
Journal of Mathematics and Statistics 6 (1): 28-33, 2010
ISSN 1549-3644
© 2010 Science Publications

Corresponding Author: M.A. Mohamad, Mohamed, Faculty of Computer Science and Information Technology,
 Institute of Mathematical Research, University Putra Malaysia, Serdang, 43400, Malaysia
 Tel: +60-(0)3-8946-6579

28

An Improved Binary Method for Scalar Multiplication in

Elliptic Curve Cryptography

1M.A. Mohamed, 1M.R. Md Said, 1K.A. Mohd Atan and 2Z. Ahmad Zulkarnain
1Institute of Mathematical Research, Faculty of Computer Science and Information Technology,

2Faculty of Computer Science and Information Technology,
University Putra Malaysia, Serdang, Malaysia

Abstract: Problem statement: Until recently, many addition chain techniques constructed to support
scalar multiplication operation have been proposed tailored to limited computational resources. In
securing the efficiency of ECC point operation, the combinations of the two basic operations, point
addition and doubling are mostly implemented. Using binary method, the operation of doubling
depends solely on the length of binary representation itself, so the most probable way to reduce the
total number of the whole operation is by reducing the number of addition operation. This limitation
is quite problematic. Approach: In this study we proposed an improved binary method which reads
input block by block basis. Instead of having to add one to current chain every time non zero digit
appears, this method requires one addition for every non zero block. A mapping table is used to store
all possible binary string and its decimal version. For every block, its decimal value is extracted from
the table and this value will be added to the current chain. In return, it requires precomputations for all
possible combination of input blocks. Results: The new method showed a significant reduction in the
number of required additions and the magnitude of improvement varies according to the key size.
Conclusion: The algorithm is suitable to be adapted into cryptographic system especially as the need
for bigger key size is growing rapidly.

Key words: Scalar multiplication, elliptic curve, binary representation, addition chains

INTRODUCTION

 Elliptic curve cryptography (Koblitz, 1987; Miller,
1985) was introduced in 1985. Elliptic Curve
Cryptography (ECC) transforms a complex mathematical
problem into an applicable computer algorithm. The
scheme beats the capability provided by RSA, with a key
length of 168 bits, it provides similar security height as
RSA 1024 bits. One of the most important research areas
in ECC is to improve scalar multiplication technique
which aims at increasing efficiency.
 In short, a point P on Elliptic Curve (EC) is
transformed using a key k to another point Q using a
scalar multiplication formula Q = kP. The cheapest
operation of EC on computer system would be its point
addition and point doubling. For any k, the calculation
of kP is broken down into a series of additions and
doublings.
 Given an integer k, possibly starting from 1
(followed by 2), with allowable operations of addition
and doubling of two previous terms to get a new one,
our objective is to find the fastest way to reach k.

From the computational complexity point of view,
Downey et al. (1981) proved that the problem to find
the smallest number of terms in the sequence is an NP
problem which says that there is no known polynomial
time algorithm to find an optimal solution. Huge
interest was shown to produce a near optimal solution
resulting from various techniques. Yao (1976), Zantema
(1991) and Knuth (1981) discussed the resulting
asymptotic values of addition chains.
 This solution is customarily known as an addition
chain (later addition subtraction chain) problem. The
ascending terms from left to right in the addition chain
is known as an addition sequence.

Definition 1: An addition chain for k is a sequence of
positive integers of the form:

 a1 = 1, a2,…,as = k

such that p≤q<r where ar = ap+aq. The length of the
addition chain is equal to the number of element in the
sequence other than the initial value, a1.

