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Abstract: Problem statement: Many different nonparametric statistical proceducan be used to
analyze ranked data. Inconsistencies among theomas of such procedures can occur when
analyzing the same ranked data set. Understandmygtiese peculiarities can occur is imperative to
providing an accurate analysis of the ranking data.this context, this study addressed why
inconsistent outcomes can occur and which typedatd structures cause the different procedures to
yield different outcomesApproach: Appropriate properties were identified and devebbpo explain
why different methods can define different rankingshree samples with the same data. The approach
identifies certain symmetry structures that arelicitfy contained within the data and analyzes how
the procedures utilize these structures to produceutcomeResults: We proved that all possible
differences among the nonparametric rules are dabseause different rules place different levels of
emphasis on the specified symmetry configuratidrata. Our findings explain and characterize why
different procedures can output different resuking the same data sefonclusion: This study
therefore served as crucial step in deciding whiohparametric procedure to use when analyzing
ranked data. In addition, it serves as the buildilogk to defining new techniques to analyze rag&in
Because different procedures use different aspetthe data in different ways, then one may
determine the choice of analysis procedure basethan parts of the data one deems important.

Key words: Nonparametric, symmetry, ranked data, Kruskal-&/all

INTRODUCTION data. The value of discovering these structurethas
they identify and completely characterize whichadat

As it is known, the peculiarities of different configurations force different classes of nonparaime
nonparametric tests can complicate the choice of aprocedures to have different outcomes. As an
appropriate test statistic. To shed light on tliaaern, illustration of what our analysis provides, consitlee
we identify those features of nonparametric prooeslu interesting mystery coming from the following radke
that cause dissimilar, even conflicting resultsotwur  data set for three alternatives {A, B, C.,}:
with the same data set. Our approach uses thehaict

before noticeable differences can arise in thestest A B C

disagreements can be expected among the implicit 12 11 10

rankings that are defined by the associated proesdu 7 9 8

For instance, before a disagreement can occur batwe .

the Kruskal and Wallis (1952) and, say, the Bhapkar

(1961) tests, we should anticipate differencesow the 2 1 3

k samples are ranked as implicitly determined by th

Kruskal-Wallis and the Bhapkar V procedures. Thus i For these data, the Kruskal-Wallis procedure leads
natural to analyze these more sensitive rankingliets  to the C> A~ B ranking while these same data force
to understand why these differences can arise. the Bhapkar (1961) procedure to yield the-B>~C

The way we do so is to extract certain hiddenranking. The data structures that will be idendifig
symmetry structures that are implicitly defined thye.  our analysis completely explain all such behavibr o
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this kind. As another illustration using this dat#, the data sets. For instance, after we prove that acpkat
Wilcoxon (1945) rules (denoted by MWW) define symmetry structure at the intermediate stage caalses
theA~B, B ~ C, C~ A rankings of the pairs. Again, differences between the Kruskal-Wallis ranking and
our analysis completely explains how and why atlhsu pair wise comparisons, we then describe how this
differences can arise, it shows that all possiblesymmetry is manifested within the data.
differences are due how different rules react to a
particular symmetry structure of the data. MATERIALSAND METHODS

By knowing which kinds of data configurations
cause rules to have different outcomes, we obtain ®ur method for uncovering why different procedures
deeper understanding about the behaviors anthay yield different results when analyzing the same
peculiarities of various nonparametric tests. Kby f ranked data, consists of three steps: (1) translatev
instance, a certain data structure that is not @ibws data set to triples, (2) define and decompose how a
being important turns out to influence the tallmsd  nonparametric procedure utilizes the triples infation
rankings of a specified procedure, then the astmtia and (3) define symmetries (e.g., rotational, iniers
test may not be an appropriate one. Converselynéf on the data space to uncover how different proesdur
rule ignores a type of data structure that is amzkps react to such structures. In this study, we descegdich
being valuable while a second one does not, thisn thof the steps in detail.
information provides support for adopting the seton
rule. For example, the data presented above, lead tFrom data to triplets: For purposes of clarity, our
Kruskal-Wallis test to reject the null hypotheststike  analysis emphasizes the three-sample setting d&note
0.05 significance level, the V test to reject thdln by the three alternatives A, B, C; for convenience,
hypothesis at the 0.01 significance level and treM  assume that a data set of n items is collecteckdch
Whitney test to fail to reject the null for all pavise alternative. An item may be, for example, the
comparisons of the three alternatives. Thus thea dattemperature of a chemical, or the bending strengtn
configurations developed here highlight the precisenaterial sample. List the information as in the
structures of the data that can lead to an inferencfollowing array of raw, unranked data:
decision with some test but not others. This, im.tu

directly affects the choice of nonparametric teste A B C
used in an analysis. s ot
As we will show, all possible differences among ros t
. 2 2 2
these rules are in terms of how they react to these
hidden symmetry components of the data. Namely, t
r, s

some procedures ignore certain symmetries that are
inherent in the data, while the outcomes of othdes

are strongly influenced by them. What complicates t Replace these values with integers ranging from 1-
analysis is that these symmetries are not apparef, Wwhich indicate how a value ranks across all
within data sets. Fortunately, however, the symieetr samples, smaller numbers correspond to lower
can be identified at an intermediate step in the€mperatures, or a weaker bending strength. This
processing of the data and so our analysis extthets creates the following equation of ranked data (t&no
symmetry structures from this intermediate step. the space by RD):

As described in the Materials and Methods, this
intermediate step is where the nonparametric msthod A B C
over k sample-the ones we have in mind-combine dataal b ¢
information into k-tuples. In a natural manner,ritiy a b ¢ L
this space of k-tuples with a Euclidean spate this ?
identification makes it possible to associate the ™
symmetries of R* with those of the k-tuples and to & B G
determine how these symmetries affect different
nonparametric procedures. (Our approach is inflednc where, the aby c; terms are the ranking integers that
by recent results in decision analysis, e.g., S2808).  range from 1 to 3n.

By identifying the symmetry structures and their The ranked data in a Eg. 1 form is converted into
consequences at the intermediate step, it becomesplets by listing all A triplets (a by, G). To replace
possible to define an “imposed symmetry structdoe” each triplet with a ranking, make a distinction tas
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whether larger or smaller values are “better,” st tests such as the Wilcoxon rank sum test and Mann-

article, larger values as treated as being morepesl.  Whitney test as well as k sample comparison tests f

In the case of an unbalanced design, the number dfie one-way layout.

triplets will not equal iy however, the conversion of The k sample comparison procedures that we

data into triplets remains the same as the balacasel  consider create a ranking by assigning points thea

Denote this space of ranked triplets by TS. Reprtese alternative based on how it is ranked within eaeh k

this process as a mapping (Haunsperger, 1992): tuple, or, in our setting, within each triplet.

