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Abstract: Problem statement: Modify the equations associated with image theory in order to account 
for perfect and imperfect conductors. Approach: A novel approach for describing the application of 
image theory for an imperfect conductive surface was presented. The method presented here purposely 
downplays the physics of how image theory was employed to account for a charge which is in the 
presence of an imperfect conductive surface. In turn, it adopted an approach which focused on the 
geometry that existed between the charged particle and surface ground. In doing so, the proposed 
method formulated a solution that had minimized the complexity of the original problem while 
providing an approximation founded upon a geometric relationship. Results: The equations derived 
had elicited the concept of using plane geometry to augment image theory. Conclusion: A method for 
evaluating image theory for the imperfect conductor had been presented. As the results had shown, the 
equations derived had provided an augmented approach to account for surfaces which were both 
perfect and imperfect.  
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INTRODUCTION 

 
 Image theory, in its current form, assumes that an 
imaged charge is in the presence of perfect conductor. 
By assuming the material is a “perfect conductor” 
allows one to account for all of the charge constituents. 
Therefore, one can assume that a charge over an 
infinitely conductive ground has a perfect mirror image. 
This “mirror image” can be quantified by taking the 
charge’s spatial coordinates which are perpendicular to 
the surface and rotating or projecting them by 180° 
(Balanis, 1989). Taking the cosine of this angle gives 
rise to an image charge that is equal in magnitude but 
opposite in polarity. However, in reality the surface in 
the presence of a charged particle is not a perfect 
conductor. With this in mind, one must presume that 
formulas which leverage this “perfect conductor” 
assumption will loss accuracy as the surface becomes 
increasing non-conductive. For the purposes of this 
study, we introduce and modify an approach originally 
proposed by Meredith and Earles (2010) to develop 
equations which account for both perfect and imperfect 
surfaces. In doing so, this approach has downplayed the 
physics of image theory in order to develop a solution 
which has minimized the complexity of the original 
problem.  

MATERIALS AND METHODS  
 
 The electric field E is defined as the force per unit 
charge. Equation 1 describes the electric field as it 
would be experienced by the small stationary charge q0 
(Jackson, 1999): 
 

0

F
E

q
=  (1) 

 
Where: 
F = The force experience by the stationary test charge 
E = The field wherein the particle is located 
 
 A conductor by definition, contain charges capable 
of moving freely under the action of an applied electric 
field. In principle, this states that the strength of the 
electric field dictates the speed at which the charge 
particles will travel within the conductive material. 
Furthermore if charged particles can no longer be 
accelerated, then the electric field must equal zero. 
Given a basic expression between an electric field and 
particle has been described, one can now expand this 
idea to consider the effects of multiple charges.  
 Coulombs law states that the magnitude of the 
electrostatic force between two point charges is directly 
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proportional to the product of the magnitudes of each of 
the charges and inversely proportional to the square of 
the total distance between them. We can now expand 
(1) to include more than one charge such that: 
 

0
e 2

q q
F k

x
=  (2) 

 
where, Ke, known as Coulombs constant, is a 
proportionality constant whose value is determined by 
the medium that the charged objects are immersed in 
and x is the distance between the charges q0 and q. 
When the medium is air, this value is approximately 

8.987×109 Nm2 C−2, which is calculated using ( ) 1

04
−πε  

where 0 01 / cε = µ , with the permeability of free space 

µ0, the permittivity of free space ε0 and the speed of 
light c.  
 One can expand Eq. 1 to derive an expression that 
equates the potential as a function of charge. By 
rearranging (1) in terms of F and equating it to (2) one 
would obtain: 
 

e
2

k q
E

x
=  (3) 

 
 With the electric field being written in terms of the 
potential as: 
 

E
x

Φ=  (4) 

 
 One can use Eq. 3 and 4 to solve for the potential 
in terms of charge such that: 
 

( ) ek q
x

x
Φ =  (5) 

 
 However, let’s consider the case of a charged 
particle which is located above a conductive surface. In 
order to describe the magnitude of the electric field at 
some arbitrary point P, one must develop an equation 
which describes the relationship between the charged 
particle above a conductive surface.  
 From Fig. 1 we can expand (5) to account for the 
distance between the charge q and vector x such that: 
 

( ) ek q
x

x y
Φ =

−
 (6) 

