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I ntegrability and Prolongation Structure of a Generalized
Korteweg-de Vries Equation

Paul Bracken
Department of Mathematics, University of Texas,nbdirg, TX 78541-2999

Abstract: A closed differential ideal is constructed for angralized Korteweg-de Vries equation. The
ideal can be used to establish integrability foe tbquation. Some prolongation structures are
determined for the equation and some larger pratog algebras for given instances of the equation
are found. The significance of this is that Backldransformations can be developed based on them. |
is shown how a Backlund transformation for a cdgb@equation can be formulated.
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INTRODUCTION applications to solitary water waves (Bracken, 2004
has become apparent that nonlinear dispersion can a
The concept of integrability of certain kinds of to compatify solitary waves and generate solitohs o
partial differential equations or systems of suchfinite wavelength. Such modes have been deternimed
equations has generated a great deal of atterfttmre  the form of solutions to the equation which will be
are many implications and related applicationshaf t studied here (Bracken, 2005). The symmetry group fo
idea of integrability (Das, 1989). A Lax pair cae b this equation has been determined and has allowed
determined in theory, as well as an infinite number solutions to be calculated. These solutions include
conservation laws and perhaps more importantly, &oliton solutions and solutions which can be thaugh
Backlund transformation. A Backlund transformationas having compact support (Rosenau and Hyman, 1993;
has more important practical consequences, sir@ait Sivers and Takens, 1988). These equations havedfeen
be used to determine solutions to an associatedreat interest recently due to their applicatiamsiuteas
equation, usually referred to as the potential #gna  such as coupled autonomous ocsillators and soliton
from solutions of the given equations. Of course,theory. In the former instance, these have beemgst
determining any of these in practice in a particazsse  of interest since the discovery of their synchration
is not easy, however, there are approaches whielm of by Huygens (Pilovsky and Rosenau, 2006; Rosenau,
yield results. It has been shown by Estabrook an@006).
Wabhlquist (1975a) that by applying Cartan’s metlasd It is the intention here to investigate some insé&s
well as prolongation techniques, it is possible toof the equation which admit a larger prolongation
ascertain integrability of a given equation (Estaitr algebra than that discussed in (Bracken, 2007)tand
and Wabhlquist, 1975b; 1976). This was accomplishedietermine the algebra explicitly. Some of the
for the classical Korteweg-de Vries equation. Themathematical preliminaries of Cartan’'s method as
prolongation results can be used to determine gplairx  introduced by Estabrook and Wabhlquist (1975b; 1976)
for the given nonlinear equation. The intentioneher  are introduced first. It will be shown next how the
to develop a way to extend that work to the casa of analysis can be extended to the case of the gerestal
generalized Korteweg-de Vries equation (BrackenKorteweg-de Vries equation, essentially in the form
2005). given in (Bracken, 2005; 2007). An exterior diffetial
Of course, the existence of an infinite number ofsystem which reproduces the equation on the trassve
conservation laws and the notion of integrabiligvé@ manifold is presented, so integrability can be
both been connected to the existence of solitonsstablished. A  prolongation is  determined
associated with these equations. The study ofosalit corresponding to this exterior differential system.
recently has been of interest due to their appearan Finally, a Backlund transformation is found based o
many physical applications (Radu and Volkov, 2008)the generakl(2,R) prolongation.
and so the investigation of a new equation is terast.
The classical Korteweg-de Vries equation has mangxterior  differential systems and  Cartan

applications which extend beyond the originalprolongations: Consider the space M =", t, u, p,
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g,..) in which there is defined a closed exteriorigcal solution § of (6) with p(5)=S. There is a
differential system: theorem which states that (6) is a Cartan proldngat

-0 =0 1 of (1) if and only if (6) is closed. A necessarydan
G=0a= (D) sufficient condition for the existence of this izen
and let | be the ideal generated by the{set, in (1) by:

given as: dal = 0, modp (1) (7

|
'={‘°:;°i Ua, : g D/\(M)} (2 where, 1 is the ideal generated g} and the
summation convention holds in (7). Consider a dfivi

If ideal (2) is closed, we have[dl and so (1) is bundle of the formM =M xR* with y =(y",..., y*)OR"
integrable by a theorem. It is important to strés®  and use connections which have the form:
system (1) is chosen such that the solutions uxs=ty(
of an equation: & =dy -n, i=1,...k (8)

U = F(X, T, U, W U ) () with n' =A'dx+Bdt, where A and B are ¢ functions

on M. Substituting into the prolongation condition (7),

correspond with the two-dimensional integral maldigo
it reads:

of (1). There are the integral manifolds given by

sections S of the projection: o o )
—-dn' =(3; 0(dy -n'), modp (1)

™M - R? x,t,u,p.q,..F (Xt (4)

From this, it follows thatBij may be chosen such
that they do not depend on"dg™, m=1, ..., k, m#j.
Moreover, it is possible to show that the prolorgat
condition boils down to the following:

These sections S are given by a mapping:

S:R -~ M, S(x,t)= (x,t,u(x,t),p(x,1),q(x,t),). (5)

