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Abstract: Problem statement: Until recently, many addition chain techniques constructed to support 
scalar multiplication operation have been proposed tailored to limited computational resources. In 
securing the efficiency of ECC point operation, the combinations of the two basic operations, point 
addition and doubling are mostly implemented. Using binary method, the operation of doubling 
depends solely on the length of binary representation itself, so the most probable way to reduce the 
total number of the whole operation is by reducing the number of addition operation. This limitation 
is quite problematic. Approach: In this study we proposed an improved binary method which reads 
input block by block basis. Instead of having to add one to current chain every time non zero digit 
appears, this method requires one addition for every non zero block. A mapping table is used to store 
all possible binary string and its decimal version. For every block, its decimal value is extracted from 
the table and this value will be added to the current chain. In return, it requires precomputations for all 
possible combination of input blocks. Results: The new method showed a significant reduction in the 
number of required additions and the magnitude of improvement varies according to the key size. 
Conclusion: The algorithm is suitable to be adapted into cryptographic system especially as the need 
for bigger key size is growing rapidly. 
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INTRODUCTION 

 
 Elliptic curve cryptography (Koblitz, 1987; Miller, 
1985) was introduced in 1985. Elliptic Curve 
Cryptography (ECC) transforms a complex mathematical 
problem into an applicable computer algorithm. The 
scheme beats the capability provided by RSA, with a key 
length of 168 bits, it provides similar security height as 
RSA 1024 bits. One of the most important research areas 
in ECC is to improve scalar multiplication technique 
which aims at increasing efficiency.  
 In short, a point P on Elliptic Curve (EC) is 
transformed using a key k to another point Q using a 
scalar multiplication formula Q = kP. The cheapest 
operation of EC on computer system would be its point 
addition and point doubling. For any k, the calculation 
of kP is broken down into a series of additions and 
doublings. 
 Given an integer k, possibly starting from 1 
(followed by 2), with allowable operations of addition 
and doubling of two previous terms to get a new one, 
our objective is to find the fastest way to reach k. 

From the computational complexity point of view, 
Downey et al. (1981) proved that the problem to find 
the smallest number of terms in the sequence is an NP 
problem which says that there is no known polynomial 
time algorithm to find an optimal solution. Huge 
interest was shown to produce a near optimal solution 
resulting from various techniques. Yao (1976), Zantema 
(1991) and Knuth (1981) discussed the resulting 
asymptotic values of addition chains. 
 This solution is customarily known as an addition 
chain (later addition subtraction chain) problem. The 
ascending terms from left to right in the addition chain 
is known as an addition sequence. 
 
Definition 1: An addition chain for k is a sequence of 
positive integers of the form: 
 
 a1 = 1, a2,…,as = k 
 
such that p≤q<r where ar = ap+aq. The length of the 
addition chain is equal to the number of element in the 
sequence other than the initial value, a1. 
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Fig. 1: Overview of addition chain technique 
 
Definition 2: An addition subtraction chain for k is a 
sequence of positive integers of the form: 
 

a1 = ±1, a2,…,as = k 
 
such that p≤q<r where ar = ap±aq.  
 The process from having an integer k transformed 
into an addition chain can be divided into two parts as 
in Fig. 1; the first one is to use an algorithm to convert 
k into some sort of binary representation, the second 
one is to use another algorithm to perform some 
operations to produce the minimal chain. Both 
processes are chosen to make sure the computation is 
efficient. In some cases, the two processes are 
combined into one method. 
 The evolution of efficient algorithm for both parts 
of operations come hand in hand. For those algorithms, 
the number of addition and doubling depends on the 
number of non zero elements in the representation. 
Referred as Hamming weight, the number of non zero 
elements in the representation must be reduced to the 
least in order to achieve optimal efficiency. 
 
Integer representation:  
Definition 3: A positive integer N can be expressed by 
a summation of its coefficient multiplied by its radix 
representation: 
 

n 1 i n 1
i n 1 1 0i 0

N b r b r ... b r b
− −

−=
= = + + +∑  

 

Where: 
b = The coefficient  
r = The radix for m-ary representation 
 
 Take 23 as an example, it can be expressed in radix 
10 as 2.101+3.100, or in radix 2 as 1.24+0.23+ 
1.22+1.21+1.20. 
 Binary number is the most suitable representation 
for computer systems as it able to work directly with 
such input. No extra efforts required for conversion as 
it understand 0 and 1 perfectly. Many other 
representations emerged as a result of weaknesses 
within binary representation, all of which bears the 
same objective to increase the efficiency. We will take 
a developmental look into those representations. 