J. Math. & Stat., 6 (1):28-33, 2010

29

Fig. 1: Overview of addition chain technique

Definition 2: An addition subtraction chain for k is a
sequence of positive integers of the form:

a1 = ±1, a2,…,as = k

such that p≤q<r where ar = ap±aq.
 The process from having an integer k transformed
into an addition chain can be divided into two parts as
in Fig. 1; the first one is to use an algorithm to convert
k into some sort of binary representation, the second
one is to use another algorithm to perform some
operations to produce the minimal chain. Both
processes are chosen to make sure the computation is
efficient. In some cases, the two processes are
combined into one method.
 The evolution of efficient algorithm for both parts
of operations come hand in hand. For those algorithms,
the number of addition and doubling depends on the
number of non zero elements in the representation.
Referred as Hamming weight, the number of non zero
elements in the representation must be reduced to the
least in order to achieve optimal efficiency.

Integer representation:
Definition 3: A positive integer N can be expressed by
a summation of its coefficient multiplied by its radix
representation:

n 1 i n 1
i n 1 1 0i 0

N b r b r ... b r b
− −

−=
= = + + +∑

Where:
b = The coefficient
r = The radix for m-ary representation

 Take 23 as an example, it can be expressed in radix
10 as 2.101+3.100, or in radix 2 as 1.24+0.23+
1.22+1.21+1.20.
 Binary number is the most suitable representation
for computer systems as it able to work directly with
such input. No extra efforts required for conversion as
it understand 0 and 1 perfectly. Many other
representations emerged as a result of weaknesses
within binary representation, all of which bears the
same objective to increase the efficiency. We will take
a developmental look into those representations.

Unsigned binary digit: An unsigned binary digit is the
simplest form of binary number to represent an integer
N. The use of symbols 0 and 1 dated back to Leibniz in
17th century. This classical binary representation of
length v for N can be represented as:

n 1 i n 1
i n 1 1 0i 0

N b 2 b 2 ... b 2 b
− −

−=
= = + + +∑

where, 0≤bi<2.
 This representation allows coefficient set of {0, 1}.
There is one to one correspondence between N and its
binary representation. The hamming weight of this form
can be determined by counting the number of its ones.

On average it is expected to be
v

2
.

Signed binary digit: Out of unsigned binary digits, to
reduce hamming weight, Booth (1951) introduced the
idea of signed digit representation and turned previous
expression into:

n 1 i n 1
i n 1 1 0i 0

N b 2 b 2 ... b 2 b
− −

−=
= = + + +∑

where, -2<bi<2.
 The technique expands the coefficient to {0,±1}.
Using this representation, the original addition chain is
transformed into addition subtraction chain as described
in (Knuth, 1981). Unfortunately, this representation is
not unique. Using the same example, 23 can be
represented as 11001 or 101001.

Non adjacent form: Signed binary digit is further
improved to the so called Non Adjacent Form (NAF)
(Reitwiesner, 1960) to consist of minimal weight. In
addition it is proved that every integer has a unique
form of this sort. The conception is to disallow two
consecutive non zero bits, i.e., bibi+1 = 0. A simple hand
calculation method for computing NAF using the
formula 3N-N is shown in (Chang and Tsao-Wu, 1979).
However, Reitwiesner (1960) and Mandelbaum (1967)
exemplified a computer algorithmic code based on an
iterative method to generate NAF from an unsigned
binary as well as signed representation. An expression
for N can be reduced to:

n i n n 1 r 1 r
i n n 1 r 1 ri 0

1
1 0

N b 2 b 2 b 2 ... b 2 b 2

... b 2 b

− +
− +=

= = + + + +

+ + +
∑

Where:

J. Math. & Stat., 6 (1):28-33, 2010

30

i

1,0 i n
b

1,0 i n

+ ≥
=  ± <

 NAF representation adds an extra bit to the left
most of the original representation. Such an iterative
process can be described in steps as follows:

Step 1: We start at the digit br = 1. If br.br+1 = 1, we

search through br+1, br+2 and so on until we find
br+c = 0

Step 2: Apply the following substitution to the
partition

Step 3: Repeat Step 1 and Step 2 until the last bit:

r c i r c r
ii r

b 2 2 2
+ +
=

= −∑

 Algorithm 1, known as Reitwiesner right-to-left
binary method works out as such, given N = 23, the
relevant unsigned binary follows this conversion
sequence, 10111->11001->101001. Jedwab and Mitchell
(1989) also came out with an alternative iterative
method called Weight Minimization Algorithm (WMA)
to compute NAF and theorems for the sparseness and
uniqueness of the output:

