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Abstract: Problem statement: A homotopy method has proven to be reliable for computing all of the 
isolated solutions of a multivariate polynomial system. The multi-homogeneous Bézout number of a 
polynomial system is the number of paths that one has to trace in order to compute all of its isolated 
solutions. Each partition of the variables corresponds to a multi-homogeneous Bézout number. It is a 
crucial problem to find a partition with the minimum multi-homogeneous Bézout number since the size 
of the space of all the partitions increases exponentially. Approach: This study presented a new 
method by producing the Tabu Search Method (TSM) as a powerful technique for finding minimum 
multi-homogeneous Bézout number. Results: A comparison is made between the new method and 
some recent methods. It is shown that our algorithm is superior to the latter, besides being simple and 
efficient in the implementation. Conclusion: Furthermore the present study extended the applicability 
of the Tabu search method. 
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INTRODUCTION  
 
 The development of homotopy continuation 
methods started around the mid seventies with the study 
of Garcia and Zangwill (1979). Recently these methods 
have evolved to becoming reliable and efficient 
numerical algorithms for approximate all of the isolated 
solutions of polynomial systems. For a survey (Li, 
1987; Watson, 1986). Consider a polynomial system of 
equations: 
 
F(x) = (f1(x), f2(x),…,fn(x)) (1) 
 
where, n

1 2 nx (x ,x ,...,x )= ∈ℂ  . The classical homotopy 

method for polynomial system is based on the classical 

Bézout number, i.e., the total degree TD, 
n

ii 1
TD d

=
= ∏ , 

where di is the degree of the ith equation fi. TD is an 
upper bound of the number of the isolated solutions of 
(1) and hence the number of curves one has to trace in 
the homotopy. However, TD is often far larger than the 
number of isolated solutions of the system (1). Hence a 
homotopy goes through exhaustive computations, 
including tracing unnecessary curves. 
 Morgan and Sommese (1987) proposes the multi-
homogeneous Bézout theory. It is shown that the multi-
homogeneous Bézout number also gives an upper 
bound for the number of isolated solutions of a 

polynomial system. Each partition of the variables 
usually gives a different multi-homogeneous Bézout 
number. It is desired to find a partition whose multi-
homogeneous Bézout number is the smallest among all 
possible variable partitions. In fact the minimal multi-
homogeneous Bézout number is usually smaller 
(sometimes far smaller) than the Bézout number, TD. 
Thus a smaller number of paths is followed in the 
multi-homogeneous homotopy method. 
 Wampler (1992) presents an exhaustive search 
method on finding the optimal bound. However, 
numerical experiments show that while it works well 
for small systems, it is costly when n increases. 
 Li and Bai (2000) provides a local search method 
for minimizing multi-homogeneous Bézout numbers; as 
with any other local search methods, it gives a local 
minimum rather than the (global) minimum over all 
possible homogenizations. 
 Li et al. (2003) presents the so-called fission and 
assembly operations to generate the partitions from 
each other in order to minimize homogeneous Bézout 
numbers, but the search technique is still local in nature 
and it only works for small systems. 
 Yan et al. (2008) provides a genetic algorithm for 
finding minimal multi-homogeneous Bézout numbers; 
the algorithm depends heavily on random choices 
from the population space and computes their fitness 
functions and keep the minimum ones, repeating this 
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choice until some stopping criterion is satisfied. This 
method depends on non-controlled moves in search of 
feasible solutions, so in sometimes it revisits a large 
number of candidates and sometimes it encounters an 
infinite cycling loop. 
 The computation of minimum Bézout number is a 
NP-hard problem (Malajovich and Meer, 2007); 
consequently the topic of minimizing Bézout number is 
very important because it gives the number of the paths 
that need to be traced in a homotopy method. 
 In this study we will present a heuristic technique 
based on the Tabu search. The Tabu search exhibits 
several strengths, listed as follows (Glover and 
Kochenberger, 2003): 
 
• Converges near the optimal solution 
• Can be considered as a controlled random walk in 

the space of feasible solutions 
• Uses the short term memory to prevent the reversal 

of recent moves 
• Uses the long term frequency memory to reinforce 

attractive components 
• Uses a ‘Tabu list’ to prevent cycling back to 

previously visited solutions. Tabu list records the 
recent search history, a key idea that can be linked 
to Artificial Intelligence concepts 

 
The multi-homogeneous Bézout number: Consider 
the multivariate polynomial system (1). Let Z = {z1, 
z2,…,zm} be a m-partition of the unknowns X = {x1, 
x2,…,xn} where 
 

{ }
j

j j1 j2 jk
z z ,z ,...,z , j 1,2,...,m= =  

 
 Define the degree matrix of the system F(x) = 0 as 
the following: 

11 12 1m

21 22 2m

n1 n 2 nm

d d d

d d d

D . . . .