Unsigned binary digit: An unsigned binary digit is the 
simplest form of binary number to represent an integer 
N. The use of symbols 0 and 1 dated back to Leibniz in 
17th century. This classical binary representation of 
length v for N can be represented as: 
 

n 1 i n 1
i n 1 1 0i 0

N b 2 b 2 ... b 2 b
− −

−=
= = + + +∑  

 
where, 0≤bi<2. 
 This representation allows coefficient set of {0, 1}. 
There is one to one correspondence between N and its 
binary representation. The hamming weight of this form 
can be determined by counting the number of its ones. 

On average it is expected to be 
v

2
. 

 
Signed binary digit: Out of unsigned binary digits, to 
reduce hamming weight, Booth (1951) introduced the 
idea of signed digit representation and turned previous 
expression into: 
 

n 1 i n 1
i n 1 1 0i 0

N b 2 b 2 ... b 2 b
− −

−=
= = + + +∑  

 
where, -2<bi<2.  
 The technique expands the coefficient to {0,±1}. 
Using this representation, the original addition chain is 
transformed into addition subtraction chain as described 
in (Knuth, 1981). Unfortunately, this representation is 
not unique. Using the same example, 23 can be 
represented as 11001 or 101001. 

 
Non adjacent form: Signed binary digit is further 
improved to the so called Non Adjacent Form (NAF) 
(Reitwiesner, 1960) to consist of minimal weight. In 
addition it is proved that every integer has a unique 
form of this sort. The conception is to disallow two 
consecutive non zero bits, i.e., bibi+1 = 0. A simple hand 
calculation method for computing NAF using the 
formula 3N-N is shown in (Chang and Tsao-Wu, 1979). 
However, Reitwiesner (1960) and Mandelbaum (1967) 
exemplified a computer algorithmic code based on an 
iterative method to generate NAF from an unsigned 
binary as well as signed representation. An expression 
for N can be reduced to: 
 

n i n n 1 r 1 r
i n n 1 r 1 ri 0

1
1 0

N b 2 b 2 b 2 ... b 2 b 2

... b 2 b

− +
− +=

= = + + + +

+ + +
∑  

 
Where: 
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i

1,0 i n
b

1,0 i n

+ ≥
=  ± <

 

 
  NAF representation adds an extra bit to the left 
most of the original representation. Such an iterative 
process can be described in steps as follows: 
 
Step 1: We start at the digit br = 1. If br.br+1 = 1, we 

search through br+1, br+2 and so on until we find 
br+c = 0 

Step 2: Apply the following substitution to the 
partition 

Step 3: Repeat Step 1 and Step 2 until the last bit: 
 

r c i r c r
ii r

b 2 2 2
+ +
=

= −∑  
 
 Algorithm 1, known as Reitwiesner right-to-left 
binary method works out as such, given N = 23, the 
relevant unsigned binary follows this conversion 
sequence, 10111->11001->101001. Jedwab and Mitchell 
(1989) also came out with an alternative iterative 
method called Weight Minimization Algorithm (WMA) 
to compute NAF and theorems for the sparseness and 
uniqueness of the output: 
 
A1. INPUT: b = {bn-1,…,b0}  
A2. c0 = 0; bn+1 = 0; bn = 0 
A3. FOR i from 0 to length(b) step up by 1 DO 
A4.  ci+1 = floor[(ci + bi + bi+1)/2]  
A5.  b’i = ci + bi - 2ci+1 

A6. OUTPUT: (b’n, b’n-1,…,b’0) 
 
Algorithm 1: 
Reitwiesner right-to-left method: Morain and Olivos 
(1990) showed that the expected non zero length of 

NAF can be rounded to 
v

3
. A left-to-right version for 

computing NAF is given by (Joye and Yen, 2000). 
There are other alternative to NAF called Mutual 
Opposite Form (MOF) (Okeya et al., 2004) but for the 
purpose of our comparison analysis, NAF is likely to be 
sufficient since both NAF and MOF has the same non 
zero density. 
 