 
 As previously noted, a conductor contains charges 
capable of freely moving in the presence of an electric 

field. In the literature, image theory has been employed 
to describe the relationship between a charged particle 
and a perfectly conductive ground. We can illustrate the 
method of images as shown in Fig. 1 by considering the 
problem for a point charge q located at y relative to the 
origin, around which is centered a grounded conducting 
sphere of radius a (Jackson, 1999). 
 One could think about image theory this way. Let’s 
suppose you have a coherent light source and you shine 
it upon a dingy piece of metal. Some of the light will 
reflect back towards you but much of it will be lost due 
to refraction and/or absorption. Now take the same 
coherent light source and shine it towards a highly 
reflective mirror. You’ll notice that most of the light, 
about 99%, will reflect back while only ~1% is lost due 
to refraction and/or absorption. Using the highly 
reflective mirror allowed you to account for the 
majority of light. That is, you’re cognizant of where the 
light went because it reflected back towards you. In 
essence, by assuming we have a perfectly conducting 
material that acts like a mirror allows one to project a 
particles image 180° (Balanis, 1989) from the radial 
position where the original particle lies with respect to 
the conductive surface. This idea is illustrated in Fig. 2 
(Jackson, 1999). 
 

 
 
Fig. 1: Conducting sphere of radius a, with charge q 

and image charge, q’ 
 

 
 
Fig. 2: Solution by method of images 
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Fig. 3: The magnitude of the distances associated with 

the incident charge and image charge 

 
 Figure 2 assumes that we’re taking a very small 
slice of the spherical surface which houses the imaged 
charge as shown in Fig. 1. If this slice is small enough it 
can be modeled by a flat surface.  
 Given Fig. 3, we can expand (6) to account for the 
image charge q’ such that: 

 

( ) e ek q k q '
x

x y x y '
Φ = +

− −
 (7) 

 
where, x y−  and x y '−  are the distances that exists 

between the charge q and image charge q’ with respect 
to the unit vector x. 
 In order to augment the approach used from image 
theory, this study will introduce the idea of the 
degraded image. This ideology accommodates both 
perfect and imperfect projected images. With traditional 
image theory, it assumes that a charge in the presence 
of a perfect conductor has a mirror image. However, as 
the surface below this charged particle becomes less 
conductive, one can no longer assume that its image 
remains unchanged. In fact, one must concede to the 
idea that the entire image can no longer be projected in 
the same fashion as the image of a charge in the 
presence of a perfect conductor. With the adoption of 
this idea in place, it’s logical to presume that as the 
surface below the charged particle becomes less 
conductive, the image charge will become degraded as 
shown in Fig. 4. Given the image charge has become 
degraded, some of the charge constituents have now 
become displaced. Since the conservation of charge 
must be preserved, these dislocated constituents will 
now collect along the surface of the conductive 
material.  

 
 
Fig. 4: Application of the degraded image 
 

 
 
Fig. 5: The projection of a perfect image’s magnitude 
 
 Figure 4 illustrates the how the degraded image 
charge, qd will change with respect to the perfect image 
charge, qp as the conductivity, σ of the surface 
decreases. As the surface becomes a perfect insulator, 
the magnitude of the degraded image charge 
approaches zero. This methodology has purposely 
downplayed the physics of how image theory is 
employed to account for a charge which is in the 
presence of an imperfect conductive surface. In doing 
so, this model formulates a solution that has minimized 
the complexity of the original problem while providing 
an approximation founded upon a geometric 
relationship. Knowing how the image charge is affected 
by the surface conductivity allows one to develop an 
equivalency between the two by exploiting the 
geometry of Fig. 4. Since the contribution from the 
magnitude of the perfect image charge is generally 
known, this value can be scaled to account for a 
changing conductivity as shown in Fig. 5. 
 As Fig. 5 illustrates, the contribution from the 
degraded charge can be quantified by taking the 
magnitude of the perfect image charge and scaling it by 
a factor which accounts for the loss. This can be 
realized by taking the projection of the perfect image’s 
magnitude and rotating it along the z = 0 axis until it 
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shares the same z component as the degraded image. 
Do so will allow one to associate the perfect image with 
the degraded image by multiplying the scaling factor, 
cos(γ). Therefore, we can write the degraded charge in 
terms of the perfect charge such that: 
 