G'RD - TS o) Members of this class of procedures have been
' proposed by Bhapkar (1961); Deshpande (1970) and

As an illustrating example, the following ranked Bhapkar and Deshpande (1968). With the Bhapkar V

data set from RD: test, for instance, an alternative receives a ptont
each triplet in which it is top-ranked. In contraste
A BC Bhapkar and Deshpande (1968) procedure assigns +1
d=6 5 4 (38)  points to an alternative each time it is top-ranked k-
1 2 3 tuple and-1 points for each time it is bottom-ranked.

While the Kruskal-Wallis test normally sums the ksain
defines the eight triplets: assigned to each alternative, Haunsperger (1992)
showed that the ranking also arises by assigning an
(654 (653( 6.24( 629,194,150, 3p(1.23 alternative two points for each triplet where ittds-
ranked and one point for each triplet where itisond-
With, respectively, the associated rankings: ranked. While the use of some of these tests isasot
widespread as, say, the Kruskal-Wallis approacks it
A>B>C,A>~B>C, A>-C>B, A~ C> B, (4)  important to include the full class of these prages in
B>~C>A B~C>A C-B-A C-B- A our analysis in order to understand the feature$ th
cause different tests to have different outcomeshis
Thus, G(d) is the set of eight rankings with two manner, new insights are obtained about subtlelemid
each ofA-B>~C,C~B>~AA~-C>B andB>~C> A. features of approaches, such as that of KruskalidVal
There are six ways to strictly rank triplets, s8 T As our objective is to identify what causes dfetr
resides in a six-dimensional space, each of the sigrocedures to have differences in the rankings and
rankings define &R°® coordinate direction. By choosing tallies over three samples, we can, without loss of

the R® coordinate directions in the: generality, use the fact that these rankings arariant
with respect to affine changes in the assigned htgig
A>B>CA>C>B,C> A>B,C>- B> A, This permits us to assume that the bottom ranked
B~C~AB~A>C alternative always receives zero points. So, ifule r

assigns 3, 0 an€dl points to an alternative each time it
order, the triplets associated with the above dloan is, respectively, top, middle and bottom rankedain
expressed as G(d) = (2, 2, 0, 2, 2, 0). Ties anelleel in  triplet, an equivalent rule is obtained by addinge o
an obviousR® manner, e.g., a triplet with the[AB ~ C  point to each weight so that the assigned valuesare
ranking splits the difference between~B~Cand (4, 1, 0). Next, scale the assigned points so omat
B> A »Cwith (1/2, 0, 0, 0, 0, 1/2), while AB OC is point is assigned to the top-ranked alternativg., ¢he
represented by (1/6,..., 1/6). For large values aha, (4 1, 0) choice becomes (1, 1/4, 0).
standard analysis can become computationally [0 this manner, any three sample rule can be
intensive. As such, representing the data as anegie  represented by (1, s, 0) for a specific value Gf§, 1].
in R® greatly condenses the information captured byAS an illustration, the normalized weights assighed
the data. Moreover, because all computations rethuce the Bhapkar V test are (1, 0, 0). With the Bhapkar-
dot products of vectors, thig® representation provides Deshpande rule involving k samples, the original
an efficient, simpler way to explore the data set'sweights of the (1, 0,..., €1) choice are translated to (2,
important features. 1, ..., 1, 0) and then scaled to (1, 1/2, ..., @J2Thus,

for triplets, the normalized weights for Bhapkar-
A class of nonparametric rules. The nonparametric Deshpande rule agree with the Kruskal-Wallis rule's
rules considered here include pair wise comparisomormalized weights of (1, 1/2, 0).
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Decomposition of the procedures. The rule ranks the
alternatives in terms of the sums of the assigredtf
Let the summation process for a procedure that tinges
weights (1, s, 0), 8]0, 1] be represented by the
mapping
Ps TS- R? (5)
where, the tallies are listed in the A, B, C ordEo.
illustrate with the above p = (2, 2, 0, 2, 2, Ohieh
represents the Eq. 3 data, we have:

Pdp) = (4,2+4,2+4) (6)
where, the tallies are listed in the A, B, C ordeg., A

three alternatives. Three of these symmetry
configurations are natural, an explanation for fingrth
is given later.

The first and obvious symmetry configuration of
TS is an orbit of § this configuration of triplets has
each ranking occurring the same number of timek. If
=(1, 1,1, 1,1, 1), then, for an appropriate chobf
¢>0, this configuration is represented by cK. Obgly,
this configuration of 6¢ triplets leads to tie rangs for
all of the Rrules and for all pairwise comparisons, as
such, cK is called a kernel configuration.

The next natural symmetry is the, orbit of a

triplet. For instance, if the starting ranking is-8 - C,
then the set defined by the, orbit is:

receives 4 points while B and C each receive 2+4s

points. Notice how the choice of s alters the final{a ~B ~C,B~C ~A,C~A ~B}.

ranking, for instance, Wiﬂ$<% , A has a higher score

than B, with s>% , B has a higher score than A and

with s:% , which corresponds to the Kruskal-Wallis

procedure, all alternatives have the same tally.

(8)

This particular rotational configuration congisfi
of three triplets has the (1, 0, 1, 0, 1,[0)R® vector
representation. The other rotational triplet, gatest by
A~C=B, is given by (0, 1, 0, 1, 0, 1). To construct
either configuration of preferences, move the top
ranked alternative in one triplet to the bottomkiag in

With these choices, a class of nonparametric rulethe next triplet. This construction ensures thathea
can be written as a composition of functions in thealternative is in first, second and third placecisely

following manner (Haunsperger, 1992).

