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Abstract: Problem statement: Many different nonparametric statistical procedures can be used to 
analyze ranked data. Inconsistencies among the outcomes of such procedures can occur when 
analyzing the same ranked data set. Understanding why these peculiarities can occur is imperative to 
providing an accurate analysis of the ranking data. In this context, this study addressed why 
inconsistent outcomes can occur and which types of data structures cause the different procedures to 
yield different outcomes. Approach: Appropriate properties were identified and developed to explain 
why different methods can define different rankings of three samples with the same data. The approach 
identifies certain symmetry structures that are implicitly contained within the data and analyzes how 
the procedures utilize these structures to produce an outcome. Results: We proved that all possible 
differences among the nonparametric rules are caused because different rules place different levels of 
emphasis on the specified symmetry configurations of data. Our findings explain and characterize why 
different procedures can output different results using the same data set. Conclusion: This study 
therefore served as crucial step in deciding which nonparametric procedure to use when analyzing 
ranked data. In addition, it serves as the building block to defining new techniques to analyze rankings. 
Because different procedures use different aspects of the data in different ways, then one may 
determine the choice of analysis procedure based on what parts of the data one deems important. 
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INTRODUCTION 

 
 As it is known, the peculiarities of different 
nonparametric tests can complicate the choice of an 
appropriate test statistic. To shed light on this concern, 
we identify those features of nonparametric procedures 
that cause dissimilar, even conflicting results to occur 
with the same data set. Our approach uses the fact that, 
before noticeable differences can arise in the tests, 
disagreements can be expected among the implicit 
rankings that are defined by the associated procedures. 
For instance, before a disagreement can occur between 
the Kruskal and Wallis (1952) and, say, the Bhapkar 
(1961) tests, we should anticipate differences in how the 
k samples are ranked as implicitly determined by the 
Kruskal-Wallis and the Bhapkar V procedures. Thus it is 
natural to analyze these more sensitive ranking behaviors 
to understand why these differences can arise. 
 The way we do so is to extract certain hidden 
symmetry structures that are implicitly defined by the 

data. The value of discovering these structures is that 
they identify and completely characterize which data 
configurations force different classes of nonparametric 
procedures to have different outcomes. As an 
illustration of what our analysis provides, consider the 
interesting mystery coming from the following ranked 
data set for three alternatives {A, B, C,}:  
 

A B C

12 11 10

7 9 8

5 4 6

2 1 3

 

 
 For these data, the Kruskal-Wallis procedure leads 
to the C A B≻ ≻  ranking while these same data force 
the Bhapkar (1961) procedure to yield the A B C≻ ≻  
ranking. The data structures that will be identified in 
our analysis completely explain all such behavior of 
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this kind. As another illustration using this data set, the 
Wilcoxon (1945) rules (denoted by MWW) define 
theA B≻ , B ~ C, C A≻  rankings of the pairs. Again, 
our analysis completely explains how and why all such 
differences can arise, it shows that all possible 
differences are due how different rules react to a 
particular symmetry structure of the data. 
 By knowing which kinds of data configurations 
cause rules to have different outcomes, we obtain a 
deeper understanding about the behaviors and 
peculiarities of various nonparametric tests. If, for 
instance, a certain data structure that is not viewed as 
being important turns out to influence the tallies and 
rankings of a specified procedure, then the associated 
test may not be an appropriate one. Conversely, if one 
rule ignores a type of data structure that is accepted as 
being valuable while a second one does not, then this 
information provides support for adopting the second 
rule. For example, the data presented above, lead the 
Kruskal-Wallis test to reject the null hypothesis at the 
0.05 significance level, the V test to reject the null 
hypothesis at the 0.01 significance level and the Mann-
Whitney test to fail to reject the null for all pair wise 
comparisons of the three alternatives. Thus the data 
configurations developed here highlight the precise 
structures of the data that can lead to an inference 
decision with some test but not others. This, in turn, 
directly affects the choice of nonparametric test to be 
used in an analysis. 
  As we will show, all possible differences among 
these rules are in terms of how they react to these 
hidden symmetry components of the data. Namely, 
some procedures ignore certain symmetries that are 
inherent in the data, while the outcomes of other rules 
are strongly influenced by them. What complicates the 
analysis is that these symmetries are not apparent 
within data sets. Fortunately, however, the symmetries 
can be identified at an intermediate step in the 
processing of the data and so our analysis extracts the 
symmetry structures from this intermediate step. 
 As described in the Materials and Methods, this 
intermediate step is where the nonparametric methods 
over k sample-the ones we have in mind-combine data 
information into k-tuples. In a natural manner, identify 
this space of k-tuples with a Euclidean space k

ℝ , this 
identification makes it possible to associate the 
symmetries of k

ℝ  with those of the k-tuples and to 
determine how these symmetries affect different 
nonparametric procedures. (Our approach is influenced 
by recent results in decision analysis, e.g., Saari, 2008). 
 By identifying the symmetry structures and their 
consequences at the intermediate step, it becomes 
possible to define an “imposed symmetry structure” for 

data sets. For instance, after we prove that a particular 
symmetry structure at the intermediate stage causes all 
differences between the Kruskal-Wallis ranking and 
pair wise comparisons, we then describe how this 
symmetry is manifested within the data. 
 

MATERIALS AND METHODS 
 

Our method for uncovering why different procedures 
may yield different results when analyzing the same 
ranked data, consists of three steps: (1) translate a raw 
data set to triples, (2) define and decompose how a 
nonparametric procedure utilizes the triples information 
and (3) define symmetries (e.g., rotational, inversion) 
on the data space to uncover how different procedures 
react to such structures. In this study, we describe each 
of the steps in detail. 
 
From data to triplets: For purposes of clarity, our 
analysis emphasizes the three-sample setting denoted 
by the three alternatives A, B, C; for convenience, 
assume that a data set of n items is collected for each 
alternative. An item may be, for example, the 
temperature of a chemical, or the bending strength of a 
material sample. List the information as in the 
following array of raw, unranked data: 
 

1 1 1

2 2 2

n n n

A B C

r s t

r s t

... ... ...

r s t

 

 
 Replace these values with integers ranging from 1-
3n, which indicate how a value ranks across all 
samples, smaller numbers correspond to lower 
temperatures, or a weaker bending strength. This 
creates the following equation of ranked data (denote 
the space by RD): 
 

 
1 1 1

2 2 2

n n n

A B C

a b c

a b c

... ... ...

a b c

  (1) 

 
where, the aj, bk, cs terms are the ranking integers that 
range from 1 to 3n.  
 The ranked data in a Eq. 1 form is converted into 
triplets by listing all n3 triplets (a|, bk, cm). To replace 
each triplet with a ranking, make a distinction as to 
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whether larger or smaller values are “better,” in this 
article, larger values as treated as being more preferred. 
In the case of an unbalanced design, the number of 
triplets will not equal n3, however, the conversion of 
data into triplets remains the same as the balanced case. 
Denote this space of ranked triplets by TS. Represent 
this process as a mapping (Haunsperger, 1992):  
 
G: RD → TS  (2) 
 
 As an illustrating example, the following ranked 
data set from RD: 
 

A B C

d 6 5 4

1 2 3

=  (3) 

 
defines the eight triplets: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6,5,4 , 6,5,3 , 6,2,4 , 6,2,3 , 1,5,4 , 1,5,3 , 1,2,4 , 1,2,3  