A1. INPUT: b = {bn-1,…,b0}
A2. c0 = 0; bn+1 = 0; bn = 0
A3. FOR i from 0 to length(b) step up by 1 DO
A4. ci+1 = floor[(ci + bi + bi+1)/2]
A5. b’i = ci + bi - 2ci+1

A6. OUTPUT: (b’n, b’n-1,…,b’0)

Algorithm 1:
Reitwiesner right-to-left method: Morain and Olivos
(1990) showed that the expected non zero length of

NAF can be rounded to
v

3
. A left-to-right version for

computing NAF is given by (Joye and Yen, 2000).
There are other alternative to NAF called Mutual
Opposite Form (MOF) (Okeya et al., 2004) but for the
purpose of our comparison analysis, NAF is likely to be
sufficient since both NAF and MOF has the same non
zero density.

MATERIALS AND METHODS

Addition chain: The question is how addition
technique makes use of different number representation
to produce an optimal chain? The technique either
processes the binary representation bit by bit basis or in
a partition. Here we examine some of the well known
methods ever crafted.

Naive: Let k = 5, to calculate Q = 5P, naïve method
proceed as P+P+P+P+P, 4 times. In total k-1 additions
are performed. This method is consuming maximum
time possible and is considered as no algorithm.

Binary method: Knuth (1981) gives a good history of
this particular technique. The idea is based on “square
and multiply” technique for efficient exponentiation of
power to be used in RSA. Even so, without having to
change the conceptual essence, by adapting “square and
multiply” to “double and add”, the technique can be
used to improve elliptic curve point calculation.
 A left-to-right binary method is one of its two
variations which scans binary input from the most
significant bit right through to the least significant bit.
The most significant bit is chosen to be digit 1 from the
left most of binary representation which means that we
need to skip any unnecessary 0 before meeting 1:

A1. INPUT: k = {kn-1,..,k0}
A2. y = 1, z = 1
A3. FOR i from length(k)-1 to 0 step-down by 1 DO
A4. y = y + y
A5. IF ki = 1, THEN
A6. y = y + z
A7. OUTPUT: (y)

Algorithm 2:
Binary left-to-right: Algorithm 2 shows a procedure to
simulate left-to-right method. Using k = 59, the
generated addition chain is 1, 2, 3, 6, 7, 14, 28, 29, 58,
59. On average, this method requires v number of

doublings and
v

2
number of additions. The total number

of operations is given by
3

v
2

. This method only

operates on the current value of y hence only a single
storage field is required. There is an alternative binary
method called right-to-left method which scans input
from the least significant bit. Compare to left-to-right
method, this method requires one extra operation which
is an addition by unity. Another drawback is that it also
needs extra memory to store the value from previous
doubling 2n-1.

Addition subtraction method: This method was
introduced by Morain and Olivos (1990) aiming at
reducing the number of addition operations by reducing
non zero density. It exploits the fact that to calculate the
inverse point on the elliptic curve is at insignificant
cost. Subtraction is reduced to addition of negative
point of the curve. Having NAF as an input, the original

J. Math. & Stat., 6 (1):28-33, 2010

31

binary method is modified to handle a negative
coefficient, to the following Algorithm 3:

A1. INPUT: k = {kn,kn-1,..,k0}
A2. y = 1, z = 1
A3. FOR i from length(k)-1 to 0 step-down by 1 DO
A4. y = y + y
A5. IF ki =1, THEN
A6. y = y + z
A7. IF ki = -1, THEN
A8. y = y – z
A9. OUTPUT: (y)

Algorithm 3:
Add-sub left-to-right: Again using k = 59, the
generated addition chain is 1, 2, 4, 8, 16, 15, 30, 60, 59.
This chain is one shorter than the chain from binary
method. On average, this method requires v number of

doublings and
v

3
 number of additions. The total number

of operations is given by
4

v
3

. Similar to binary method,

this method is also available for right to left computation.