Definition: For a specified value of s satisfyingsR1

once over the set of three triplets.
A final natural symmetry is the,2rbit, this pair
consists of the ranking of a triplet and the inedrt

and ranked data d, N the nonparametric procedure version of the ranking. As an illustration, thig orbit of

defined as:

NP(d) = R(G(d)) ()

For example, NPand NP, represent, respectively,

the Bhapkar V and the Kruskal-Wallis proceduresthwi
the Eq. 3 choice of d, it follows from Eqg. 6 thaet
Bhapkar V ranking is AC =B while the Kruskal-
Wallis ranking is ABLC:

the ranking A- B~ C is the set {A- B> C, C~ B> A}.
For alternative X, X = A, B, C, an X-inversion
configuration, &, consists of the four different triplets
where X is either top or bottom ranked: As suchisX
top ranked for two of the triplets and X is bottom
ranked for each of the two remaining triplets. \gsihe
vector representation, the A-inversion configunatie

Ila = (1, 1, 0, 1, 1, 0), while the B-inversion
configuration is ¢ = (0, 1, 1, 0, 1, 1). Notice that the

The MWW rankings of binaries have a similar EQ- 4 configurationis p = 2l

representation. Namely, let:

By, TS - R?

be the mapping where the first component regigters
number of triplets for which X is ranked above Ydan

What remains is what we call the core
configuration, it consists of six triplets. The
configuration for an alternative X is where theme a

two triplets for each ranking where X is top-ranket
there is a single triplet for each ranking whereisX

middle-ranked. Thus, £= (2, 2, 1, 0, 0, 1), while ==

the second component registers the number of tsiple (1, 0, 0, 1, 2, 2).

for which Y is ranked above X. The MWW rankings

defined by a data set d for the pair {X, Y} is givey
the composition By (G(d)).

RESULTS

As the tests for these various rules are basdtieon

Symmetries of the TS space: The symmetries for three tallies of NR(d) = R(G(d)) and as the G(d) value is
samples come froms;$he space of all ways to permute common for all tests, it follows that all differegscin
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tests are due to differences in the tBllies. This the data components that create inversion confignsa
observation, combined with our concern to undetstanThus this theorem (and Eq. 7) provides a complete
what causes all possible differences in theseetallind  explanation for all possible differences in ranking
rankings, shifts the emphasis to determine how théetween, say, the Bhapkar V and the Kruskal-Wallis
symmetry structures of the TS space 91, affect the  procedures. Namely, rankings for the Bhapkar V dest
different B outcomes. This analysis is carried out ininfluenced by the triplets with inversion comporseiut
results. Then, to capture how this symmetry stmectu the Kruskal-Wallis procedure ignores these comptsnen
is manifested by data, we develop an argument to This assertion can be illustrated with the Eqaad
capture aspects of the inverse image of G. set d. Using Eq. 7, the V procedure ranking is Phe
Our main results are summarized below inoutcome of 24, which is (2, 1, 1) with the
Theorem 1. The Theorem characterizes how eacborresponding A- B(IC ranking. As the Kruskal-Wallis
nonparametric procedure utilizes the symmetryranking ignores this inversion structure, it muglg/
configurations in the ranking data. The role ofsthe the complete tie AIB OC.
configurations of triplets is captured by the fallag Similarly, according to Theorem 1, all differences
theorem, which, de facto, describes a coordinatgesy in rankings between the Kruskal-Wallis procedurd an
for the vector space TS (to ensure that the syséeem paired comparisons are caused by the rotational
partially orthogonal, the above choices are slightl components. Thus, if the data does not have
modified in what follows). The value gained by @sin components of triplets of this kind, the Kruskaliga
this coordinate system is that, as shown in Thedtem and MWW rankings of the pairs completely agreeneve
the coordinates separate the components of G(@p  the tallies can be obtained from each other. BG&(id)
into those parts that cause different nonparametridoes have rotational components, differences ensrge
procedures to have different tallies and rankings. least in the tallies if not the rankings.
It remains to describe the core configurationsyth
Theorem 1: Let X, Y, Z represent the three are found in the following manner. According to tpar
alternatives: of Theorem 1, the kernel, rotational and inversion
configurations define a four dimensional linear
1. The space of triplets, TS, is spanned by the kernekubspace of six-dimensional TS space. The remaining

rotational, inversion and core configurations two-dimensional orthogonal subspace is spannethédy t
2. The kernel configurations provide ties for allddd  core configurations. While the construction conesnf
Bxy outcomes linear algebra, a surprise is the universal coasist of

3. With a rotational configuration, all sAmappings outcomes for all procedures over these configunatio

yield a completely tied outcome. However, the ) ) ] )
Byv, By, Byx outcomes form a cycle where, for Proof 1: To prove 1, first modify these configurations so
each pdir the tally is the same that they create a coordinate system, to do sorenlyire

4. For any inversion configuration, the outcome for 'emoving kernel components from each choice_to make
any pair By is a tie. For the Prankings, the the resu!t ortho_gonal to any kernel vector. Fotansg,

| the rotational triplet 2R = (2, 0, 2, 0, 2, 0) egEnts six

triplets, it consists of two sets of the Eq. 8 iagk. To

convert this vector into a form that is orthogotwmthe

kernel configuration K = (1, 1, 1, 1, 1, 1), use:

Kruskal-Wallis procedurep, , has a tie. For the

other rules, the rankings of all for s<% are the

. . 1
opposite of the rankings for, Br s>E R=2R-K=(2,0,2,0,2,0y 1,1111, ©)
5. For any core configuration of triplets, allsP = (1L-11-117 1)
rankings agree and alkB rankings agree with this i _ .
common Rranking where, the +1 terms define one rotational triptet the

-1 terms define the other one. The interpretatiora of
The importance of this result, which is descriied Nnegative value in a configuration, then, is to Eait

more detail below, is that these symmetry confiions  this number of triplets whemR is added to a specified
fully determine why different nonparametric procestu  set of triplets.
have different outcomes and rankings. As an ilhtistn, The resulting coordinate system defined for the si
notice that all Ps outcomes agree on the cordimensional TS consists of the kernel vector K, the
configurations, this assertion requires any disagents  rotational coordinateR of Eq. 9, a two-dimensional
among different Pprocedures and tests to be caused bgpace spanned by the modified inversion profiles:
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1,281, 2K=(1,1,- 2,1,1- 2),4= ¢ 21% 2,1 (10) To prove the second part of the assertion, notice

that Eq. 13 is linear in s and sé is a complete tie.
and the two-dimensional space spanned by the reddifi 2

core configurations: Thus, to prove that the rankings fur<% are the

C,=(110,-1-10),C,=(0,-1-1,0,L1). (11)  opposite of the rankings for s%> it suffices to examine

: o e : what happens at the extremes of s = 0 and s =dseTh
A computatlgn prqves tha_“‘HB_HC:O , which tallies are, respectively, (2a+b, 2b+a, a+b) aragb,
means that the inversion configurations form a two-y 434 3(a+h)). So, if the s = 0 ranking has At
dimensional space. SimilarlyC,+C,+G.=0 proves 2a+bh>2b+a, or a>b. (With algebra, it now followstth
the two-dimensional assertion about the cor : 1

configurations. A direct computation shows that th:the same fFanking holds fors<§ ) Conversely, the s
four different subspaces are orthogonal to eackroth = 1 ranking of this pair, given by the 2a+3b and&a
As these six vectors are independent, they span R6. tallies, has B>A. (Again, by use of algebra, itidals

. 1 -
Proof 2 This is obvious. that the same JFanking holds fos>5.) A similar

) ] ) algebraic computation holds if B>A and for the {8}
Proof 3: For a rotational configuration, say (1, 0, 1, 0, 3ng {B, C} pairs.