 
 With, respectively, the associated rankings: 
 
A B C, A B C,  A C B, A C B,

B C A, B C A,  C B A, C B A

≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻
 (4) 

 
 Thus, G(d) is the set of eight rankings with two 
each of 

  A ≻ B ≻ C,C≻ B ≻ A,A ≻ C ≻ B  and B C A≻ ≻ . 
 There are six ways to strictly rank triplets, so TS 
resides in a six-dimensional space, each of the six 
rankings define a 6

ℝ  coordinate direction. By choosing 
the 6

ℝ
 coordinate directions in the: 

 
A B C,A C B,C A B,C B A,

B C A,B A C

≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻
 

 
order, the triplets associated with the above d can be 
expressed as G(d) = (2, 2, 0, 2, 2, 0). Ties are handled in 
an obvious 6

ℝ  manner, e.g., a triplet with the A ∼ B ≻ C 
ranking splits the difference between A B C≻ ≻ and 

B A C≻ ≻ with (1/2, 0, 0, 0, 0, 1/2), while A ∼ B ∼ C is 
represented by (1/6,…, 1/6). For large values of n, the 
standard analysis can become computationally 
intensive. As such, representing the data as an element 
in 6

ℝ  greatly condenses the information captured by 
the data. Moreover, because all computations reduce to 
dot products of vectors, this 6ℝ  representation provides 
an efficient, simpler way to explore the data set’s 
important features. 
 
A class of nonparametric rules: The nonparametric 
rules considered here include pair wise comparison 

tests such as the Wilcoxon rank sum test and Mann-
Whitney test as well as k sample comparison tests for 
the one-way layout. 
 The k sample comparison procedures that we 
consider create a ranking by assigning points to each 
alternative based on how it is ranked within each k-
tuple, or, in our setting, within each triplet. 
  Members of this class of procedures have been 
proposed by Bhapkar (1961); Deshpande (1970) and 
Bhapkar and Deshpande (1968). With the Bhapkar V 
test, for instance, an alternative receives a point for 
each triplet in which it is top-ranked. In contrast, the 
Bhapkar and Deshpande (1968) procedure assigns +1 
points to an alternative each time it is top-ranked in a k-
tuple and −1 points for each time it is bottom-ranked. 
While the Kruskal-Wallis test normally sums the ranks 
assigned to each alternative, Haunsperger (1992) 
showed that the ranking also arises by assigning an 
alternative two points for each triplet where it is top-
ranked and one point for each triplet where it is second-
ranked. While the use of some of these tests is not as 
widespread as, say, the Kruskal-Wallis approach, it is 
important to include the full class of these procedures in 
our analysis in order to understand the features that 
cause different tests to have different outcomes. In this 
manner, new insights are obtained about subtle, hidden 
features of approaches, such as that of Kruskal-Wallis. 
 As our objective is to identify what causes different 
procedures to have differences in the rankings and 
tallies over three samples, we can, without loss of 
generality, use the fact that these rankings are invariant 
with respect to affine changes in the assigned weights. 
This permits us to assume that the bottom ranked 
alternative always receives zero points. So, if a rule 
assigns 3, 0 and −1 points to an alternative each time it 
is, respectively, top, middle and bottom ranked in a 
triplet, an equivalent rule is obtained by adding one 
point to each weight so that the assigned values now are 
(4, 1, 0). Next, scale the assigned points so that one 
point is assigned to the top-ranked alternative, e.g., the 
(4, 1, 0) choice becomes (1, 1/4, 0).  
 In this manner, any three sample rule can be 
represented by (1, s, 0) for a specific value of s ∈ [0, 1]. 
As an illustration, the normalized weights assigned to 
the Bhapkar V test are (1, 0, 0). With the Bhapkar-
Deshpande rule involving k samples, the original 
weights of the (1, 0,..., 0,−1) choice are translated to (2, 
1, ..., 1, 0) and then scaled to (1, 1/2, ... , 1/2, 0). Thus, 
for triplets, the normalized weights for Bhapkar-
Deshpande rule agree with the Kruskal-Wallis rule's 
normalized weights of (1, 1/2, 0).  
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Decomposition of the procedures: The rule ranks the 
alternatives in terms of the sums of the assigned points. 
Let the summation process for a procedure that uses the 
weights (1, s, 0), s∈[0, 1] be represented by the 
mapping 
 
Ps: TS→ 3

ℝ   (5) 
 
where, the tallies are listed in the A, B, C order. To 
illustrate with the above p = (2, 2, 0, 2, 2, 0), which 
represents the Eq. 3 data, we have: 
 
Ps(p) = (4,2+4s,2+4s) (6) 
 
where, the tallies are listed in the A, B, C order, e.g., A 
receives 4 points while B and C each receive 2+4s 
points. Notice how the choice of s alters the final 

ranking, for instance, with 
 
s< 1

2
 , A has a higher score 

than B, with 
 
s> 1

2
 , B has a higher score than A and 

with 
 
s = 1

2
 , which corresponds to the Kruskal-Wallis 

procedure, all alternatives have the same tally. 
 With these choices, a class of nonparametric rules 
can be written as a composition of functions in the 
following manner (Haunsperger, 1992). 
 
Definition: For a specified value of s satisfying 0≤s≤1 
and ranked data d, NPs is the nonparametric procedure 
defined as: 
 
NPs(d) = Ps(G(d)) (7) 
 
 For example, NP1 and 1

2
NP  represent, respectively, 

the Bhapkar V and the Kruskal-Wallis procedures. With 
the Eq. 3 choice of d, it follows from Eq. 6 that the 
Bhapkar V ranking is A∼C ≻ B while the Kruskal-
Wallis ranking is A∼B∼C:  
 The MWW rankings of binaries have a similar 
representation. Namely, let: 
 

2
X,YB : TS→ ℝ

 

 
be the mapping where the first component registers the 
number of triplets for which X is ranked above Y and 
the second component registers the number of triplets 
for which Y is ranked above X. The MWW rankings 
defined by a data set d for the pair {X, Y} is given by 
the composition BX,Y(G(d)). 
 
Symmetries of the TS space: The symmetries for three 
samples come from S3-the space of all ways to permute 

three alternatives. Three of these symmetry 
configurations are natural, an explanation for the fourth 
is given later. 
 The first and obvious symmetry configuration of 
TS is an orbit of S3, this configuration of triplets has 
each ranking occurring the same number of times. If K 
= (1, 1, 1, 1, 1, 1), then, for an appropriate choice of 
c>0, this configuration is represented by cK. Obviously, 
this configuration of 6c triplets leads to tie rankings for 
all of the Ps rules and for all pairwise comparisons, as 
such, cK is called a kernel configuration. 
 The next natural symmetry is the 3ℤ  orbit of a 

triplet. For instance, if the starting ranking is A≻ B ≻ C, 
then the set defined by the 3ℤ  orbit is:  

 
{A B C,B C A,C A B}.≻ ≻ ≻ ≻ ≻ ≻  (8) 
 
  This particular rotational configuration consisting 
of three triplets has the (1, 0, 1, 0, 1, 0) ∈ 6