. . . .

d d d

 
 
 
 =
 
 
 
 

⋯

⋯

⋯

 

 
where, dij is the degree of polynomial fi w.r.t. the 
variable zj. The degree polynomial of F with respect to 
the partition Z is defined as: 
 

n m

D ij jj 1i 1
f (y) d y

==
= ∑∏  

 
 The m-homogeneous Bézout number of F w.r.t. the 

partition Z equals the coefficient of 1 2 mk k kk
1 2 my y y ...y=  in 

the degree polynomial fD(y), and denoted by Bm, where 
k = (k1,k2,…,km), with kj = #(zj), j = 1,2,…,m and 

m

jj 1
k n

=
=∑ . 

 The following well-known example shows the 
significance of the difference between the minimal 
multi-homogeneous Bézout number and the classical 
Bézout number (Li et al., 2003). 
 
Example: Consider the matrix eigenvalue problem: 
 

n
1 2 nAx x,x (x ,x ,...,x ) ,= λ = ∈ λ ∈ℂ ℂ . 

 
 One can view it as a polynomial system of n + 1 
variables n 1

1 2 n(x ,x ,..., x , ) +λ ∈ℂ : 

 
Ax = λx 

 
ηTx = 1 

 
where, nη∈ℂ  is a randomly chosen vector. Clearly, the 
classical Bézout number of this system is TD = 2n. But 
we all know that this eigenvalue problem only has n 
solutions, counting multiplicities. Since 2n >> n, the 
homotopy method will be very costly. By taking the 
partition Z = {z1 = X,z2 = {λ}} we find the 2-
homogeneous Bézout number exactly. 
 We seek to minimize Bézout number and since 
each partition Z of the set of unknowns X gives one 
number then the search space will be the space of all 
partitions of set of n elements. The total number of all 
possible partitions is denoted by B(n) and called Bell 
number. It is the number of all possible ways of putting 
n distinct balls into n identical boxes, where some of 
the boxes could be empty. The following recursive 
relationship holds for Bell numbers (Li et al., 2003): 
 

( )n 1

k 0 k
B(n) n 1 B(k),B(0) 1

−

=
= − =∑  

 
 There is an estimation of Bell number given by (Li 
and Bai, 2000): 
 

n

2n
B(n) n!

2
  < < 
 

 

 
 This means that Bell number increases exponentially 
as n grows. For example, B(4) = 15, B(5) = 52, B(10) = 
115,957 and B(15) = 1,382,958,545. 
 It is not necessary to compute Bézout number by 
expanding the degree polynomial because we need just 
the coefficient of one desired monomial. Wampler 
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(1992) gives a recursive relation for computing 
Bézout number  by  letting a  partition,  say  m-
partition  Z, fixed,   k = (k1, k2, … , km) the cardinalities 
of the sets in Z, D the corresponding degree matrix 
whose entries are dij: 
 

j

m

ij jj1,k 0

1, if i n 1
b(D,k,i)

d b(D,k e ,i 1) otherwise
≠

= +=  × − +∑
 (2) 

 
where, ej is the jth row of the identity matrix of degree 
m and the m-homogeneous Bézout number is b (D,k,1). 
 

MATERIALS AND METHODS 
 
 The method used by Wampler (1992) is 
exhaustive, in the sense that it searches over all the 
partitions. It only works well in small systems. The 
local search method of Li and Bai (2000) reduces the 
number of visited solutions compared to Wampler 
method but sometimes fails to obtain the optimal 
solution. The a priori cost shown in Li et al. (2003) 
shows that the assembly method reduces the number of 
visited solutions to n3, i.e., in a polynomial time and the 
fission method reduces the number of visited solutions 
to 2n-n i.e., much less than that of Wapler, but still 
exhibits an exponential growth. 
 A Genetic Algorithm (GA) for minimizing multi-
homogeneous Bézout number presented by Yan et al. 
(2008) is heuristic I nature; this algorithm shows some 
attractive results compared to local search methods, but 
it depends heavily on non-controlled random walk 
through the feasible solutions which makes it costly, 
especially for large-scale systems. 
 