1, 0), each alternative is in first, second anddtiplace
over the three triplets. Thus the outcomes foPallles  pyoof 5: By using the linearity of the JPand By
is a complete tie. As the same is true for (0, 1L,®, 1) mappings, it suffices to prove that the assertioftis
and as Pis a linear mapping, the assertion follows. — for the basis vectors of TS, i.e., the core comfiians
For the rotational configuration R = (1, 0, 1,10, ¢, and G. With the core configurationC= (2, 2, 1, 0,
0), a tally shows that £ (R) = Bsc (R) = Bca(R) = o, 1), we have that:
(2,1), which yields the asserted-MB, B> C, C~ A
cyclic rankings. The reversed cycle occurs with1(00, Po(Ca) = (4, 1,1) +2(1, 1, 1)
1, 0, 1). More generally, a computation proves:that
: ; : so all R values agree modulo an inflation term of
Bus(R)=(L-),Bc RF (-1, By (RF 51 (12)  25(1,1,1). By usingC, instead of G it becomes
) ] . _ apparent that (2+2s) (1, 1, 1) reflects a kern&tobf
The name of this configuration reflects this this is because:
rotational effect of the paired comparison rankings

Proof of 4: The proof involves a computation. An RC)=02-1-1 (14)

inversion configuration consists of two tripletsthwi
opposite rankings, such as=8B>=C and G-B-A. Wwhere, no s terms arise. Similarly,HCn) =
Thus, the ranking of a specified pair in the firgiletis  Bac(Ca) = (5,1), Bc(Ca) = (3, 3). The close
accompanied by the opposite ranking of the same pafonnection with the Ps values becomes clear by
in the second triplet. The pair wise cancellatiequires ~ subtracting (3, 3) from each value, this is the sa@s
all Bxy rankings to be ties over inversion computingB,.(C,)=B,.(C,)=(2-2),B. (G )} (0,0.
conflgurathns. . . The conclusion follows.
The situation changes over the Ps mappings
because fla) = (2, 1 + 2s, 1 + 2s) while®s) = (1 +  Thegrem 2: For three alternatives, a simultaneous
2s, 2, 1 + 2s). As any inversion configuration &8 .,y jete tie for any two N@I) rules and all pair wise
expressed as @l+ bls, where a and b are scalars, it .omparisons occurs if and only if G(d) is a kernel
follows that: configuration and there is a complete tie for aPsN
- rules.
Palutble) = (2a:+b (1+25), a(1+25)+2bs, (a+b)(1+25[13) Suppose forsi#zs: that the rankings for both
NPsi(d) and NRYd) are complete ties, but there is at
least one non-tied pair wise comparison. This Sitna
complete tie (2(a + b), 2(a + b), 2(a + b)). occurs if and only if all N¥d) rankings define a
400
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complete tie and the three pair wise comparisofisale
a cycle (where the difference in tallies is the sdor
each pair). In this setting, G(d) is the sum ofnle¢rand
rotational triplets.

Suppose all pair wise comparisons end in complet

ties, but for at least orzset% , the NR(d) ranking is not

a complete tie. This situation occurs if and orilthie

Kruskal-Wallis ranking is a complete tie and the

rankings for all NEd), s#%, are not ties. The G(d)

outcome of triplets strictly consists of a kernel

configuration plus a linear combination of inversio
configurations. In this setting, the N&) ranking for

s<%must be the reversal of the X&) ranking for

1
S>—.

DISCUSSION

In this study, we discuss several consequences

which is the Kruskal-Wallis rule. This result meahat
if the configurations of such inversion effects ae
viewed as being important, then the Kruskal-Wallie

ghould be adopted over any otherSNQJt% method.

If, however, the information content of such
configurations is treated as being valuable, thes af

the NR, s;t% rules should be adopted. The exact

choice depends on what is desired for arn B\~ C,
C > B> A configuration.

Similarly, all possible differences between the
Kruskal-Wallis procedure and pair wise comparisons
are due to how these different rules react to imtat
components of G(d), the Kruskal-Wallis procedure
ignores this information, while the pair wise
comparisons are affected by it. For othersMites,

s;t%, differences in the tallies and rankings with pair

wise comparisons are caused by a combination of the
rotational and inversion components of G(d). Ineoth
words, all difficulties and complexities caused by

Waired comparison rankings are strictly due tocywdic

the results presented above. We further explore thecomponent of G(d). No other term plays a role.

implications and illustrate that the symmetric data

structures are the cause of all differences

In the other direction and by use of Theorem 1,

ir]nformation about the structure of the data seind a

nonparametric procedures. In addition, we deveh®p t e G(d) triplets can be obtained from the J(dp
theory further to show how one can uncover thegankings. Some of these results are captured in

symmetry structures in a particular data set. Utaty,

Theorem 2. Notice, for instance, that situationstex

our discussion leads us to characterizing the featu \ynere it is impossible to have a single non-tieitqzh
that data must satisfy in order to contain SUChcomparison.

structures.

Consequences. According to Theorem 1, all possible
differences in NEd) rankings can be identified and
explained strictly by how the associated iRappings
react to the different components of the G(d) &t
triplets. The starting point for data séfRID is the core
component of G(d), here the rankings for

agree and all differences in tallying values are ¢t
the values the different
components.