MATERIALS AND METHODS 
 
Addition chain: The question is how addition 
technique makes use of different number representation 
to produce an optimal chain? The technique either 
processes the binary representation bit by bit basis or in 
a partition. Here we examine some of the well known 
methods ever crafted. 

Naive: Let k = 5, to calculate Q = 5P, naïve method 
proceed as P+P+P+P+P, 4 times. In total k-1 additions 
are performed. This method is consuming maximum 
time possible and is considered as no algorithm. 
 
Binary method: Knuth (1981) gives a good history of 
this particular technique. The idea is based on “square 
and multiply” technique for efficient exponentiation of 
power to be used in RSA. Even so, without having to 
change the conceptual essence, by adapting “square and 
multiply” to “double and add”, the technique can be 
used to improve elliptic curve point calculation.  
 A left-to-right binary method is one of its two 
variations which scans binary input from the most 
significant bit right through to the least significant bit. 
The most significant bit is chosen to be digit 1 from the 
left most of binary representation which means that we 
need to skip any unnecessary 0 before meeting 1: 
  
A1. INPUT: k = {kn-1,..,k0} 
A2. y = 1, z = 1 
A3. FOR i from length(k)-1 to 0 step-down by 1 DO 
A4.  y = y + y 
A5.  IF ki = 1, THEN  
A6.   y = y + z  
A7. OUTPUT: (y) 
 
Algorithm 2: 
Binary left-to-right: Algorithm 2 shows a procedure to 
simulate left-to-right method. Using k = 59, the 
generated addition chain is 1, 2, 3, 6, 7, 14, 28, 29, 58, 
59. On average, this method requires v number of 

doublings and 
v

2
number of additions. The total number 

of operations is given by 
3

v
2

. This method only 

operates on the current value of y hence only a single 
storage field is required. There is an alternative binary 
method called right-to-left method which scans input 
from the least significant bit. Compare to left-to-right 
method, this method requires one extra operation which 
is an addition by unity. Another drawback is that it also 
needs extra memory to store the value from previous 
doubling 2n-1. 
 
Addition subtraction method: This method was 
introduced by Morain and Olivos (1990) aiming at 
reducing the number of addition operations by reducing 
non zero density. It exploits the fact that to calculate the 
inverse point on the elliptic curve is at insignificant 
cost. Subtraction is reduced to addition of negative 
point of the curve. Having NAF as an input, the original 
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binary method is modified to handle a negative 
coefficient, to the following Algorithm 3:  
 
A1. INPUT: k = {kn,kn-1,..,k0} 
A2. y = 1, z = 1 
A3. FOR i from length(k)-1 to 0 step-down by 1 DO 
A4.  y = y + y 
A5. IF ki =1, THEN  
A6.  y = y + z 
A7. IF ki = -1, THEN  
A8.   y = y – z 
A9. OUTPUT: (y) 
 
Algorithm 3:  
Add-sub left-to-right: Again using k = 59, the 
generated addition chain is 1, 2, 4, 8, 16, 15, 30, 60, 59. 
This chain is one shorter than the chain from binary 
method. On average, this method requires v number of 

doublings and 
v

3
 number of additions. The total number 

of operations is given by 
4

v
3

. Similar to binary method, 

this method is also available for right to left computation. 
 
Proposed method: We proposed an enhanced binary 
method which we can have some control in the number 
of point addition operations. The first step is to partition 
the binary representation into blocks of equal size. 
Instead of non zero density, the number of additions 
varies according to the number of non zero blocks. If 
there is an odd block at the end, sufficient padding bit 
will be appended to the left of this block prior 
extracting its decimal value. The number of block is the 
rounded ratio between the length and the block size. 
During precomputation, a Table 1 is generated to hold 
mappings between 2s combinations of {0,1} and its 
decimal counterparts where s is the size of the block. 
 Each decimal value in the Table 1 shown must be 
precomputed and in our case of s = 4, 14 
precomputations are required to compute 2, 3,..,15. By 
setting s = 1, no precomputation hence no table is 
required and this procedure is similar to an ordinary 
binary method. 
 