Introduce the fiber bundIgMm,p,M) over M with
MOM andp a projection ofM onto M, so points of

M are denoted bynh, those in M by m and hence
(P)ym=m.
A Cartan-Ehresmann connection in the fiber

bundle (M,p,M) is a system of one forms (dADdx+dBDdt+[A,B] dx0 dt) 0 ( ) (10)
@,i=1..., kinT (M) with the property that the

mappingp. from the vector space: where, [A,B] denotes the usual Lie-bracket of the
vector fields A and B.
H,, ={>~( 0T, & (X) =0,i =1,...,k} These r(.asults. can be summariz_ed in the fo_llowing
theorem, which will be made use of in the followirg
necessary and sufficient condition for the conmecti

to the tangent space, IS a bijection. forms (8) to be a Cartan prolongation is the vanigh
We consider inM the exterior differential system:  of its curvature form.

dn +%[n.n] =0 modp (I 9)

Expanding out (9), the prolongation condition
reads:

el

& =pa, =0, i=1..,1 Cartan prolongation of the generalized Korteweg-de
. =1k (6)  vries equation: Consider the exterior differential
’ system on the space M which is defined by:
with & a Cartan-Ehresmann connection(in,p, M) . a, =nu"dul] dt- pdx de 0

The system (6) is called a Cartan prolongation of ~ _ B _
(1) if (6) is closed and whenever S is a transuersa®z - 4Pt dt- adx d= 0 (11)
solution of (1), there should also exist a transaker 05 =duldx-dqd dt-y pd dX dt (
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where,y is a constant. From system (11), we calculate-A  +B, +[A,B] =-Ap —Ag —yA pu®

that: A=A, A,=0, A,=0, 16)
da, =—dp0 dx0 dt= dxla, B, =m\u™, B, =A, Be=-As
da, = -dqO dxO dt=—- dxJa
2 =04 _1X XGa (12) To produce a small algebra, assume that A and B

doi, =—yspu™ dul dxJ dy & dpl dil ¢ do not explicitly depend on (x, t) so we putAA =0

- dx D(VEDLF‘”GﬁVPUSGZJ as vv.eII as B= B, = 0. System (16) can be put in the

n form:
Therefore the ideal __1 s
L _ [A,B]——Eu B, —gB, +Ypu°B,

I={wlw=2i:10i Oa, : o D/\(M)} is closed, dil and
the system ¢;} in (11) is integrable. A, =A, =0, B,=B, =0

On the transversal integral manifold: _ _ _ _

g A,=0, A,=0,A,=-B, B =1, (17)

0=a, |s= Sa, = (0 )- p)d dt B, =nA,u",
0=a,|s=Sua,= (- q)dd dt (13)

The conditions (17) imply that A = A(u, y) and B =
B(u, p, g, y). To obtain some prolongations forsthi

system, let us take the following form for the ozct
The transversal integral manifolds imply the field A:

equations:

O0=0,|s=Su,= (yd d¢ g dd dty pud¥ d

A=A, y) =X +UXy, Xi=X(y),1=1,2 (18)
p=(u"),, a=R W) . y+ g+ypd=
All of the dependence on the prolongation variable
Let n+s# 0, then substituting p and g, it can beY resides in the XSince A = X; from (18), then from
seen that u must satisfy the following generalized17) we obtain B = -Xp. This implies that B is
Korteweg-de Vries equation: determined to be:

B = - X + C U, , 19
U‘ + (un )><><>< + yni-'-s (un+3))< =0 (14) q 2 ( p y) ( )
Therefore, using (18) and (19), the first equation

This can be put in more familiar form by setting (17) takes the form:

m = n + s and defining to be the coefficient of (¥), in 0
(14). Therefore, (14) takes the form: [xl +UX,,—gX, + C} = u™""C,- qC,-ypu X, (20)

U+ (W +BUD = 0 (15) Simplifying (20), it follows that:

Using (11), the prolongation condition (10) now

leads to the expression: Pe +quic =—ypd T IX + qut X
~C, QUG =y i+ qun ] XX 21)

A, dtOdx+ A, dubdx+ A dpd dx+ A do] dx U™ X,,C]=u"[ X,,C]

B, dxOdt+ B, dul dt+ B ddl dt B dgl dt i . _
Define the vector field X = [X3,Xj], then

[AB]dxDdt= A, (nd™ dud dt- pdid derh, whenever C is independent of g, we obtain from (21)
(dpOdt- qdx0 o +A,( dud dx d@ dey pu dx §  thatCisgiven by:

Comparing the coefficients of the two-forms on C(Us P, Y) = pX%+D(u, y) (22)
both sides of the prolongation condition produdes t o . _
following system of equations: Substituting C in (22) into (21), we have:
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%Du =p{—yu 3, - um X, X, ] - u X, X, )
-u{[x,,D]-u[x,,0}

Since D does not depend on p, the last term ih (23
must vanish and there result two conditions on D:

(23)

[X,D]-u[X,D]=0 24)

1D, =W X, — U X, X [ mu X, X ] .