Proposed method: We proposed an enhanced binary
method which we can have some control in the number
of point addition operations. The first step is to partition
the binary representation into blocks of equal size.
Instead of non zero density, the number of additions
varies according to the number of non zero blocks. If
there is an odd block at the end, sufficient padding bit
will be appended to the left of this block prior
extracting its decimal value. The number of block is the
rounded ratio between the length and the block size.
During precomputation, a Table 1 is generated to hold
mappings between 2s combinations of {0,1} and its
decimal counterparts where s is the size of the block.
 Each decimal value in the Table 1 shown must be
precomputed and in our case of s = 4, 14
precomputations are required to compute 2, 3,..,15. By
setting s = 1, no precomputation hence no table is
required and this procedure is similar to an ordinary
binary method.

Table 1: Mapping table for s = 4
Binary Decimal Binary Decimal
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15

 The algorithm may take as its input an unsigned
binary as well as NAF. At running time, the program
reads input on block by block basis specified by the
block size until no more block is available. It operates
from left to right. Every time a new block comes in, the
content is compared to “Binary” column from Table 1,
which in turns is mapped to a decimal value under the
“Decimal” column as for the return. If this is our very
first block, only addition is performed to the current
chain otherwise s times doublings followed by one
addition need to be performed:

A1. INPUT: k={kn-1,..,k0}
A2. y = 1, z = 0
A3. q = v÷s, r = v mod s
A4. IF r>0 THEN
A5. k = {0..0}s-r+ k
 //Append {0..0}s–r padding bits to k
A6. q = q + 1
A7. FOR i from q*s-1to 0 step-down by s DO
A8. z = match(k[i, i-1, i-2, i-3])
 //Function match return the decimal value z
A9. FOR j from 0 to s-1 step-up by 1 DO
 y = y + y
A10. IF z > 0 THEN
A11. y = y + z
A12. OUTPUT: (y)

Algorithm 4:
Proposed method: The whole idea of our method
described above is implemented as in Algorithm 4. It
consists of more lines but the complexity is no different
to others. The loop is executed at most v times.

RESULTS

 Table 2 shows the different number of needed
addition and doubling operations, tested key size
parameter of different values which were generated at
random, as well as against other previous methods. As a
result, our proposed method significantly reduced the
total number of operations with respect to other
methods and this in turn shall minimize the required
computation time.

DISCUSSION

 Considering an unsigned binary input, the maximum

number of addition operations is approximated to
v

s
.

Each time on encountering a block of all zero, this
value will be reduced by one. As expected, the
maximum number of doubling operations is given by v.

J. Math. & Stat., 6 (1):28-33, 2010

32

Table 2: Experimental comparison between proposed method and
other existing methods

Method Proposed method
 Binary Add-sub --------------------------
 method method s = 3 s = 4 s = 5
Precomputation 0 0 6 14 30
Key size = 160 ADD 88 52 54 40 32
 DBL 159 160 157 156 155
 Total 247 212 217 210 217
Key size = 384 ADD 202 117 128 96 77
 DBL 383 384 381 380 379
 Total 585 501 515 490 486
Key size = 512 ADD 265 168 171 128 103
 DBL 511 512 509 508 507
 Total 776 680 686 650 640
Key size = 1024 ADD 530 350 342 256 205
 DBL 1023 1024 1021 1020 1019
 Total 1553 1374 1369 1290 1254

This method is not intended to reduce the number of
this operation. Regardless of precomputations, the total

number of operations is given by
1

v 1
s

 + 
 

.