ℝ vector 
representation. The other rotational triplet, generated by 
A C B≻ ≻ , is given by (0, 1, 0, 1, 0, 1). To construct 
either configuration of preferences, move the top 
ranked alternative in one triplet to the bottom ranking in 
the next triplet. This construction ensures that each 
alternative is in first, second and third place precisely 
once over the set of three triplets.  
 A final natural symmetry is the Z2 orbit, this pair 
consists of the ranking of a triplet and the inverted 
version of the ranking. As an illustration, the 2ℤ  orbit of 

the ranking A≻ B ≻ C is the set {A≻ B ≻ C, C≻ B ≻ A}. 
For alternative X, X = A, B, C, an X-inversion 
configuration, IX, consists of the four different triplets 
where X is either top or bottom ranked: As such, X is 
top ranked for two of the triplets and X is bottom 
ranked for each of the two remaining triplets. Using the 
vector representation, the A-inversion configuration is 
IA = (1, 1, 0, 1, 1, 0), while the B-inversion 
configuration is IB = (0, 1, 1, 0, 1, 1). Notice that the 
Eq. 4 configuration is p = 2IA.  
 What remains is what we call the core 
configuration, it consists of six triplets. The 
configuration for an alternative X is where there are 
two triplets for each ranking where X is top-ranked and 
there is a single triplet for each ranking where X is 
middle-ranked. Thus, CA = (2, 2, 1, 0, 0, 1), while CB = 
(1, 0, 0, 1, 2, 2). 
 

RESULTS 
 
 As the tests for these various rules are based on the 
tallies of NPs(d) = Ps(G(d)) and as the G(d) value is 
common for all tests, it follows that all differences in 
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tests are due to differences in the Ps tallies. This 
observation, combined with our concern to understand 
what causes all possible differences in these tallies and 
rankings, shifts the emphasis to determine how the 
symmetry structures of the TS space, or 6

ℝ , affect the 
different Ps outcomes. This analysis is carried out in 
results. Then, to capture how this symmetry structure 
is manifested by data, we develop an argument to 
capture aspects of the inverse image of G. 
 Our main results are summarized below in 
Theorem 1. The Theorem characterizes how each 
nonparametric procedure utilizes the symmetry 
configurations in the ranking data. The role of these 
configurations of triplets is captured by the following 
theorem, which, de facto, describes a coordinate system 
for the vector space TS (to ensure that the system is 
partially orthogonal, the above choices are slightly 
modified in what follows). The value gained by using 
this coordinate system is that, as shown in Theorem 1, 
the coordinates separate the components of G(d) ∈ TS 
into those parts that cause different nonparametric 
procedures to have different tallies and rankings. 
 
Theorem 1: Let X, Y, Z represent the three 
alternatives: 
 
1. The space of triplets, TS, is spanned by the kernel, 

rotational, inversion and core configurations 
2. The kernel configurations provide ties for all Ps and 

BX,Y outcomes 
3. With a rotational configuration, all Ps mappings 

yield a completely tied outcome. However, the 
BX,Y, BY,Z, BZ,X outcomes form a cycle where, for 
each pair, the tally is the same 

4. For any inversion configuration, the outcome for 
any pair BX,Y is a tie. For the Ps rankings, the 
Kruskal-Wallis procedure, 

1
2

P , has a tie. For the 

other rules, the rankings of all Ps for 
1

s
2

<  are the 

opposite of the rankings for Ps for 
1

s
2

>  

5. For any core configuration of triplets, all Ps 
rankings agree and all BX,Y rankings agree with this 
common Ps ranking 

 
 The importance of this result, which is described in 
more detail below, is that these symmetry configurations 
fully determine why different nonparametric procedures 
have different outcomes and rankings. As an illustration, 
notice that all Ps outcomes agree on the core 
configurations, this assertion requires any disagreements 
among different Ps procedures and tests to be caused by 

the data components that create inversion configurations. 
Thus this theorem (and Eq. 7) provides a complete 
explanation for all possible differences in rankings 
between, say, the Bhapkar V and the Kruskal-Wallis 
procedures. Namely, rankings for the Bhapkar V test are 
influenced by the triplets with inversion components, but 
the Kruskal-Wallis procedure ignores these components. 
 This assertion can be illustrated with the Eq. 3 data 
set d. Using Eq. 7, the V procedure ranking is the P1 

outcome of 2IA, which is (2, 1, 1) with the 
corresponding A≻ B∼C ranking. As the Kruskal-Wallis 
ranking ignores this inversion structure, it must yield 
the complete tie A ∼ B ∼ C. 
 Similarly, according to Theorem 1, all differences 
in rankings between the Kruskal-Wallis procedure and 
paired comparisons are caused by the rotational 
components. Thus, if the data does not have 
components of triplets of this kind, the Kruskal-Wallis 
and MWW rankings of the pairs completely agree, even 
the tallies can be obtained from each other. But if G(d) 
does have rotational components, differences emerge at 
least in the tallies if not the rankings. 
 It remains to describe the core configurations: they 
are found in the following manner. According to part 1 
of Theorem 1, the kernel, rotational and inversion 
configurations define a four dimensional linear 
subspace of six-dimensional TS space. The remaining 
two-dimensional orthogonal subspace is spanned by the 
core configurations. While the construction comes from 
linear algebra, a surprise is the universal consistency of 
outcomes for all procedures over these configurations. 
 
Proof 1: To prove 1, first modify these configurations so 
that they create a coordinate system, to do so only require 
removing kernel components from each choice to make 
the result orthogonal to any kernel vector. For instance, 
the rotational triplet 2R = (2, 0, 2, 0, 2, 0) represents six 
triplets, it consists of two sets of the Eq. 8 rankings. To 
convert this vector into a form that is orthogonal to the 
kernel configuration K = (1, 1, 1, 1, 1, 1), use: 
 

 
R 2R K (2,0,2,0,2,0) (1,1,1,1,1,1)

(1, 1,1, 1,1, 1)

= − = −
= − − −

ɶ

  (9) 

 
where, the +1 terms define one rotational triplet and the 
−1 terms define the other one. The interpretation of a 
negative value in a configuration, then, is to subtract 
this number of triplets when Rɶ is added to a specified 
set of triplets. 
 The resulting coordinate system defined for the six-
dimensional TS consists of the kernel vector K, the 
rotational coordinate Rɶ  of Eq. 9, a two-dimensional 
space spanned by the modified inversion profiles: 



J. Math. & Stat., 6 (4): 395-408, 2010 
 

400 

A A BI 3I 2K (1,1, 2,1,1, 2), I ( 2,1,1, 2,1,1)= − = − − = − −ɶ ɶ  (10) 

 
and the two-dimensional space spanned by the modified 
core configurations: 
 

  
ɶC

A
= (1,1,0,−1,−1,0), ɶC

B
= (0,−1,−1,0,1,1). (11) 

 
 A computation proves that A B CI I I 0+ + =ɶ ɶ ɶ , which 

means that the inversion configurations form a two-
dimensional space. Similarly, A B CC C C 0+ + =ɶ ɶ ɶ  proves 

the two-dimensional assertion about the core 
configurations. A direct computation shows that the 
four different subspaces are orthogonal to each other. 
As these six vectors are independent, they span R6. 
 
Proof 2: This is obvious.  
 