An immediate consequence of this assertion is that

all differences among the rankings and tallies hef t
different procedures are strictly caused by theision

and rotational components of G(d). This means, fos

example, that any and all differences among mNPRs,

as well as the outcomes of the associated tests, ar
caused by the inversion component of G(d). The only

rule that is not affected by these componentspPis

401

all
nonparametric rules and all pair wise comparisong

rules assign to kernel

Summary of the consequences of data structure:
The above results permit us to completely charaxter
which  data structures affect the different
nonparametric tests. This structure completely
explains why different procedures have different
outcomes. More specifically:

The Kruskal-Wallis procedure is  strictly
determined by the portion of ranked data that
defines the core component in G(d). Non-core
components-the inversion and rotational
configurations-have no effect on the Kruskal-
Wallis ranking

For si%, the NR outcome is determined strictly

by the components of the ranked data that create
the core and inversion components of the G(d)
profile, the rotational component has no impact on
this ranking. For the data portion creating a core
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component, the NPrule agrees with the Kruskal- where, the superscript “t” designates the transpeasg,
Wallis outcome. All possible differences occur by p'is the column version of p.

how different NR rules react to the inversion As matrix A is nonsingular, it follows from matrix
components in G(d). These Neutcomes define a algebra that' = T(p') where:

line in R® centered around the Kruskal-Wallis

outcome. (According to Eqg. 7, the score for each

alternative is the number of times it is top-ranked 2 1 -1-2-11

plus s times the number of times it is second- 1 -1-2-11 2
ranked. With three alternatives an&sf1, this T:A-lzl 0 1 -1 0 1 -1 (17)
defines a line inRk?, e.g., the proof of Theorem 2) 6/]-1 1 0 -1 1 O
* Al MWW rankings of pairs are strictly determined 1 -1 1 -1 1 -1
by the data portions that introduce core and the 1 1 1 1 1 1

rotational components in G(d). The outcome over

the core component agrees with the Kruskal-Wallis

outcome. All other differences are created by the  Using the above described Eg. 3 ranked data as an
cyclic effect introduced by the rotational illustration, this d leads to G(d) = p = (2, 2,0,2, 0).
component of a G(d) profile Using this choice of p with T, we obtain:

According to this description, cycles of paired
comparison rankings, different NPrankings and
differences among the pair wise andskdhkings occur
because the outcomes for different rules rely on T
different portions of the data structure. The rssale
stated for the case where k = 3 where the con@epts
easily understandable, however, the ideas presented
extend to k>3, but by using different symmetries.

o o

O NN O DNDN
wlr O O wiv

D=2] +4K = i
Data structures. Now that the source of all differences or the p=31, +3K =21, representation.

in nonparametric procedures are understood, thé nex
step is to understand what kinds of d data strastur Examples, the n = 2 case: To appreciate how different
create the different symmetry components of G(ttie T ranked data structures cause G(d) to have different
first step is to find a representation that camuiee  kinds of symmetry components, it is particularly
different G(d) components and then to use thisuseful to determine everything that can happen with
representation to develop intuition about the waio three alternatives and n = 2 (where the unrankéd da
forms of data. does not have ties). By completely cataloguing what
can happen, we discover that, already in this sstpl
Finding the symmetry components. The non-trivial setting, interesting differences amothg
decomposition of G(d) can be described with a matri different procedures emerge.

First, letpOR® be a vector and leP= (&, b, a, b, T, To reduce the number of possible cases, notide tha
k) be the representation of p in terms of the coateé  the entries in each column of Eq. 1 can be perminted
system: any manner without affecting the triplets or G ome.
Thus, assume that each column is ranked from theda
C,.G.1L.L, R K (15)  value down to the smallest, e.g> @... As the names of

the alternatives can be permuted, further assurat th
- ~ ~ ~ ~ ~ a;>b;>c,. Using these symmetries, the n = 2 setting is
Namely, P=AC, +b.Cir a L+ b | + rRe kK. reduced from the original 6! possibilities to tlidwing

By using the R® vector representations of these fifteen cases.
Eq. 15 coordinates, which are given in Eq. 9-1% th

matrix relationship between p aridis: Theorem 3: The following ranked data sets define the
o associated profile decompositions, each decompuositi
pP=A[P), A=(C,.G .k .t.R .K) (16)  also includes andK term:
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6 5 4 ~ ~ ~ - 6 5 -

& 2 Jﬁégﬁf+€%—%%+€R (12 3~€h,

6 5 4 ~ ~ ~ ~ 6 5 4 - ~ - -

(21 JQ%B%_%_k}%R' [13 J~%ﬁ%-Q}4h+§R

6 5 4 ~ ~ A 6 5 - = -

23 1) A&k 31 9 @Fhtsh

6 5 3 ~ ~ ~ ~ 6 5 3 - - -

(14 J*%g+é%+%h+%a [41 J* athrsh

6 5 3 ~ ~ ~ - 6 5 - - - -
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6 5 2 ~ ~ ~ 6 5 - - . - -

A R R e P D e L IR

6 4 3 ~ ~ ~ ~ - 6 4 3 - -

R e e (A BTV

6 4 2 ~ - - -

(5 3 1]_>%CA+%CB__;|B+_§R1

As K consists of six triplets, the commotkK ranking (respectively, B, C ranking)

value means that each setting consist§®# 8 triplets. ~ A~ Ciffac>0 and C- Alffa; > 0 (respectively,
To simplify the representations, song,i, i, terms B~ Ciffbc >0 and C- Biffb.>0). If Ay, Br, Cr

are replaced withC.and i.terms. The following

statement explains how to find ti& and I, terms and

it provides computational rules to quickly compated
compare outcomes.

Proposition 4: The coefficients for the core and
inversion terms satisfy:

a.C+hG=(-a)e- a ¢
=(ac - bo)G - b Gal+ by
=(b-a)b-ak=(@-h)-bL

(18)

The Rtally for C, assigns 2 points to X anefl
point to each of the other two alternatives. ThedHg
for 1, assigns 2- 4s points to X and 2s 1 points to

each of the other alternatives. The Ps tally fadsigns
2 + 2s points to each alternative.

The tallies for C, in an {X, Y} pair wise

comparison assign 2 points to X anglto Y. In a pair
not including X, both alternatives receive zeronpgi
The tallies for pair wise comparisons with the fiotzal
configuration R are A: B, B: C, C: A each by E1.
The tallies of a pair for K assign three pointsetch
alternative.
The Kruskal-Wallis ranking for A and B always
agrees with the ranking of the scalagsla. The A, C
403

represent the Kruskal-Wallis tallies, then, with#0:

A;-B;
B, -C

(19)

C

Proof: The proof of Eq. 18 follows by using the
appropriate substitutions of the two expressions
C,+C,+CG. =0andi, +i, +i.=0.

The assertions about the tallies involve a direct
computation.

