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Abstract: Problem statement: In many potential application of queueing theory, the transient solution 
of queueing system is important. Approach: This study presented the transient solution for infinite 
server queues with Poisson arrivals and exponential service times when the parameters of both 
distributions are allowed to vary with time. Based on generating functions technique which results in a 
simple differential equation. Using the properties of Bessel functions in the solution of this differential 
equation, the solution of an infinite server queues can be given in simple form. Results: The researcher 
obtained the transient solution an infinite server queues with Poisson arrivals and exponential service 
times when the parameters of both distributions are allowed to vary with time and prove that some past 
results are special case from his results. Conclusion: These results indicated that the probabilities can be 
extracted in a direct way. 
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INTRODUCTION 
 
 The queue size distribution for the M/M/∞ queue, 
when the Poisson processes are time homogeneous, is 
given in most texts on queueing theory. Saaty (1961) 
derived the queue size distribution when input is not 
time homogeneous and showed that if the departure rate 
is constant and the initial queue size is Poisson, then the 
resulting queue size distribution is Poisson with a time-
dependent parameter. 
 Collings and Stoneman (1976) have been shown 
that the same result holds for a time-dependent 
departure rate and they derived the queue size 
distribution for the same problem in the form of a 
probability generating function. 
 Abol'nikov (1968) allowed requests for service to 
come in batches of varying size, the instants of arrival 
of the requests following a non-homogeneous Poisson 
process. The generating function of the queue size 
distribution is derived at any point in time. 
 Shanbhag (1966) considered the same system but 
removes the restriction that the service time distribution 
must be exponential. Moreover, the results for a general 
service time distribution are obtained and if the requests 
come singly (one at time), then queue size distribution 
is always Poisson when the queue is empty initially 
(Shanbhag, 1966). 
 Clarke (1956) studied queues resulting from non-
homogenous Poisson processes and provided a 
complete theoretical solution to the single-server case. 
Leese and Boyd (1966) gave a useful discussion of the 
numerical methods that have proposed. The most 

simple and direct method of solution would be to solve 
the birth and death equations by a normal numerical 
method. 
 Bagchi and Templeton (1972) applied the queues 
resulting in homogeneous Poisson processes, their 
method is not applicable to the more general forms of 
time-depending. 
 Most works concerning non-homogeneous Poisson 
Processes have been concerned with the queue size 
distribution, but Hasofer (1964) described a method of 
obtaining the waiting time distribution for the single-
server case, using an approach based on Takacs (1955). 
  
Problem formulation: The birth and death equations 
for an infinite server queue are: 
 

0 0 1P (t) (t)P (t) (t)P (t)′ = −λ + µ   (1) 
 

n n 1 n

n 1

P (t) (t)P (t) ( (t) n (t))P (t)

(n 1) (t)P (t),n 0
−

+

′ = λ − λ + µ
+ + µ >

 (2) 

 
 In this study, the researcher restricts their attention 
to the special case the following initially units in the 
system: 
 
   m 1 mt(t) t e+ −λ = λ  and m 1 mt(t) t e+ −µ = µ , m = 0, 1, 2, …,n 

 
 Define:  
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 And consider: 
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 Differentiating (3) and (4) with respect to t and 
using (1) and (2), we get:  
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 The resulting in (5) is a linear differential equation 
in H(z,t) and its solution is given by: 
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 Put t = 1, then: 
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And: 
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Whence: 
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 But it is know that: 
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With: 
 
 r 2 n= λµ  and v / n= λ µ   

 
Then: 
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where, In(.) is the modified Bessel function. Comparing 
the coefficients of zn on both sides for n≥1, then: 
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 Since  qn(t) = 0 for  n<0  and using  In(u) = I-n(u) 
Eq. 10 becomes: 
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Where: 
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 Using (11) in (10) for n = 1, 2,…, then: 
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 From (3) and by iteration method one can get: 
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 Substitute the value of qn(t) from (12) in (13), then  
the value of P0(t) is: 
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Special case: Let m = 0, the results of Al Seedy and AL 
Ibraheem (2003) are get as: 
 

n n kn
( k ) t

n 0 k
k 1

1 (k 1)!
P (t) P (t) q (t).e .

n! t n!

−
− λ+ µ

=

ρ − ρ= +
µ ∑

    (14) 

 
Where: 
 

t
( )

0 1 1a

1

P (t) q (u)e .du− λ+µ= + δ∫  

 
( a ) n a

n 1a n a n a

( (a 1) ) n a 1
1a n a 1 n a 1

( ) n a 1
1a n a 1

n a 1

q (t) a e (1 )v [I (r(t 1)) I (r(t 1))]

e (1 )v [I (r(t 1)) I

(r(t 1))] e v [I (r(t 1))

I (r(t 1))]

λ+ µ −
− +

λ+ + µ − −
− − + +

λ+µ − −
− −

+ +

= µ − δ − − −

− λ − δ − −

− − λ δ −
− −

 (15) 

 
CONCLUSION 

 
 This study obtains the probabilities of an infinite 
server queues with Poisson arrivals and exponential 
service times when the parameters of both distributions 
are allowed to vary with time. The transient 
probabilities of the system are given by using the 
generating function and Bessel functions.   
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