Proof 3: For a rotational configuration, say (1, 0, 1, 0, 
1, 0), each alternative is in first, second and third place 
over the three triplets. Thus the outcomes for all Ps rules 
is a complete tie. As the same is true for (0, 1, 0, 1, 0, 1) 
and as Ps is a linear mapping, the assertion follows.  
 For the rotational configuration R = (1, 0, 1, 0, 1, 
0), a tally shows that BA,B (R) = BB,C (R) = BC,A (R) = 
(2,1), which yields the asserted A≻ B, B≻ C, C≻ A 
cyclic rankings. The reversed cycle occurs with (0, 1, 0, 
1, 0, 1). More generally, a computation proves that:  
 

A,B B,C C,AB (R) (1, 1), B (R) (1, 1), B (R) (1, 1)= − = − = −ɶ ɶ ɶ  (12) 

 
 The name of this configuration reflects this 
rotational effect of the paired comparison rankings. 
 
Proof of 4: The proof involves a computation. An 
inversion configuration consists of two triplets with 
opposite rankings, such as A≻ B ≻ C and C≻ B ≻ A. 
Thus, the ranking of a specified pair in the first triplet is 
accompanied by the opposite ranking of the same pair 
in the second triplet. The pair wise cancellation requires 
all BX,Y rankings to be ties over inversion 
configurations. 
 The situation changes over the Ps mappings 
because Ps(IA) = (2, 1 + 2s, 1 + 2s) while Ps(IB) = (1 + 
2s, 2, 1 + 2s). As any inversion configuration can be 
expressed as aIA + bIB, where a and b are scalars, it 
follows that: 
 
Ps(aIA+bIB) = (2a+b (1+2s), a(1+2s)+2bs, (a+b)(1+2s)) (13) 
 

 When s =
1

2
, the outcome is, as asserted, the 

complete tie (2(a + b), 2(a + b), 2(a + b)). 

 To prove the second part of the assertion, notice 

that Eq. 13 is linear in s and s = 
1

2
 is a complete tie. 

Thus, to prove that the rankings for 
1

s
2

<  are the 

opposite of the rankings for s >
1

2
, it suffices to examine 

what happens at the extremes of s = 0 and s = 1. These 
tallies are, respectively, (2a+b, 2b+a, a+b) and (2a+3b, 
2b+3a, 3(a+b)). So, if the s = 0 ranking has A>B, then 
2a+b>2b+a, or a>b. (With algebra, it now follows that 

the same Ps ranking holds for 
1

s
2

< .) Conversely, the s 

= 1 ranking of this pair, given by the 2a+3b and 3a+2b 
tallies, has B>A. (Again, by use of algebra, it follows 

that the same Ps ranking holds for
1

s
2

> .) A similar 

algebraic computation holds if B>A and for the {A, C} 
and {B, C} pairs.  
 
Proof 5: By using the linearity of the Ps and BX,Y 
mappings, it suffices to prove that the assertion holds 
for the basis vectors of TS, i.e., the core configurations 
CA and CB. With the core configuration CA = (2, 2, 1, 0, 
0, 1), we have that: 
 

Ps (CA) = (4, 1, 1) + 2s (1, 1, 1) 
 
so all Ps values agree modulo an inflation term of 
2s(1,1,1). By using xCɶ  instead of Cx, it becomes 

apparent that (2+2s) (1, 1, 1) reflects a kernel effect, 
this is because: 
 

s AP (C ) (2, 1, 1)= − −ɶ  (14) 

 
where, no s terms arise. Similarly, BA,B(CA) = 
BA,C(CA) = (5,1), BB,C(CA) = (3, 3). The close 
connection with the Ps values becomes clear by 
subtracting (3, 3) from each value, this is the same as 
computing A,B A A,C A B,C AB (C ) B (C ) (2, 2),B (C ) (0,0)= = − =ɶ ɶ ɶ . 

The conclusion follows.  
 
Theorem 2: For three alternatives, a simultaneous 
complete tie for any two NPs(d) rules and all pair wise 
comparisons occurs if and only if G(d) is a kernel 
configuration and there is a complete tie for all NPs 
rules. 
 Suppose for  s1 ≠ s2  that the rankings for both 
NPs1(d) and NPs2(d) are complete ties, but there is at 
least one non-tied pair wise comparison. This situation 
occurs if and only if all NPs(d) rankings define a 
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complete tie and the three pair wise comparisons define 
a cycle (where the difference in tallies is the same for 
each pair). In this setting, G(d) is the sum of kernel and 
rotational triplets. 
 Suppose all pair wise comparisons end in complete 

ties, but for at least one
1

s
2

≠  , the NPs(d) ranking is not 

a complete tie. This situation occurs if and only if the 
Kruskal-Wallis ranking is a complete tie and the 

rankings for all NPs(d), 
1

s
2

≠ , are not ties. The G(d) 

outcome of triplets strictly consists of a kernel 
configuration plus a linear combination of inversion 
configurations. In this setting, the NPs(d) ranking for 

1
s

2
< must be the reversal of the NPs(d) ranking for 

1
s

2
> . 

 
DISCUSSION 

 
 In this study, we discuss several consequences to 
the results presented above. We further explore their 
implications and illustrate that the symmetric data 
structures are the cause of all differences in 
nonparametric procedures. In addition, we develop the 
theory further to show how one can uncover the 
symmetry structures in a particular data set. Ultimately, 
our discussion leads us to characterizing the features 
that data must satisfy in order to contain such 
structures.  
 
Consequences: According to Theorem 1, all possible 
differences in NPs(d) rankings can be identified and 
explained strictly by how the associated Ps mappings 
react to the different components of the G(d) list of 
triplets. The starting point for data set d∈RD is the core 
component of G(d), here the rankings for all 
nonparametric rules and all pair wise comparisons 
agree and all differences in tallying values are due to 
the values the different rules assign to kernel 
components.  
 An immediate consequence of this assertion is that 
all differences among the rankings and tallies of the 
different procedures are strictly caused by the inversion 
and rotational components of G(d). This means, for 
example, that any and all differences among NPs rules, 
as well as the outcomes of the associated tests, are 
caused by the inversion component of G(d). The only 
rule that is not affected by these components is1

2
NP , 

which is the Kruskal-Wallis rule. This result means that 
if the configurations of such inversion effects are not 
viewed as being important, then the Kruskal-Wallis rule 

should be adopted over any other NPs, 
1

s
2

≠  method. 

If, however, the information content of such 
configurations is treated as being valuable, then one of 

the NPs, 
1

s
2

≠  rules should be adopted. The exact 

choice depends on what is desired for an A≻ B ≻ C, 
C ≻ B ≻ A configuration. 
 Similarly, all possible differences between the 
Kruskal-Wallis procedure and pair wise comparisons 
are due to how these different rules react to rotational 
components of G(d), the Kruskal-Wallis procedure 
ignores this information, while the pair wise 
comparisons are affected by it. For other NPs rules, 

1
s

2
≠ , differences in the tallies and rankings with pair 

wise comparisons are caused by a combination of the 
rotational and inversion components of G(d). In other 
words, all difficulties and complexities caused by 
paired comparison rankings are strictly due to the cyclic 
component of G(d). No other term plays a role. 
 In the other direction and by use of Theorem 1, 
information about the structure of the data set d and 
the G(d) triplets can be obtained from the NPs(d) 
rankings. Some of these results are captured in 
Theorem 2. Notice, for instance, that situations exist 
where it is impossible to have a single non-tied paired 
comparison. 
 