To prove the material leading up to Eq. 19, notice
that the Kruskal-Wallis tallies 0&.C, + b.G, for A, B,

C are, respectively:

da. -2k, AR - 23 + 2@+ b (20)

Thus, the A-B ranking occurs

da. -2l = 4h.- 23 or iffa.=b.. Similarly, the
ranking kz>ac holds iff A-B. The A=C ranking
occurs iff 4g—2bc>—2a:.—2h, or iff ac>0, similarly,
C> A iff ac<0. A similar expression in terms of the
sign of iz holds for B, C rankings.

To prove Eq. 19, notice that each of thg B, C;
Kruskal-Wallis tallies is a fixed multiple of the
appropriate value in Eg. 20 plus a fixed constant
(coming from the kernel term). Thus:
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Ar-B; _(4ac-2k)- (4R- 23 ) 8- B outcome in a different direction, it iB-A=C. The
B, -C, - (4. - 23 )€ 23 - 2b ) b earlier assertion that all N@) outcomes define a line
with endpoints NRd) and NR(d) ensures that all
Interestingly, six of the fifteen ranked data sets '€maining NE(d) rankings areA-B~-C, but their
Theorem 3 have no cyclic component: Thus over thestllies differ due to the inversion components ¢d)s
sets the Kruskal-Wallis and the pair wise rankings 5. ihe other hand, th 6 5 4 ranked data has
completely agree (Theorem 1). But as all choices 2
include inversion terms, it follows that for allrée

alternative, n = 2 settings, different Nfales must have

different tallies over the data sets, even the irays define the KruskaI-WaIIis_ranking oA =B ~C where _
may differ. the absence of a rotational term ensures that this

To illustrate Prop. 4 and Eq. 18 notice that'@anking and the tallies agree with those of the pése
6 5 4 ) comparisons of A=B,A>C,B. The inversion term
[ j ranked data yields the

13 2 requires the Bhapkar V tally and ranking to peraky
which it does with the ranking -~B ~C .

T

the C, +C, -1, +4K decomposition. The core terms

1[Gy -C.]+21, +2R+4K decomposition. According

to Eq. 18, the core and inversion confidentsCharacterizing data sets. Different rules react
arec, =1>c.=-1. By permuting the names in Prop. 4 differently to different kinds of data sets, so thext
so that C and«assume the roles of A and,ave have Step is to characterize which data sets (far2) strictly
that the Kruskal-Wallis ranking isB-A~C. (The define kernel, rotational and inversion terms. Wltiie
B~ C ranking follows from g>cc, the B> Aranking  natural approach is to use the inversé @apping, this
follows from ks > 0 and theA = C ranking follows from IS not feasible. As an alternative, properties dfatv
c -b would be the G sets are determined. So, to create
cc<0). Moreover, because%=—2, we have that examples that exhibit more general behavior, just
¢ combine these structures. (Some care is neededd®eca
Br—Cr = 2(Ar=Cr ), or Br A7 = Ar=Cr where the  of the inherent sense of nonlinearity of G(d),, iie.

difference between tallies of adlacently ranked,aneral G(did,) does not equal G+ G
candidates agree. %  G(edy) q (+ G(d).

To provide a further sense of how to InterloretDefinition 2: A ranked data set d is called a kernel,

Theorem 3, consider ty{eG 5 3] ranked data with its inversion, rotational, core data set if and onlG(f) is,
142 respectively, a kernel configuration, the sum &eenel

%CA __gE:B +_§,*|A +_gﬁg+_g|< decomposition. The core and (nonzero) inversion cpnfiguratit_nn, th_e sum of a
term coefficients determine the Kruskal-Wallis ramgk g?g‘i:aﬁ]rg a(gg(nnzc?r:g()errcf;tig(rjgaclo(r:\z;[:?:triztr:on, then

-4 -2 .
(Prop. 4) vv.here.,bc =5>8=5>0, so the I.<ruskal- The characterization of the disruptive rotational
Wallis ranking is B>~A~C where the difference 5nq inversion components of the data is
between the B and A tallies equals the differencestraightforward. The difficulty is to prove thatcsudata
between the A and C tallies. Because alialties agree  examples exist. In the following characterizatidet,
on the core components and because this common cox&z be the set of all triplets constructed from the
tally is the Kruskal-Wallis tally (minus kernel effts),  ranked data of the Eq. 1 form that have the ranking
the Kruskal-Wallis ranking serves as our standa@sih  x .y .7 and let [XY Z| be the number of such triplets.
for comparison. The relatively large rotational gimilarly, XY are all triplets that have X ranketiave
coefficient of this decomposition; =, suggests that Y and |XY| is the number of such triplets. Prodfshe
the pair wise rankings may not agree with Kruskal-following results are in the Appendix.
Wallis ranking: They do not, a computation (using Particular interest is in the inversion behavisrita
Prop. 4) proves that this data set has a A = B,@tie  forces different NPoutcomes.
with B> C. Moreover, the A-inversion value af =4

suggests that the Bhapkar V ranking (in our notatio Theorem 5: Data set d is a strict inversion data set if
NPo(d)) might differ from the Kruskal-Wallis ranking, and only if:

it does with A=B~C. At the other extreme, the

NPy(d) ranking differs from the Kruskal-Wallis |ABC| = |CBA|, |ACB| = |BCA|, |CAB| = |BAC]| (21)
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where, at least two sets of equalities do not thee A B C A B C ABGC
same value and: 27 26 25 16 18 17 8 7
22 24 23 14 13 15 6 5
20 19 21 12 11 10 1 3

(27)
|AB| = |BC| = |CA| = |BA| = [CB = |AC| (22)

Such data sets exist: Examples seem to require t ) .
P d te where, the first array arranges the row data in the

orbit structure whereby rows have opposing rankings :
This is the structure of the Eqg. 4 example, whighai expected A>B>C, B>C>A, C>A>B order of, orbit.

pure inversion data set. Also, for the pure inversi The 3’ = 27rankings, however, are |ABC| = |[CAB| = 5,
[BCA| = 8, while |BAC| = 2, |[CBA| = 3 and |ACB| =5

A B C according to Theorem 10, the G(d) ranking is nptige
12 11 1C rotational plus kernel term as it slightly favors C

Nevertheless, the outcome is a pair wise cycle, A>B

798 B>C each by 15:13 and C>A by 16:12.
6 4 5 To create a pure rotational term, introduce two
1 2 3 more sets of three rows where the top defining rows

among the sets have tt#®, rankings. As the first row
the first and fourth rows and the second and thosis  of the first set starts with an A>B>C ranking, stére
reverse each other. However, examples exist thabtlo second set with B>C>A, where A is slightly favored
have the same number of rows with one ranking #s wi and the final set with C>A>B, where B is slightly

its reversal. A tv_vo-sample r_eversal example is @her t3y0red. Namely, each set of three rows reactszthe
the A, B ranked information is (1, 3), (2, 4), 8, (8, d the th d wi
7), (10, 9), (12, 11) where the first four rows &a > symmetry and the three sets are connected with a