Table 1: Mapping table for s = 4 
Binary Decimal Binary Decimal 
0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 10 
0011 3 1011 11 
0100 4 1100 12 
0101 5 1101 13 
0110 6 1110 14 
0111 7 1111 15 

 The algorithm may take as its input an unsigned 
binary as well as NAF. At running time, the program 
reads input on block by block basis specified by the 
block size until no more block is available. It operates 
from left to right. Every time a new block comes in, the 
content is compared to “Binary” column from Table 1, 
which in turns is mapped to a decimal value under the 
“Decimal” column as for the return. If this is our very 
first block, only addition is performed to the current 
chain otherwise s times doublings followed by one 
addition need to be performed: 
 
A1. INPUT: k={kn-1,..,k0} 
A2. y = 1, z = 0 
A3. q = v÷s, r = v mod s 
A4. IF r>0 THEN 
A5.  k = {0..0}s-r+ k  
  //Append {0..0}s–r padding bits to k 
A6. q = q + 1 
A7. FOR i from q*s-1to 0 step-down by s DO 
A8.  z = match(k[i, i-1, i-2, i-3])  
 //Function match return the decimal value z 
A9.  FOR j from 0 to s-1 step-up by 1 DO  
  y = y + y 
A10. IF z > 0 THEN 
A11.  y = y + z  
A12. OUTPUT: (y) 
 
Algorithm 4:  
Proposed method: The whole idea of our method 
described above is implemented as in Algorithm 4. It 
consists of more lines but the complexity is no different 
to others. The loop is executed at most v times. 
 

RESULTS 
 
 Table 2 shows the different number of needed 
addition and doubling operations, tested key size 
parameter of different values which were generated at 
random, as well as against other previous methods. As a 
result, our proposed method significantly reduced the 
total number of operations with respect to other 
methods and this in turn shall minimize the required 
computation time. 
 

DISCUSSION 
 
 Considering an unsigned binary input, the maximum 

number of addition operations is approximated to 
v

s
. 

Each time on encountering a block of all zero, this 
value will be reduced by one. As expected, the 
maximum number of  doubling operations is given by v. 
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Table 2: Experimental comparison between proposed method and 
other existing methods 

Method    Proposed method 
  Binary Add-sub -------------------------- 
  method method s = 3 s = 4 s = 5 
Precomputation   0  0  6  14  30 
Key size = 160 ADD 88 52 54 40 32 
 DBL 159 160 157 156 155 
  Total 247 212 217 210 217 
Key size = 384 ADD 202 117 128 96 77 
 DBL 383 384 381 380 379 
  Total 585 501 515 490 486 
Key size = 512 ADD 265 168 171 128 103 
 DBL 511 512 509 508 507 
  Total 776 680 686 650 640 
Key size = 1024 ADD 530 350 342 256 205 
 DBL 1023 1024 1021 1020 1019 
  Total 1553 1374 1369 1290 1254 

 
This method is not intended to reduce the number of 
this operation. Regardless of precomputations, the total 

number of operations is given by 
1

v 1
s

 + 
 

.  

 From Table 2, the total number of operation is 
calculated by adding ADD and DBL fields, in case of 
our proposed method, the number of precomputation is 
also included. Specifically for our method, it was tested 
for block of size 3-5. It can be seen that the number of 
reduction in operations is proportionate to the key size. 
For instance, at s = 4, with key size = 160, the ratio of 
reduction between proposed method and addition-
subtraction method is 0.9905, with key size = 384, it is 
0.9780, with key size = 512, it is 0.9615 and with key 
size = 1024, it is reduced to 0.9368. Also, among 
different block sizes, using key size of 160 as suggested 
by the current standard, the most optimal chain is 
obtained when using s = 4.  
 A little less precomputations can be obtained by 
using NAF input. At s = 4, instead of 14, only 9 
precomputations are required to compute 2, 3,..,10 and 
their respective inverse which is considered at no extra 
cost. Also, NAF suppose to have more zero density and 
possibly more zero blocks which could further reduce 
the number of additions. 
 

CONCLUSION 
 
 In this study, we studied a possible improvement 
on the original binary method. At the expense of some 
precomputations, we showed how to obtain a shorter 
addition chain through avoiding having to do addition 
operation every time non zero digits appears by limiting 
it to one for each block. The method was experimented 
for different key size and the result shows that the 
optimal block size varies with the key size. 

 If this method were to be adapted into the standard, 
the protocol should be implemented such a way that, 
the block size is negotiable between the communicating 
parties during the initial phase and it should well be 
suited to the key size required by the current standard in 
order to obtain the best result. 
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