( )dq q 'cos= γ  (8) 

 
where, qd is the degraded image charge and the cosine 
of the angle, γ accounts for the loss. In order to 
maintain the conservation of charge, one must arrive at 
the notion that the image charge constituents that are no 
longer present within the degraded image must now be 
present elsewhere. With this in mind, we can infer that 
these image charge constituents will now collect along 
the surface. Although these surface charge constituents 
spread out radially, their contributions can be 
approximated by formulating two distinct charges, each 
of which lie on opposite sides of the z-to-ground plane 
interface. In principle, these two surface charges 
represent the summation of each of their respective 
radial constituents, thus formulating a viable 
approximation to those present. We can describe the 
total surface charge with the following:  
 

( )( )sq q ' 1 cos= − γ  (9) 

 
RESULTS  

 
 In order to maintain symmetry, we can write a 
general expression for the potential at z = 0 such that: 
 

( ) ( ) ( )i px, z 0 0 x, z z x, z zΦ = = = Φ = + Φ =  (10) 

 
where, ( )ix, z zΦ = and ( )px, z zΦ =  are the potentials 

located at the incident charge and perfect image charge 
respectively. An alternative form of this expression can 
be written to include the equations associated with these 
charges at their respective z coordinates. Thus, one can 
now update (10) to include these equivalent terms to 
yield: 
 

( ) q q '
x, z 0

x y x y '
Φ = = +

− −
 (11) 

 
 However, as the potential located at the image 
charge becomes degraded, Eq. 10 is no longer valid. In 
order to validate this expression, one would have to add 
a form of potential to the right hand side of the 
equation. This term is made up of the dislocated charge 

constituents who have now collected along the surface 
of the conductive material. The inclusion of this surface 
charge now brings the needed symmetry to the equation 
and thus preserves the conservation of charge. The 
potential of the perfect image charge can be written as: 
 

( ) ( ) ( )p d sx, z z x, z z x, z zΦ = = Φ = + Φ =  (12) 

 
where, ( )dx, z zΦ = and ( )sx, z zΦ =  are the potentials 

located at the degraded charge and surface charge 
respectively. Therefore, one can now re-write (10) to 
include the additional terms from (10) with: 
 

( ) ( ) ( )
( )

i d

s

x, z 0 0 x, z z x, z z

x, z z

Φ = = = Φ = + Φ =

+ Φ =
 (13) 

  
 As with (11), an alternative form of this expression 
can be derived by simply substituting the equations 
associated by the potential terms at their given z 
coordinates. In doing so, we can now write a general 
expression which describes both perfect and imperfect 
conductive surfaces with the following: 
 

( ) d sq q q
x, z 0

x y x y ' x y '
Φ = = + +

− − −
 (14) 

 
 In principle, if it is assumed the conductivity of the 
surface approaches infinity, the charge-to-ground 
distance y and perfect image charge-to-ground distance 
y’ are equivalent. However as the surface becomes less 
conductive, a portion of the image charge now becomes 
distributed along the surface as indicated in (13). Since 
a charge located at the surface no longer relies upon the 
vector y’, one should presume its contribution to be 
negligible. With this in mind, one can now re-write (14) 
to include this change along with (8) and (9) to describe 
the final expression written as: 
 

( ) ( ) ( )( )q ' 1 cosq 'cosq
x, z 0

x y x y ' x

− γγ
Φ = = + +

− −
 (15) 

 
DISCUSSION 

 
In Eq. 15, we utilized a novel approach to augment 

image theory.  Surmising the image charge vertical 
position can vary as a function of surface conductivity 
aided in the development of this formula.  This 
methodology has greatly simplified how image theory 
could be employed for surfaces which are no longer 
consider perfect conductors.  In doing so, an alternative 
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method to image theory has been presented which 
leverages the variability of the image charge with 
surface conductivity. 
 

CONCLUSION 
 
 A method for evaluating image theory for the 
imperfect conductor has been presented. As the results 
have shown, the equations derived have provided an 
augmented approach to account for surfaces which are 
both perfect and imperfect. The methodology presented 
here has purposely downplayed the physics of how 
image theory is employed to account for a charge which 
is in the presence of an imperfect conductor. In turn, it 
adopted an approach which focused on the geometry 
that exists between the charged particle and surface 
ground. In doing so, the proposed method formulated a 
solution that has minimized the complexity of the 
original problem while providing an approximation 
founded upon a geometric relationship.  
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