B while the last two have B > A. Three alternativesSymmetry construction. The resulting Eq. 27 is a
examples also can be created. rotational data set. While all rotational data sets
Rotational data sets are interesting because thdjave found satisfy this construction, we expecteoth

create pair wise cycles and differences between paptructures will be discovered. _ _
wise rankings and all NRutcomes. Constructing examples with mixed behavior now is

immediate. For instance, the first block below is a
Theorem 6: Data set d is a strict rotational data set ifversion of the first three rows of Eq. 27, the seto

and only if: block is the pure reversal Eq. 3:
|ABC| = |IBCA| = |CBA¥ |ACB| = |CBA| = IBAC| (23) A B C AB C
15 14 13
i £ 6 5 4
if and only if: 10 12 11
1 2 3
8 7 9
|AB| = [BC| = |CA¥ [BA| = |CB| = |AC] (24)

. Combined, the new data set has the anticipated
| ABC+ | ABC |= | BAC |+ | BCA% | CAB} |CBA;|”_ (25)  outcome with the Kruskal-Wallis ranking A = B = C,
3

the NRranking of A>-B ~C for s<% and C>-B> A

and for any permutation of the letters: 1 o .
for s>§ and the pair wise rankings for the cycle

ABC|ACB|+1 (|CAB |+ | BAC |= A>B,B>~C,C>~A. The Kkernel data sets are
2 1 (26)  characterized by the following.

| BAC |+ | BCA|+= (ABC [+ |CBA|

2 Theorem 7: Data set d is a kernel data set if and only

. . if:
Such data sets exist: The construction of such data sets

captures the spirit of thez, structure, but with |ABC| = |ACB| = |CAB| = [CBA| = |BCA| = [BAC| (28)
complications. To explain, the following pure radaial
data set is divided into three parts: if and only if:
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|AB| = IBA| = |CB| = IBC| = |AC| = |CA|] (29) Proof of Theorem 2: The first part follows directly
from Theorem 1.
| ABC |+ |ACBE |BAC |+ |BCA%F The second part follows from Theorem 1 and Eg.
né (30) 14, NRrankings are determined by core and inversion
| CAB|+|CBA Fg terms in G(d). If any two different NAmethods have
complete ties, it follows from Eq. 13 that G(d) has
and for any permutation of the letters: core or inversion components. Thus all;Mies define
a complete tie and G(d) consists of kernel andtimta
| ABC |+ | ACB “1 (|CAB} | BACF terms. If one pair wise outcome is not a tie, tkd)
2 (31) hg; ahnon—zero rotation componsn? ConseqllJer;t]zj(Eq
1 12), the pair wise comparisons define a cycle t
| BAC[+| BCA l+§ (ABC+ |CBAD differences between tallies of the three pairsxisd.

] For the third part, the fact that all pair wise
Such data sets exist. comparisons end in ties means that G(d) does nat ha
An example is: any core or rotational terms. In turn, the KrusWédlis
ranking is a complete tie (Theorem 1). Thus, G§dhe

A B C sum of a kernel and inversion terms. It followsfr&q.

17 16 18 13 that the NRd) tallies define a line in Rwhere

14 15 13 NP, (d)is a complete tie that is on the diagonal t (1, 1,
10 12 11 (32) 2

9 7 8 1). It follows from the geometry of Ras divided by

6 5 4 the hyperplanes x =y, x = z, y = z, that all psion

1 2 3 line that are on one side ef:% have the same ranking,

where, the first two rows have the inversion C>A>B,while those Withs>%have the opposite ranking.
B>A>C assortment, the next two have B>A>C, C>A>B
and the last two have A>B>C, C>B>A. In other words, proof of Theorem 3: This is a direct computation.
a kernel term is created by introducing cancelingater computing G(d) for each data set, the
inversion components. The same construction can bgecomposition comes from using Eq. 17.
done by combining two canceling rotational terms. Proofs of Theorem 5-7. The ‘if and only if’
The final step would be to find a pure core d&fa s assertions involving Eq. 21-29 follow directly from
We can prove that such data sets do not exist whepyoperties G(d) must satisfy for d to have the
certain reasonable assumptions are imposed, bat as designated properties. In practice, we found tinat or
this writing, we do not know whether this is frue i the other of these conditions, depending on tha set,
general. We can, however, find conditions wherétey t (5 pe more useful when examining data.
data set has no core terms, this is true if ang ibrthe While the existence assertion in each of these
Kruskal-Wallis ranking is a complete tie. theorems is verified by finding examples, the way i
which examples were found and theorems proved
Theorem 8: The string of equalitiesABC |+ |ACB |+ (independent of finding examples) was to verify the
1 1 necessary and sufficient conditions of each of @hes
E(l CAB|+|BAC|F | BACH IBCAF—Z (ABCt+ |CBAF theorems by proving that the G(d) mapping admiés th
1 specified properties. The details for Theorems & an
| CBA ':E(l ACB|+ |BCA|) holds if and only if are given next, details for Theorem 6 are similar.

Kruskal-Wallis technique outputs A = B = C. This | emma 1: Let the nx 3 data set d have distinct entries
condition also holds if and only if the sums of 8@ 1 (5, . a b, .., bn, 6., ¢), then |AB| + |BA| = [BC| +

columns are equal (with valbrﬂégg—Jrl) ). ICB| = |AC| + |CA| =T

Proof: Let AB be the set of all elements of the (3
Theorem 9: The equalites |ABC|+|ACBE form where gb;, so BA denotes the set of the form (ai,
3 _ . b|) where &b;. Thus AB + BA is the set of all elements
|BAC|+|BCA|CABH |CBA%-: hold if and only if (3 ), by counting, there are exactly of these types
the V test outputs A =B = C. of elements. This completes the proof.
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This following Lemma highlights the importance Proof: By Lemma 3, |ABC| = |CBA| if and only if |AB|

of the pair wise relationship in the data, whileywidding = [CB]| if and only if |BA| = |BC|. This implies tha
an appropriate structure to capture the Reverst da|ACB| = |BCA| if and only if |JAC| = |BC]| if and gnif
behavior. |CA| = |CB| and |CAB| =|BAC]| if and only if |[CA| =