 From Table 2, the total number of operation is
calculated by adding ADD and DBL fields, in case of
our proposed method, the number of precomputation is
also included. Specifically for our method, it was tested
for block of size 3-5. It can be seen that the number of
reduction in operations is proportionate to the key size.
For instance, at s = 4, with key size = 160, the ratio of
reduction between proposed method and addition-
subtraction method is 0.9905, with key size = 384, it is
0.9780, with key size = 512, it is 0.9615 and with key
size = 1024, it is reduced to 0.9368. Also, among
different block sizes, using key size of 160 as suggested
by the current standard, the most optimal chain is
obtained when using s = 4.
 A little less precomputations can be obtained by
using NAF input. At s = 4, instead of 14, only 9
precomputations are required to compute 2, 3,..,10 and
their respective inverse which is considered at no extra
cost. Also, NAF suppose to have more zero density and
possibly more zero blocks which could further reduce
the number of additions.

CONCLUSION

 In this study, we studied a possible improvement
on the original binary method. At the expense of some
precomputations, we showed how to obtain a shorter
addition chain through avoiding having to do addition
operation every time non zero digits appears by limiting
it to one for each block. The method was experimented
for different key size and the result shows that the
optimal block size varies with the key size.

 If this method were to be adapted into the standard,
the protocol should be implemented such a way that,
the block size is negotiable between the communicating
parties during the initial phase and it should well be
suited to the key size required by the current standard in
order to obtain the best result.

REFERENCES

Booth, A.D., 1951. A signed binary multiplication

technique. Q. J. Mech. Applied Math., 4: 236-240.
http://bwrc.eecs.berkeley.edu/classes/icdesign/ee24
1_s01/PAPERS/archive/booth51.pdf

Chang, S.H. and N. Tsao-Wu, 1979. On the evaluation
of minimum distance of binary arithmetic cyclic
codes. IEEE Trans. Inform. Theor., 15: 628-631.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnum
ber=22647&arnumber=1054346&count=30&index
=9

Downey, P., B. Leong and R. Sethi, 1981. Computing
sequences with addition chains. SIAM J. Comput.,
10: 638-646.

 http://scitation.aip.org/getabs/servlet/GetabsServlet
?prog=normal&id=SMJCAT000010000003000638
000001&idtype=cvips&gifs=yes

Jedwab, J. and C.J. Mitchell, 1989. Minimum weight
modified signed-digit representations and fast
exponentiation. Elect. Lett., 25: 1171-1173. DOI:
10.1049/el:19890785

Joye, M. and S.M. Yen, 2000. Optimal left-to-right
binary signed-digit recoding. IEEE Trans.
Comput., 49: 740-748. DOI: 10.1109/12.863044

Knuth, D.E., 1981. The Art of Computer Programming.
Vol. 2. Seminumeral Algorithms. 2nd Edn.,
Addison-Wesley.

Koblitz, N., 1987. Elliptic curve cryptosystems. Math.
Comput., 48: 203-209.
http://www.jstor.org/pss/2007884

Mandelbaum, D., 1967. Arithmetic codes with large

distance. IEEE Trans. Inform. Theor., 13: 237-242.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1054015

Miller, V.S., 1985. Use of Elliptic Curves in
Cryptography. Springer-Verlag, New York, ISBN:
0-387-16463-4, pp: 417-426.

Morain, F. and J. Olivos, 1990. Speeding up the
computations on an elliptic curve using addition-
subtraction chains. Theor. Inform. Appli.,
24: 531-543.

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.56.347

J. Math. & Stat., 6 (1):28-33, 2010

33

Okeya, K., K. Schmidt-Samoa, C. Spahn and
T. Takagi, 2004. Signed binary representations
revisited. Lecturer Notes Comput. Sci., 3152: 123-
139. DOI: 10.1007/b99099

Reitwiesner, G.W., 1960. Binary arithmetic. Adv.
Comput., 1: 231-308.

 http://citeseer.ist.psu.edu/context/825067/0

Yao, A.C.C., 1976. On the evaluation of powers. SIAM

J. Comput., 5: 100-103.

 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog
=normal&id=SMJCAT000005000001000100000001&id
type=cvips&gifs=yes

Zantema, H., 1991. Minimizing sums of addition
chains. J. Algorithms, 12: 281-307.
http://portal.acm.org/citation.cfm?id=105962