Integrating the second equation for D in (24) with
respect to u gives D explicitly:

n m n
D(u,y)=—yau X,—u [Xl,X3]—
) (25)
n+l
—7Y [ X5, X5 ]+X,
wherem=n+s.

There exists a solution such that thesAtisfy the
full sl(2,R) algebra, provided m, n ang are
interrelated in a specific way and another solufion
the general case, but which satisfies a much smalle
algebra. Each case will be treated in turn.

» Suppose that theXatisfy the following algebra,
which is isomorphic tal(2,R):

This generates the following Lax pair:

Wy = -(Xg + uX)u,
W = 24" -2U™ + )Xo + pXa] P

Where:

p=(wa=n
Let us find another solution to (24) such that m, n
andy are arbitary. No assumptions whatever are

made with regard to these parameters. Substituting
D from (25) into the first Eq. 24 gives:

XXX T XX

D D ) e x|

n%lu“*z[xz,[xz,xﬂ ~u[X,X,]=0

(29)

+

There is not much freedom in balancing powers of

u in (29). To satisfy (29) if no assumptions are

made with regard to m and n, we must require that:
[X1,Xg] =0, [X2,Xg] =0

To satisfy these brackets, this can be done in the

following way. Let us take X= pX; and X = KXy,

from which it follows that X = AX, and p k andA are

real constants. Moreover, substituting these resatb

the definition of X%, it follows that % = 0. Using all of

[X11X2] = X3, [Xz,Xg] = 2X2, [X3,X]] = 2X1 (26)

Then (25) takes the form:

D(u,y)= —[yﬂ U+ 2 w”) X, + 2U' X 27
m n+1

these results in (29), it follows that the remaintarms
in (29) vanish. Hence (29) is satisfied identicadiyd

we have one solution. To summarize these resuits fo
Now D in (27) must satisfy the first equation in the vector fields, we have:

(24) and for this to hold, we must have:

X1=AXy Xy,

X3 = 01 )<4 = UXZ (30)

The prolongation structure reduces to the foll@win

set of vector fields:

This can hold only if the powers of u match, so
m = n + 1 and if/ is given in terms of n by:

SN

y:

The components of thg are then given by:

A=X,+UX, B=-gX,+pX,+D

(28)
C=pX,+d, D=-2U"" X, + 2U X

128

A=(A+u)X,

B=qX2+C=[-q-v£n"“+uj %
m

(31)

n

C=D=(_y7um+“)>(21 AquR
m

Consider % to be one of the generators sif2,R),

so the solution (32) is based on a subalgebra.

It can be represented in matrix form as:
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10 - 10 1 11 0 o' =0, 0?=0,
-1 0 -1 0 0 - 39
2 2 2 03=%()\+u)dx—%(q+y%w—ujdt (39)

To find the Maurer-Cartan algebra 6L (n,R), we

consider the left-invariant formsy as elements of a System (39) satisfies the Maurer-Cartan algebra if
matrix: and only if u satisfies (14 and 15). The grosip(2,R)
_ can be written as a product:
w-(w)- Yy (33)
SL(2,R)= BL(2,R)ISO(2 40
where, Y is the natural embedding of the group into Y=AB (40)
R™. Then Y'dY is the Maurer-Cartan form. The
Maurer-Cartan algebra can be written as: Hence the Maurer-Cartan form is:
do+wOw=0 (34 w=BYA'dA)-B+B'dB (41)
In this case we take where, A and B are:
SL(2,R)={ XO GL(2,R)det(X L. The exponential
map can be used to obtain the Maurer-Cartan algebra & 0 cop  xirB
To obtain a form for (34) that is more convenient, A=/ ~ 1} B :(—sinB CO#J (42)
weintroduce thed by: a
2 ® — o2 Introducing the forms:
o= @ o )|_1f o W - w (35) g
w -w) 2(-w-w  -w
_ T =gda, 1°= bda- adb, = R (43)
Substituting (35) into (34), it follows that the a
satisfy the Maurer-Cartan relations: .
wcan be written as:
dw' = o’ Oof, dof = &' Do, do’® = w' O f (36)
o' _(cosmp sirljJJ T =T dy
Using (32), we calculate A and B to be: o -sing  cosp (12 )
A:l[ 0 )\+U] From the function f: Rw f:R? - SL(2,R) with
2{-A-u 0 () =0, it follows that:
n
0 -q-y—u"+u (37) .
1 5 —
'3:5 n m (i]:(c.o&“ Sm][i}, §°=c’+dp (44)
g+y—u" - 0 o) singy cosp )\o
m
Solving (44) for d, we get:
and the cocycle is given by: 944 g
— 3 i 1_ 2
0_1 0 A+u dy =o® -sinjc* - cospo (45)
“2l-A-u 0 _ . . o
Putting (49) into (45), it follows thatydis given
L 0 —g-y 4 (38)  by:
dx += m dt
2l gyt 0 1 1 n
m qu:E()\+U)dX_E[q+yTnun_ u} d' (46)

If we let the Maurer-Cartan form have the struetur
(35), then thes' are found to be: From (46), a Backlund transform can be extracted:
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