[BA| if and only if |[AC| = |AB|. Then |ABC| = |CBA]|
Lemma 2: The equality |JABC| = |CBA| holds if and |BCA| = |ACB| and |CAB| = |BAC]| if and only if |AC|
only if [BA| + |CB| = Aif and only if |JAB| + [BC| = IBC|, |CA| = |CB|, |CAB| = [BAC|, |CA| =|BA|, |A€]
|AB| and |CA| = |CB| which imply |AB| = |BA| = |CA|

Proof: By definition |ABC| is the number of triplets of ICB| = |BC| = |CB].

the form @b>c. This number can be expressed in

terms of pair wise relationship between A and B an(JDroof of Theorem 5: This follows from the definition
between B and C. In other words, defining®@& {(a of an inversion data set and Lemma 4. Theorem@ als
. , ) ,

by G) [1<i, ksn: a>b>cy (i.e., b is fixed), we have that 010WS from the above lemmas.

| ABC FZ?:llAbJ C|. By letting A = {(a, B)|1<i, K n:  proof of Theorem 8 The Kruskal-Wallis
a>bj} (i.e., b is fixed), this sum can be re-expressed agechniqueNP, , assigns one, 1/2 and zero points,

ZjnzllAbjCIIl? C. respectively, to the first, second and third place
To simplify this expression, notice that with n alternative in a triplet. Thus A = B = C if and gl for

entries per column, the number of pairs of the;||Ab @ny alternative the number triplets it wins plusf lod

form equals (Rl AJ). The reason is that the pairs;Ab the number of the triplets it is in second placehis

consist of the A’s (out of the n total number ofpthat ~ Same  value. Namely,|ABC|+/ACB|+; (ICAB|+|BAC|)

are larger than;tfor a fixed. Thus the remaining A's =|BAC| + |BCA| +1 (JABC| + |CBA|) = |CAB{ |CBA| +

(out of n of them) must be smaller than. b 1(/ACB| + [BCA|). An alternative Kruskal-Wallis

Consequently, we have that i
n n procedure is to add the Eq. 1 columns. The proeesdur
ZjﬂIAbjClll} C*zjzl (7 [p A" |Gb . has a tie if and only if these sums all agree. e t
By factoring, this sum equals 3n(3n+ 1)

0 . values from 1 to 3n sum te———, the common
Zj:1|n—n|Cl?|—n|pA+ [Cb |b A “n- n|BA| n|C 2

n lue i n(3n+1)
+[Zj:l|ijA}:n3—n|BA|—n|CB# ( In tun, we Valueis———.

have that fi-n|BAFn|CB|+|CBA| = [CBA| if and only if _ )

n*-n|BA}n|CB| = 0 and this only happens if and only if Proof of Theorem 9: The V test technique, NP

IBA|+|CB| = f. This completes the proof. assigns one point to the winner of each triplet zexb
points to the second and third place alternatiFesthe

. _ V test to have A = B = C, the number of triplets fo
Lemma 3: The equality |ABC| = |CBA| holds if and \ypich each alternative is top-ranked is the same, o
only if |AB| = |CB| if and only if [BA| = [BC]. IABC|+|ACB| = |BAC|+|BCA| = [CAB|+|CBA|. Wit n
triplets when each alternative has n observatitimes,
Proof: From Lemma 1 we have that |AB|+|BA| £ triplets are divided into three equal parts, SO

|CB|+|BC|. According to Lemma 2, |ABC| = |CBA| ne
holds if and only if |AB[+|BC| =7if and only if f =  |ABC|+|ACB|=|BAC| +|BCA|=|CAB| +|CBA| ==-.
|CB|+|BA|. So, if |JABC| = |CBA|, then the two

equations |AB|+|BA| =and |AB|+|BC| = hrequire CONCLUSION

[BA| = |CB|, similarly, |AB| = |BC|. Conversely|AB| =
|CB|, then the |AB| + |BA| =?rexpression becomes
|CB|+|BA| = A. According to Lemma 2, this is true if
and only if [ABC| = |CBA| if and only if |AB| + |BG
n®. A similar argument holds if |BA| = |BC].

Inconsistencies among the outcomes  of
nonparametric procedures can occur when analyzing
the same ranked data set. Understanding why these
peculiarities can occur is imperative to providiag
accurate and desired analysis of ranking data. The
Lemma 4: The equalities |[ABC| = |CBA|, |BCA| results in this study illustrate that the incoreisty of
|ACB| and |CAB| = |BAC]| hold if and only if |[AB| = procedure outcomes can be attributed to specific
IBA| = |CA| = |CB| = |BC| = |CB|. symmetric data structures that may be presentén th
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data. These findings thus offer a comprehensivdDeshpande, J.V., 1970. A Class of multisample
analysis of the problem by: (1) defining the syrmmiget distribution-free tests. Ann. Math. Stat., 41: 2236.
structures that cause the inconsistent outcomes, (2 DOI: 10.1214/aoms/1177697204

developing a method to uncover the existence of thélaunsperger, D.B., 1992. Dictionaries of paraddres
symmetric structures in a data set, (3) understanitie statistical tests on k samples. J. Am. Stat. Assoc.
effects of each type of symmetric structure on each 87:149-155. DOI: 10.2307/2290463
nonparametric procedure and (4) characterizing datKruskal, W.H. and W.A. Wallis, 1952. Use of ranks i
that possess such symmetric structures. This one-criterion variance analysis. J. Am. Stat. Assoc

contribution paints a full picture of the issueattmay 47:583-612. DOI: 10.2307/2280779
occur when using the nonparametric procedureSaari, D.G., 2008. Disposing Dictators, Demystifyin
considered. In addition, it offers a guide for cbiog a Voting Paradoxes. 1st Edn., Cambridge University

procedure to analyze ranking data contingent on the Press, New York, ISBN: 10: 0521731607, pp: 256.
importance the researcher wants to place on specifiwWilcoxon, F., 1945. Individual comparisons by rarki
aspects of the data. methods. Biomet. Bull, 1: 80-83. DOI:
10.2307/3001968
REFERENCES

Bhapkar, V.P., 1961. A nonparametric test for the
problem of several samples. Ann. Math. Stat.,
32:1108-1117. DOI: 10.1214/aoms/1177704849

Bhapkar, V.P. and J.V. Deshpande, 1968. Some
nonparametric tests for multisample problems.
Technometrics, 10: 578-585. DOI:
10.2307/1267111

408