Tabu Search Method (TSM): Tabu search method is a 
heuristic based on a good controlled random walk 
through attractive feasible solutions and converges near 
the optimal solution. TSM is well-suited for hard 
optimization problems. 
 The crucial concept in TSM is the definition of the 
neighborhood of a fixed feasible solution, because each 
problem has its different nature. In our method let P = 
{z1,z2,…,zm} be a given feasible solution, where zi⊆X, 

zi∩zj for i ≠ j and 
m

ii 1
#(z ) n

=
=∑ . The neighborhood of P 

can be given in many ways. From a given feasible 
solution such P we will generate another feasible 
solution by one of the following: firstly, split one of zi's 
or more to one or more parts, secondly, merge two or 
more of zi's into one part, thirdly, move one element 
or more from one set zi to another set zj. Each type of 
generation can give so many feasible solutions. The 

neighborhood of P, denoted by N(P), will generally be 
defined as a subset of the set of all possible cases. 
 In our method we will focus on a simple type of 
neighborhoods, as in the following definition. 
 
Definition 1:  Let P = {z1,z2,…,zm} be a partition of the 
set of the variables X = {x1,x2,…,xn} of the polynomial 
system. let N(P)ɺ  be the set of all feasible solutions 
generated from P by splitting one zi's at a time into two 
parts, or merging two zi's at a  time into one part. We 
define a typical neighborhood of the partition p as N (P) 
which has nɺ  elements chosen randomly from N(P)ɺ  
where: 
 

n, if #(N(P)) n
n

#(N(P)), otherwise

 >= 


ɺ

ɺ
ɺ

 

 
 In the following we establish our algorithm for 
minimizing multi-homogeneous Bézout number using 
TSM, where L the tabu list for storing partitions and LB 
for storing the corresponding Bézout numbers. 
 
Algorithm 1: Finding the minimum multi-
homogeneous Bézout number using TSM. 
 
S0: Input criterion numbers M,M 0>ɺ . Set i = 0, L = ∅ 

and LB = ∅. Go to step S1. 
S1: Choose random partition P, add P to the tabu list 

L, compute B(P) and add it to LB. Go to step S2. 
S2: If B(P)≤M or i M≥ ɺ  declare the result: the 

partitions in L whose Bézout number is the 
minimum over all the values in LB and stop. It is 
considered as an approximation of the minimum 
Bézout number over all partitions. Otherwise let 
i : i 1= +  and go to step S3. 

S3: Generate N(P)ɺ , then N(P) as in Definition 1, 
compute B(N(P)) {(B(s) : s N(P)}= ∈ . Go to step S4. 

S4: Let Y {y N(P) : B(y) min(B(N(P)))}= ∈ = . Pick 

P Y∈ɺ  such that P L∉ɺ , go to step S5. 
S5: Let P : P= ɺ , add P to L and add B(P) to LB. Go to 

step S2. 
 
 Note that B(P) is the multi-homogeneous Bézout 
number of the partition p computed using (2).  
 We note that choosing the neighborhood with the 
number of elements not more than the size of the 
system decreases the computation cost. From other 
viewpoint the randomness and the fact that optimal 
solution can be reached in so many ways pay off what 
can arise from decreasing the size of the neighborhood. 



J. Math. & Stat., 6 (2): 105-109, 2010 
 

108 

 Algorithm 1 generates #(N(P))ɺ  feasible solutions 
and computes fitness function for just random # (N(P)) 
#(N(P))≤n solutions in step S3; this procedure is 
repeated no more than n times in one loop and previous 
work is done Mɺ  times in one run of the algorithm; so 
the number of evaluated solutions is 2Mnɺ  or O(n2), i.e., 
polynomial time. 
 

RESULTS 
 
 We implement our method on twenty multivariate 
polynomial systems with different sizes; these systems are 
cited in (Li and Bai, 2000). Table 1 provides basic 
information about the used systems. Table 2 and 3 
summarize the implementation of Local Search Method 
(LSM) (Li and Bai, 2000), Fission Method (FM), 
Assembly Method (AM) (Li et al., 2003), Genetic 
Algorithm (GA) (Yan et al., 2008) and Tabu Search 
Method (TSM) in two aspects, firstly the convergence to 
the global optimal solution (MB) and secondly, how many 
feasible solutions needed to be visited to arrive at the 
Optimal Solution (OS). The column of percentage shows 
the percentage of the number of visited solutions to the 
whole population. The result is the average of 10 times run 
of the program. Some symbols used are listed below: 
 
TD = Total degree (classical Bézout number) 
MB = Minimum Bézout number 
nP = The number of all partitions 
vP = The number of visited solutions (partitions) 
OS = The optimal solution (global or local) 
# = The number of the system as cited by (Li and 

Bai, 2000) 
* = The solution is not global 

DISCUSSION 
 
 On the one hand, the result in Table 2 shows that 
LSM, FM and AM may fail to reach the global 
solution; moreover, each of these approximates a 
solution through visiting so many feasible solutions. On 
the other hand, the result in Table 3 shows that GA 
achieves the optimal solution by visiting a less number 
of feasible solutions comparing to LSM, FM, and AM. 
However GA is still inefficient since it goes through 
exhaustive searching in the space of feasible solutions 
whereas TSM achieves the optimal solution through a 
considerably shorter path of the solutions as shown in 
Table 3. 
 