Summary of the consequences of data structure: 
The above results permit us to completely characterize 
which data structures affect the different 
nonparametric tests. This structure completely 
explains why different procedures have different 
outcomes. More specifically: 

 
• The Kruskal-Wallis procedure is strictly 

determined by the portion of ranked data that 
defines the core component in G(d). Non-core 
components-the inversion and rotational 
configurations-have no effect on the Kruskal-
Wallis ranking 

• For 
 
s≠ 1

2
, the NPs outcome is determined strictly 

by the components of the ranked data that create 
the core and inversion components of the G(d) 
profile, the rotational component has no impact on 
this ranking. For the data portion creating a core 
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component, the NPs rule agrees with the Kruskal-
Wallis outcome. All possible differences occur by 
how different NPs rules react to the inversion 
components in G(d). These NPs outcomes define a 
line in 3

ℝ  centered around the Kruskal-Wallis 
outcome. (According to Eq. 7, the score for each 
alternative is the number of times it is top-ranked 
plus s times the number of times it is second-
ranked. With three alternatives and 0≤s≤1, this 
defines a line in 3

ℝ , e.g., the proof of Theorem 2) 
• All MWW rankings of pairs are strictly determined 

by the data portions that introduce core and the 
rotational components in G(d). The outcome over 
the core component agrees with the Kruskal-Wallis 
outcome. All other differences are created by the 
cyclic effect introduced by the rotational 
component of a G(d) profile 

 
 According to this description, cycles of paired 
comparison rankings, different NPs rankings and 
differences among the pair wise and NPs rankings occur 
because the outcomes for different rules rely on 
different portions of the data structure. The results are 
stated for the case where k = 3 where the concepts are 
easily understandable, however, the ideas presented 
extend to k>3, but by using different symmetries. 

 
Data structures: Now that the source of all differences 
in nonparametric procedures are understood, the next 
step is to understand what kinds of d data structures 
create the different symmetry components of G(d). The 
first step is to find a representation that captures the 
different G(d) components and then to use this 
representation to develop intuition about the various 
forms of data.  
 
Finding the symmetry components: The 
decomposition of G(d) can be described with a matrix. 

First, let 6p∈ ℝ
 be a vector and let P̂= (aC, bC, aI, bI, r, 

k) be the representation of p in terms of the coordinate 
system: 
 

A B A BC ,C , I , I , R, K.ɶ ɶ ɶ ɶ ɶ  (15) 

 
Namely, C a c a I A I ABP A C b C a I b I rR kK.= + + + + +ɶ ɶɶ ɶ ɶ ɶ  

 By using the 6
ℝ  vector representations of these 

Eq. 15 coordinates, which are given in Eq. 9-11, the 
matrix relationship between p and Pɶ  is: 
 

t t t t t t t
A B A B

ˆp A(p ), A (C ,C , I , I ,R ,K )= = ɶ ɶ ɶ ɶ ɶ  (16) 

where, the superscript “t” designates the transpose, e.g., 
pt is the column version of p. 
 As matrix A is nonsingular, it follows from matrix 
algebra that t tp̂ T(p )=  where: 

 

1

2 1 1 2 1 1

1 1 2 1 1 2

0 1 1 0 1 11
T A

1 1 0 1 1 06

1 1 1 1 1 1

1 1 1 1 1 1

−

− − − 
 − − − 
 − −

= =  
− − 
 − − −
 
 
 

 (17) 

 
 Using the above described Eq. 3 ranked data as an 
illustration, this d leads to G(d) = p = (2, 2, 0, 2, 2, 0). 
Using this choice of p with T, we obtain: 

 

2
3

4
3

02

02

0
T

02

02

0

  
  
  
  
 = 
  
  
  

   
   

 

 

or the 2 4
A A3 3

ˆp̂ I K 2I= + =  representation. 

 
Examples, the n = 2 case: To appreciate how different 
ranked data structures cause G(d) to have different 
kinds of symmetry components, it is particularly 
useful to determine everything that can happen with 
three alternatives and n = 2 (where the unranked data 
does not have ties). By completely cataloguing what 
can happen, we discover that, already in this simplest 
non-trivial setting, interesting differences among the 
different procedures emerge. 
 To reduce the number of possible cases, notice that 
the entries in each column of Eq. 1 can be permuted in 
any manner without affecting the triplets or G outcome. 
Thus, assume that each column is ranked from the largest 
value down to the smallest, e.g., aj > aj+1. As the names of 
the alternatives can be permuted, further assume that 
a1>b1>c1. Using these symmetries, the n = 2 setting is 
reduced from the original 6! possibilities to the following 
fifteen cases.  
 
Theorem 3: The following ranked data sets define the 
associated profile decompositions, each decomposition 
also includes and 4

3 K  term: 



J. Math. & Stat., 6 (4): 395-408, 2010 
 

403 

4 2 2 1 2 2
A B B A3 3 3 3 3 3

2 2 1 2 2
A B C B C A3 3 3 3 3

1 1 1
A B B A A B3 3 3

6 5 4 6 5 4
C C I R, I ,

3 2 1 1 2 3

6 5 4 6 5 4
C C I R, C C I R,

2 1 3 1 3 2

6 5 4 6 5 4
C C I , C I I ,

2 3 1 3 1 2

6 5 3

1 4 2

   
→ + + − + →   

   

   
   → − − + → − + +      

   

   
→ − − → + +   

   

 
 
 

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ

2 4 2 4 2
A B A A A B3 3 3 3 3

54 1 2 4 2 2 2
A B B A B A3 3 3 3 3 3 3 3

7 52 2 1 2
A B A B A B A B3 3 3 3 3 3

6 5 3
C C I R, C I I

4 1 2

6 5 3 6 5 3
C C I R, C C I R,

2 4 1 4 2 1

6 5 2 6 5 2
2C 2C I I , C C I I R,

3 4 1 4 3 1

6 4 3

 
→ + + + → + + 

 

   
→ + − + → + − +   

   

   
→ + − − → + − − +   

   

ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

7 2 1 2 2 2
A B A B A A3 3 3 3 3 3

8 4 4 4
A B B3 3 3 3

6 4 3
C C I I R, 2C I ,

5 2 1 5 1 2

6 4 2
C C I R,

5 3 1

   
→ + − − + → +   

   

 
→ + − + 

 

ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 

 
 As K consists of six triplets, the common 4

3 K  

value means that each setting consists of 4
3 6 8=  triplets. 

To simplify the representations, some A A BC , I , Iɶ ɶ ɶ  terms 

are replaced with CCɶ and CI
ɶ terms. The following 

statement explains how to find the CCɶ and CI
ɶ terms and 

it provides computational rules to quickly compute and 
compare outcomes. 
 
