0.1498 0.1498 0.1500
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Thus the components which constitute u(x, y, &) ar
written like this:

u(x,y,t):—iSl cosB (& y)
(—%‘cosﬁ (x+ y)sinh(x y)

—%2cosh(x+ y)sinA (& y)t

5056
+(-——=coslf (x+
( 57 (x+y)

—4677843inh2 (x+ y)cosht (& y)

—%@inh4 (x+ y)cosh (& y)

—%Sinh6 (x+ y)E

12869632 .
+(-—————=sinh(x+ y)cosh (x+ y
( 243 (x+y) Oy,

_60252165inh3(x+ y)cosh (% y)

_95518723inh5 (x+ y)cosh (& )

192512,
1 sinh’ (x+ y)cosh (& y)i (20)

We now consider the ZK(3,3,3) equation:
U+ (U + 20 oo + 2(0 ), = C (21)

with specific initial conditions u(x, y, 0) = f() = 1.5

n sinh((x + y)/6), as mentioned in previous exampée
assume) = 1. By using VIM the Lagrange multiplier is
determined a& = -1. Applying VHPM and substituting
the series in nonlinear section of this equatiorhevee:
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P U, (X,y,t)=1.5sinfi (% y)/6),
P (Y =] (), d

2 ()= (G), &t
=(-3cosK (x+ y)/6)cosh((* y)/6)
—gcosﬁ (x+ y)/6)t

Py D= BEu)d- 2
[[GUw)a-7 By, d
:(Zsijsinhs O+ y)/6)+%lsinﬁ (O y)/6
costt ((x+ y)/6)

381
+asmh((x+ y)/6)cosh (¢ y)/6))
1

P Oy, 0= =] Buu+ § ) d-3

J;(ZUOUZ‘F UE )xxxd_ 4(; (3% @+ 3@ i )xx v
_ (_39851Si nke ((x+ y)/6)cosh( ) 6)
256
_114915
256

_164258inhz((x+ y)/6)coshi (e y)/6)

inh* (x+ y)/6)cosh ((# y)/6)
(22)

—%oesﬂ (+ y)16))F
and proceeding as before u(x, y, ) GzHun + W, + ...
RESULTS

To |illustrate the accuracy of applied method

comparison of the VHPM with other approaches is

presented in Table 1 and 2 and Fig. 1-4.

0

-0.‘.‘5

-0.5

Fig. 1: Comparison between VHPM, VIM and ADM at
y=0.1andt=0.0010

By studding Fig. 1 and 2 and Table 1 we find that
there is excellent agreement with our method antl V
and ADM for ZK(2,2,2) (Ganjat al., 2008; Inc, 2008).

As we can see in Fig. 3 and 4 and Table 2 the
obtained results for ZK(3,3,3) by using the VHPM is
very close to the results that were obtained by \dind
ADM (Ganjaviet al., 2008; Inc, 2008).

This is important that one application of ZK-
equation is describing lon Acoustic Wave (IAW) in
inertial fusion and Tokamak. As we know interaction
time in bullet and creating high density plasma in
Tokamak is short, so we plot our figures and setahles
in short time (Miyamoto, 2005; Osmatal., 2005).

-0.5
-0.25
) —‘“Ak\\r\- 0
e 0 —— 0.25
-0.25 o Y
X 0.5

Fig. 2: VHPM at t = 0.001

3: Comparison between VHPM, VIM and ADM at
y=0.1andt=0.001

Fig.

Fig. 4: VHPM at t = 0.001
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DISCUSSION Inc, M., 2008. Exact solutions with solitary patterfor
the Zakharov-Kuznetsov equations with fully
In this study we carefully applied the VHPM to nonlinear dispersion. Chao. Soli. Frac., 33: 178301
solve the ZK-equations. In the VHPM we should ignor DOI: 10.1016/j.chaos.2006.03.017
the time derivative section so, it has less amafnt Ismail, M.S. and T.R. Taha, 1998. A numerical stafly
computation in comparison with VIM and ADM. By Compactions. Math. Comput. Simul., 47: 519-550.
studying the examples it is clear that there imeed to  Matinfar, M., M. Mahdavi and Z. Raeisi, 2010. The

calculate difficult integration that exists in VISb, we variational homotopy perturbation method for

can use this method in solving other nonlineariraar solving analytic treatment of the linear and

problems without time consuming computations. nonlinear ordinary differential equations. J.
Applied Math. Inform., 28: 845-862.

CONCLUSION Miyamoto, K., 2005. Plasma Physics and Controlled

Nuclear Fusion. 1st Edn., Springer, New York, pp:
In this Letter, Variational homotopy perturbation 371. ISBN: 3-540-24217-1
method is proposed for solving the ZK-equation. ByOsman, F. and R. Beech, 2004. Programming of the

studying the tables and figures it is clear that $mall Generalised Nonlinear Paraxial Equation for the

amount of computation is required compared to other ~ Formation of Solitons with Mathematica. Am. J.

methods such as VIM and ADM. In our study we use  Applied Sci., 1: 100-106. DOI:

the MATLAB software to calculate the series obtdine 10.3844/.2004.100.106

from the VIM and VHPM. Osman. F, P. Evans, P. Toups and H. Hora, 200%®rLas
Interaction and Related Plasma Phenomena. Am. J.
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