Table 1: Basic information of the used systems in TSM 
Sr. No. n TD MB NP 
1    2 16 10 2 
2 4 625 384 15 
3 4 256 96 15 
4 4 144 62 15 
5 4 900 450 15 
6 5 16 16 52 
7 6 8 8 203 
8 8 5764801 645120 4140 
9 8 128 16 4140 
10 6 64 20 203 
11 11 2048 320 678570 
12 8 576 193 4140 
13 7 4608 1361 877 
14 10 3628800 3628800 115975 
15 9 362880 362880 21147 
16 6 1024 216 203 
17 5 108 56 52 
18 4 1344 368 15 
19 10 64 56 115975 
20 8 256 160 4140 

 
Table 2: Numerical results (1) 
  LSM   FM    AM 
  ----------------------------------------- ----------------------------------------- -------------------------------------------- 
Sr. No. n    VP   %        OS    VP   %        OS VP  %        OS 
1 2 1 50.00 10 1 50.00 10 1 50.00 10 
2 4 12 80.00 384 41 73.00 384 11 73.00 384 
3 4 12 80.00 96 11 73.00 96 11 73.00 96 
4 4 11 73.00 62 11 73.00 62 11 73.00 62 
5 4 13 87.00 450 12 80.00 450 11 73.00 450 
6 5 30 58.00 16 24 46.00 16 21 40.00 16 
7 6 72 35.00 8 58 29.00 8 36 18.00 8 
8 8 260 6.28 645120 161 3.89 645120 85 2.05 645120 
9 8 283 6.84 16 160 3.86 16 50 1.21 16 
10 6 70 34.00 20 46 23.00 20 36 18.00 20 
11 11 2617 0.39 576* 1145 0.17 320 221 0.03 320 
12 8 191 4.61 193 170 4.11 193 85 2.05 193 
13 7 130 15.00 1361 101 12.00 1361 57 7.00 1361 
14 10 6147 5.30 3628800 615 0.53 362880 166 0.14 3628800 
15 9 934 4.42 362880 320 1.51 362880 121 0.57 362880 
16 6 103 51.00 344* 46 23.00 216 36 18.00 216 
17 5 27 52.00 56 27 52.00 56 21 40.00 56 
18 4 12 80.00 368 12 80.00 368 11 73.00 368 
19 10 1752 1.51 64* 946 0.82 44 166 0.14 48* 
20 8 278 7.00 160          Error report                           Error report 
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Table 3: Numerical results (2) 
  GA   TSM 
  ------------------------------------------------------- --------------------------------------------------------- 
Sr. No.   n   VP    %      OS VP %        OS 
1 2 2 100.00 10 1 50.00 10 
2 4 11 73.00 384 5 33.00 384 
3 4 11 73.00 96 8 53.00 96 
4 4 11 73.00 62 7 47.00 62 
5 4 12 80.00 450 6 40.00 450 
6 5 28 54.00 16 13 25.00 16 
7 6 68 33.00 8 23 11.00 8 
8 8 239 5.77 645120 48 1.16 645120 
9 8 192 4.64 16 42 1.02 16 
10 6 68 33.00 20 26 13.00 20 
11 11 613 0.09 320 207 0.03 320 
12 8 180 4.35 193 63 1.52 193 
13 7 125 14.00 1361 46 5.00 1361 
14 10 3015 2.60 3628800 118 0.10 3628800 
15 9 603 2.85 362880 101 0.48 362880 
16 6 87 43.00 216 22 11.00 116 
17 5 24 46.00 56 14 27.00 56 
18 4 11 73.00 368 7 47.00 368 
19 10 504 0.43 44 155 0.13 44 
20 8 201 5.00 160 77 2.00 160 

 
CONCLUSION  

 
 We have presented a heuristic method based on 
Tabu search method. Two aspects of the performance 
are clear in the numerical results. Firstly where the local 
search method, fission method and assembly method 
may fail to achieve the optimal solution, as shown in 
Table 2, while our Tabu search method obtain the 
optimal solution with less number of visited solutions, 
see Table 3. As for the heuristic method genetic 
algorithm, one can reach the optimal solution but by 
costly non-controlled walk through the feasible 
solutions as shown in Table 3. TSM is easy, 
competitive and efficient to implement so it can deal 
well with large scale systems. This study extends also 
the application fields of Tabu search method.  
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