Proposition 4: The coefficients for the core and 
inversion terms satisfy:  
 

A B B

A A B

I B I I I A I

C C C C C C

I IC C C C

I C C

a C b C (b a )C a C

(a b )C b C a I b I

(b a )I a I (a b )I b I

+ = − −

= − − +

= − − = − −

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 (18) 

 
 The Ps tally for XCɶ assigns 2 points to X and −1 

point to each of the other two alternatives. The Ps tally 
for XI

ɶ  assigns 2 − 4s points to X and 2s − 1 points to 

each of the other alternatives. The Ps tally for K assigns 
2 + 2s points to each alternative.  
 The tallies for XCɶ  in an {X, Y} pair wise 

comparison assign 2 points to X and −2 to Y. In a pair 
not including X, both alternatives receive zero points. 
The tallies for pair wise comparisons with the rotational 
configuration Rɶ  are A: B, B: C, C: A each by 1: −1. 
The tallies of a pair for K assign three points to each 
alternative. 
 The Kruskal-Wallis ranking for A and B always 
agrees with the ranking of the scalars aC, bC. The A, C 

ranking (respectively, B, C ranking) 

C CA C iff a 0 and C A iff a 0> >≻ ≻  (respectively, 

C CB C iff b 0 and C B iff b 0> >≻ ≻ ). If AT, BT, CT 

represent the Kruskal-Wallis tallies, then, with bC ≠ 0: 
 

T T

T T

c c

c

a b A B

b B C

− −=
−

 (19) 

 
Proof: The proof of Eq. 18 follows by using the 
appropriate substitutions of the two expressions 

A B CC C C 0+ + =ɶ ɶ ɶ  and A B CI I I 0+ + =ɶ ɶ ɶ .  

 The assertions about the tallies involve a direct 
computation.  
 To prove the material leading up to Eq. 19, notice 
that the Kruskal-Wallis tallies of A BC Ca C b C+ɶ ɶ

 for A, B, 

C are, respectively: 
 

C C C C C C4a 2b , 4b 2a , 2(a b )− − − +  (20) 

 
 Thus, the A B≻  ranking occurs 

C C C C4a 2b 4b 2a ,− ≥ −  or C Ciff a b≥ . Similarly, the 

ranking bC>aC holds iff A B≻ . The A C≻  ranking 
occurs iff 4aC−2bC>−2aC−2bC, or iff aC>0, similarly, 
C A≻  iff aC<0. A similar expression in terms of the 
sign of bC holds for B, C rankings. 
 To prove Eq. 19, notice that each of the AT, BT, CT 
Kruskal-Wallis tallies is a fixed multiple of the 
appropriate value in Eq. 20 plus a fixed constant 
(coming from the kernel term). Thus: 
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T T

T T

C C C C C C

C C C C C

(4a 2b ) (4b 2a ) a bA B

B C (4b 2a )( 2a 2b ) b

− − − −− = =
− − − −

 

 
 Interestingly, six of the fifteen ranked data sets in 
Theorem 3 have no cyclic component: Thus over these 
sets the Kruskal-Wallis and the pair wise rankings 
completely agree (Theorem 1). But as all choices 
include inversion terms, it follows that for all three 
alternative, n = 2 settings, different NPs rules must have 
different tallies over the data sets, even the rankings 
may differ.  
 To illustrate Prop. 4 and Eq. 18 notice that 

6 5 4

1 3 2

 
 
 

 ranked data yields the 

1 2 2 4
B C A3 3 3 3C C I R K − + + + 

ɶ ɶ ɶ ɶ  decomposition. According 

to Eq. 18, the core and inversion confidents 
are 1 1

B C3 3c c= > = − . By permuting the names in Prop. 4 

so that C and cC assume the roles of A and aC, we have 
that the Kruskal-Wallis ranking is B A C≻ ≻ . (The 
B C≻  ranking follows from cB>cC, the B A≻ ranking 
follows from bC > 0 and the A C≻ ranking follows from 

cC<0). Moreover, because C C

C

c b
2

b

− = − , we have that 

BT−CT = 2(AT−CT ), or BT −AT = AT−CT where the 
difference between tallies of ad|acently ranked 
candidates agree.  
 To provide a further sense of how to interpret 

Theorem 3, consider the 
6 5 3

1 4 2

 
 
 

 ranked data with its 

2 4 2 4 4
A B A3 3 3 3 3C C I R K− + + +ɶ ɶ ɶ ɶ  decomposition. The core 

term coefficients determine the Kruskal-Wallis ranking 
(Prop. 4) where, 4 2

C C3 3b a 0= > = > , so the Kruskal-

Wallis ranking is B A C≻ ≻  where the difference 
between the B and A tallies equals the difference 
between the A and C tallies. Because all Ps tallies agree 
on the core components and because this common core 
tally is the Kruskal-Wallis tally (minus kernel effects), 
the Kruskal-Wallis ranking serves as our standard basis 
for comparison. The relatively large rotational 
coefficient of this decomposition, 4

3r = , suggests that 

the pair wise rankings may not agree with Kruskal-
Wallis ranking: They do not, a computation (using 
Prop. 4) proves that this data set has a A = B, A = C tie 
with B C≻ . Moreover, the A-inversion value of 4

I 3a =  

suggests that the Bhapkar V ranking (in our notation, 
NP0(d)) might differ from the Kruskal-Wallis ranking, 
it does with A B C= ≻ . At the other extreme, the 
NP1(d) ranking differs from the Kruskal-Wallis 

outcome in a different direction, it is B A C=≻ . The 
earlier assertion that all NPs(d) outcomes define a line 
with endpoints NP0(d) and NP1(d) ensures that all 
remaining NPs(d) rankings are A B C≻ ≻ , but their 
tallies differ due to the inversion components of G(d). 

 On the other hand, the 
6 5 4

2 3 1

 
 
 

ranked data has 

the 1 4
A B B3 3C C I K+ − +ɶ ɶ ɶ  decomposition. The core terms 

define the Kruskal-Wallis ranking of A B C= ≻  where 
the absence of a rotational term ensures that this 
ranking and the tallies agree with those of the pair wise 
comparisons of A B,A C,B= ≻ . The inversion term 
requires the Bhapkar V tally and ranking to penalize B, 
which it does with the ranking A B C≻ ≻ . 

 
Characterizing data sets: Different rules react 
differently to different kinds of data sets, so the next 
step is to characterize which data sets (for n ≥ 2) strictly 
define kernel, rotational and inversion terms. While the 
natural approach is to use the inverse G−1 mapping, this 
is not feasible. As an alternative, properties of what 
would be the G−1 sets are determined. So, to create 
examples that exhibit more general behavior, just 
combine these structures. (Some care is needed because 
of the inherent sense of nonlinearity of G(d), i.e., in 
general, G(d1∪d2) does not equal G(d1) + G(d2). 
 
Definition 2: A ranked data set d is called a kernel, 
inversion, rotational, core data set if and only if G(d) is, 
respectively, a kernel configuration, the sum of a kernel 
and (nonzero) inversion configuration, the sum of a 
kernel and (nonzero) rotational configuration, the sum 
of a kernel and(nonzero) core configuration. 
 The characterization of the disruptive rotational 
and inversion components of the data is 
straightforward. The difficulty is to prove that such data 
examples exist. In the following characterization, let 
XYZ be the set of all triplets constructed from the 
ranked data of the Eq. 1 form that have the ranking 
X Y Z≻ ≻ and let |XY Z| be the number of such triplets. 
Similarly, XY are all triplets that have X ranked above 
Y and |XY| is the number of such triplets. Proofs of the 
following results are in the Appendix. 
 Particular interest is in the inversion behavior as it 
forces different NPs outcomes. 
 
Theorem 5: Data set d is a strict inversion data set if 
and only if: 
 
|ABC| = |CBA|, |ACB| = |BCA|, |CAB| = |BAC| (21) 
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where, at least two sets of equalities do not have the 
same value and: 
 
|AB| = |BC| = |CA| = |BA| = |CB = |AC| (22) 
 
Such data sets exist: Examples seem to require the 2ℤ  

orbit structure whereby rows have opposing rankings. 
This is the structure of the Eq. 4 example, which is a 
pure inversion data set. Also, for the pure inversion: 
 

A B C

12 11 10

7 9 8

6 4 5

1 2 3

 

 
the first and fourth rows and the second and third rows 
reverse each other. However, examples exist that do not 
have the same number of rows with one ranking as with 
its reversal. A two-sample reversal example is where 
the A, B ranked information is (1, 3), (2, 4), (6, 5), (8, 
7), (10, 9), (12, 11) where the first four rows have A > 
B while the last two have B > A. Three alternatives 
examples also can be created. 
 Rotational data sets are interesting because they 
create pair wise cycles and differences between pair 
wise rankings and all NPs outcomes.  
 
Theorem 6: Data set d is a strict rotational data set if 
and only if: 
 
|ABC| = |BCA| = |CBA| ≠ |ACB| = |CBA| = |BAC| (23) 
 
if and only if: 
 
|AB| = |BC| = |CA| ≠ |BA| = |CB| = |AC|  (24) 
 

3n
| ABC | ABC | | BAC | | BCA | | CAB | | CBA |

3
+ = + = + =  (25) 

 
and for any permutation of the letters: 
 

1
ABC | ACB | (| CAB | | BAC |)

2
1

| BAC | | BCA | (ABC | | CBA |)
2

+ + =

+ + +
 (26) 

 
Such data sets exist: The construction of such data sets 
captures the spirit of the 3ℤ  structure, but with 

complications. To explain, the following pure rotational 
data set is divided into three parts: 

A B C A B C A B C

27 26 25 16 18 17 8 7 9
, ,

22 24 23 14 13 15 6 5 4

20 19 21 12 11 10 1 3 2

  (27) 

 
where, the first array arranges the row data in the 
expected A>B>C, B>C>A, C>A>B order of a 3ℤ  orbit. 

The 33 27= rankings, however, are |ABC| = |CAB| = 5, 
|BCA| = 8, while |BAC| = 2, |CBA| = 3 and |ACB| = 5, 
according to Theorem 10, the G(d) ranking is not a pure 
rotational plus kernel term as it slightly favors C. 
Nevertheless, the outcome is a pair wise cycle, A>B, 
B>C each by 15:13 and C>A by 16:12.  
 To create a pure rotational term, introduce two 
more sets of three rows where the top defining rows 
among the sets have the 3ℤ  rankings. As the first row 

of the first set starts with an A>B>C ranking, start the 
second set with B>C>A, where A is slightly favored 
and the final set with C>A>B, where B is slightly 
favored. Namely, each set of three rows reacts the 3ℤ  

symmetry and the three sets are connected with a 3ℤ  

symmetry construction. The resulting Eq. 27 is a 
rotational data set. While all rotational data sets we 
have found satisfy this construction, we expect other 
structures will be discovered.  
 Constructing examples with mixed behavior now is 
immediate. For instance, the first block below is a 
version of the first three rows of Eq. 27, the second 
block is the pure reversal Eq. 3: 
 

A B C
A B C

15 14 13
6 5 4

10 12 11
1 2 3

8 7 9

 

 
 Combined, the new data set has the anticipated 
outcome with the Kruskal-Wallis ranking A = B = C, 

the NPs ranking of A B C≻ ≻  for 
1

s
2

<  and C B A≻ ≻  

for 
1

s
2

>  and the pair wise rankings for the cycle 

A B,B C,C A≻ ≻ ≻ . The kernel data sets are 
characterized by the following.  
 
Theorem 7: Data set d is a kernel data set if and only 
if: 
 
|ABC| = |ACB| = |CAB| = |CBA| = |BCA| = |BAC| (28) 
 
if and only if: 
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|AB| = |BA| = |CB| = |BC| = |AC| = |CA| (29) 
 

3

| ABC | | ACB | | BAC | | BCA |

n
| CAB | | CBA |

3

+ = + =

+ =
 (30) 

 
and for any permutation of the letters: 
 

1
| ABC | | ACB | (| CAB | | BAC |)

2
1

| BAC | | BCA | (ABC | | CBA |)
2

+ + + =

+ + +
 (31) 

 
 Such data sets exist. 
 An example is: 
 
A B C

17 16 18

14 15 13

10 12 11

9 7 8

6 5 4

1 2 3

 (32) 

 
where, the first two rows have the inversion C>A>B, 
B>A>C assortment, the next two have B>A>C, C>A>B 
and the last two have A>B>C, C>B>A. In other words, 
a kernel term is created by introducing canceling 
inversion components. The same construction can be 
done by combining two canceling rotational terms.  
 The final step would be to find a pure core data set. 
We can prove that such data sets do not exist when 
certain reasonable assumptions are imposed, but, as of 
this writing, we do not know whether this is true in 
general. We can, however, find conditions whereby the 
data set has no core terms, this is true if and only if the 
Kruskal-Wallis ranking is a complete tie. 
 
Theorem 8: The string of equalities ABC | | ACB |+ +  

1 1
(| CAB | | BAC |) | BAC | | BCA | (ABC | | CBA |)

2 2
+ = + + + =  

1
| CBA | (| ACB | | BCA |)

2
= +  holds if and only if 

Kruskal-Wallis technique outputs A = B = C. This 
condition also holds if and only if the sums of the Eq. 1 

columns are equal (with value
n(3n 1)

2

+
 ). 

 
Theorem 9: The equalities | ABC | | ACB |+ =  

n
3

3
| BAC | | BCA | | CAB | | CBA |+ = + =  hold if and only if 

the V test outputs A = B = C.  

Proof of Theorem 2: The first part follows directly 
from Theorem 1.  
 The second part follows from Theorem 1 and Eq. 
14, NPs rankings are determined by core and inversion 
terms in G(d). If any two different NPs methods have 
complete ties, it follows from Eq. 13 that G(d) has no 
core or inversion components. Thus all NPs rules define 
a complete tie and G(d) consists of kernel and rotation 
terms. If one pair wise outcome is not a tie, then G(d) 
has a non-zero rotation component. Consequently (Eq. 
12), the pair wise comparisons define a cycle and the 
differences between tallies of the three pairs is fixed. 
 For the third part, the fact that all pair wise 
comparisons end in ties means that G(d) does not have 
any core or rotational terms. In turn, the Kruskal-Wallis 
ranking is a complete tie (Theorem 1). Thus, G(d) is the 
sum of a kernel and inversion terms. It follows from Eq. 
13 that the NPs(d) tallies define a line in R3 where 

1

2

NP (d) is a complete tie that is on the diagonal t (1, 1, 

1). It follows from the geometry of R3, as divided by 
the hyperplanes x = y, x = z, y = z, that all points on 

line that are on one side of 
1

s
2

= have the same ranking, 

while those with 
1

s
2

> have the opposite ranking.  

 
Proof of Theorem 3: This is a direct computation. 
After computing G(d) for each data set, the 
decomposition comes from using Eq. 17. 
 Proofs of Theorem 5-7. The “if and only if” 
assertions involving Eq. 21-29 follow directly from 
properties G(d) must satisfy for d to have the 
designated properties. In practice, we found that one or 
the other of these conditions, depending on the data set, 
to be more useful when examining data. 
 While the existence assertion in each of these 
theorems is verified by finding examples, the way in 
which examples were found and theorems proved 
(independent of finding examples) was to verify the 
necessary and sufficient conditions of each of these 
theorems by proving that the G(d) mapping admits the 
specified properties. The details for Theorems 5 and 7 
are given next, details for Theorem 6 are similar. 
 
Lemma 1: Let the n × 3 data set d have distinct entries 
(a1,.., an, b1, .., bn, c1.., cn), then |AB| + |BA| = |BC| + 
|CB| = |AC| + |CA| = n2. 
 
 Proof: Let AB be the set of all elements of the (ai, bj) 
form where ai>bj, so BA denotes the set of the form (ai, 
b|) where ai<bj. Thus AB + BA is the set of all elements 
(ai, bj), by counting, there are exactly n2 of these types 
of elements. This completes the proof.  
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 This following Lemma highlights the importance 
of the pair wise relationship in the data, while providing 
an appropriate structure to capture the Reversal data 
behavior.  
 
Lemma 2: The equality |ABC| = |CBA| holds if and 
only if |BA| + |CB| = n2 if and only if |AB| + |BC| = n2. 
 
 Proof: By definition |ABC| is the number of triplets of 
the form ai>bj>ck. This number can be expressed in 
terms of pair wise relationship between A and B and 
between B and C. In other words, defining AbjC = {(ai, 
bj, ck) |1≤i, k≤n: ai>bj>ck} (i.e., bj is fixed), we have that 

n

jj 1
| ABC | | Ab C |

=
=∑ . By letting Abj = {(ai, bj)|1≤ i, |≤ n: 

a1>bj} (i.e., bj is fixed), this sum can be re-expressed as 
n

j jj 1
| Ab C | | b C |

=∑ . 

 To simplify this expression, notice that with n 
entries per column, the number of pairs of the |Abj| 
form equals (n−|bj A|). The reason is that the pairs Abj 
consist of the A’s (out of the n total number of A’s) that 
are larger than bj for a fixed. Thus the remaining A's 
(out of n of them) must be smaller than bj. 
Consequently, we have that 

n n

j j j jj 1 j 1
| Ab C | | b C | (n | b A)(n | Cb |)

= =
= − −∑ ∑ . 

 By factoring, this sum equals 
n 2 3

j j j jj 1
| n n | Cb | n | b A | | Cb | b A | n n | BA | n | CB |

=
− − + = − −∑

 
n 3

jj 1
|Cb A n n | BA | n | CB | 0

=
 + = − − =
 ∑ . In turn, we 

have that n3−n|BA|−n|CB|+|CBA| = |CBA| if and only if 
n3−n|BA|−n|CB| = 0 and this only happens if and only if 
|BA|+|CB| = n2. This completes the proof. 

 
Lemma 3: The equality |ABC| = |CBA| holds if and 
only if |AB| = |CB| if and only if |BA| = |BC|. 

 
Proof: From Lemma 1 we have that |AB|+|BA| = n2 = 
|CB|+|BC|. According to Lemma 2, |ABC| = |CBA| 
holds if and only if |AB|+|BC| = n2 if and only if n2 = 
|CB|+|BA|. So, if |ABC| = |CBA|, then the two 
equations |AB|+|BA| = n2 and |AB|+|BC| = n2 require 
|BA| = |CB|, similarly, |AB| = |BC|. Conversely, if |AB| = 
|CB|, then the |AB| + |BA| = n2 expression becomes 
|CB|+|BA| = n2. According to Lemma 2, this is true if 
and only if |ABC| = |CBA| if and only if |AB| + |BC| = 
n2. A similar argument holds if |BA| = |BC|.  

 
Lemma 4: The equalities |ABC| = |CBA|, |BCA| = 
|ACB| and |CAB| = |BAC| hold if and only if |AB| = 
|BA| = |CA| = |CB| = |BC| = |CB|. 

Proof: By Lemma 3, |ABC| = |CBA| if and only if |AB| 
= |CB| if and only if |BA| = |BC|. This implies that 
|ACB| = |BCA| if and only if |AC| = |BC| if and only if 
|CA| = |CB| and |CAB| =|BAC| if and only if |CA| = 
|BA| if and only if |AC| = |AB|. Then |ABC| = |CBA|, 
|BCA| = |ACB| and |CAB| = |BAC| if and only if |AC| = 
|BC|, |CA| = |CB|, |CAB| = |BAC|, |CA| =|BA|, |AC| = 
|AB| and |CA| = |CB| which imply |AB| = |BA| = |CA| = 
|CB| = |BC| = |CB|. 
 
Proof of Theorem 5: This follows from the definition 
of an inversion data set and Lemma 4. Theorem 7 also 
follows from the above lemmas. 
 
Proof of Theorem 8: The Kruskal-Wallis 
technique, 1

2
NP , assigns one, 1/2 and zero points, 

respectively, to the first, second and third place 
alternative in a triplet. Thus A = B = C if and only if for 
any alternative the number triplets it wins plus half of 
the number of the triplets it is in second place is the 
same value. Namely, 1

2|ABC|+|ACB|+ (|CAB|+|BAC|)  
1
2=|BAC| + |BCA| + (|ABC| + |CBA|) = |CAB| + |CBA| + 

1
2 (|ACB| + |BCA|). An alternative Kruskal-Wallis 

procedure is to add the Eq. 1 columns. The procedure 
has a tie if and only if these sums all agree. As the 

values from 1 to 3n sum to 
3n(3n 1)

2

+
, the common 

value is 
n(3n 1)

2

+
. 

 
Proof of Theorem 9: The V test technique, NP0, 
assigns one point to the winner of each triplet and zero 
points to the second and third place alternatives. For the 
V test to have A = B = C, the number of triplets for 
which each alternative is top-ranked is the same, or 
|ABC|+|ACB| = |BAC|+|BCA| = |CAB|+|CBA|. With n3 
triplets when each alternative has n observations, the 
triplets are divided into three equal parts, so 

3n
ABC ACB BAC BCA CAB CBA .

3
+ = + = + =  

 
CONCLUSION 

 
 Inconsistencies among the outcomes of 
nonparametric procedures can occur when analyzing 
the same ranked data set. Understanding why these 
peculiarities can occur is imperative to providing an 
accurate and desired analysis of ranking data. The 
results in this study illustrate that the inconsistency of 
procedure outcomes can be attributed to specific 
symmetric data structures that may be present in the 
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data. These findings thus offer a comprehensive 
analysis of the problem by: (1) defining the symmetric 
structures that cause the inconsistent outcomes, (2) 
developing a method to uncover the existence of the 
symmetric structures in a data set, (3) understanding the 
effects of each type of symmetric structure on each 
nonparametric procedure and (4) characterizing data 
that possess such symmetric structures. This 
contribution paints a full picture of the issues that may 
occur when using the nonparametric procedures 
considered. In addition, it offers a guide for choosing a 
procedure to analyze ranking data contingent on the 
importance the researcher wants to place on specific 
aspects of the data.  
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