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Abstract: Problem statement: We introduced a new bijective convolution lineaewor defined on
the class of normalized analytic functions. Thiemor was motivated by many researchers namely
Srivastava, Owa, Ruscheweyh and many others. Theatmp was essential to obtain new classes of
analytic functionsApproach: Simple technique of Ruscheweyh was used in oumpiredry approach

to create new bijective convolution linear operafbne preliminary concept of Hadamard products
was mentioned and the concept of subordinationgixen to give sharp proofs for certain sufficient
conditions of the linear operator aforementionadakt, the subordinating factor sequence was tesed
derive different types of subordination resulesults. Having the linear operator, subordination
theorems were established by using standard comdepibordination. The results reduced to well-
known results studied by various researchers. @i&ft bounds and inclusion properties, growth and
closure theorems for some subclasses were alsinetit&€onclusion: Therefore, many interesting
results could be obtained and some applicationkldmigathered.
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INTRODUCTION Using the convolution techniques, Ruschewgyh
) ~introduced and studied the class of prestarliketfons
Let.A denote the class of functions f normalized of orgerp. Thus f1.4 is said to be prestarlike function
by: of orderp (0<p <1) if f(2)*s,(z) is starlike function of

. orderp, where:
f(z)=z+> 3,7 (1)
n=1

- z - ~ +1
which are analytic in the open unit disk S“(Z)_(l—z)zﬂ‘ﬁ) Z+;CB’M Lz

U={z:|z|<1}, letT denote the subclass 4fconsisting

of functions of the form: and (2
n+l
f2)=2-Ya 2, (a2 0,8U (j+1-2B)
(@)=2-327" (@ Clme =

We denote also by K the class of functions.4
that are convex irU : Let the function¢(a, b;z) be given by:

Given two functions f,dJ.A , wher

f(Z):i:&lﬁZn+1 and g(z) :i b ¥t ),

their Hadamard product or convolution f * g is aefil ~ WNere (x), is the Pochhammer symbol defined by:
by:

1, =0;

o ) 0, = XM L+ 1)x+ 2).(xk 0 1), rDNn::{l,2,3,...]
f(2)*9(z2) = > a,b, 2" (Z2IU) re)
n=0
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Note that (x +1), = (x+n)(x), / x, Note that:
4

1-zf

(x =1)(x),, = (x-1), and =i%2"” ®>0). JOX,a,b)f(z) =L(a,b)f(2),
n=0 .
The function ¢(a,b;z) is an incomplete beta J(1A,a,b)i(2) __ (FA );(?’b)f()z\}:\ Z(L(@. b))
function related to the Gauss hypergeometric foncti =% (L@,b)i(z)), A= 0
by ¢(a,b;z)=z F(1,a,b,z where the hypergeometric J(MA.a.b)f(zF J (J(m 1 .a,b)f(z)),where

function ,F,(a,b,c,z, is defined by: mON ={1.2.3...}
abz a(ar Lb(s 1)% If a =0, -1, -2,..., then J(k,a,b)f(z) is a
z':l(a,b,C,ZF]*?I!’fW*z!* - polynomial. If a# 0,-1, -2, then application of the root

test shows that the infinite series for Xma,b)f(z) has
Also, it has an analytic continuation to the zagla the same radius of convergence as that for f becaus
cut along the positive real line from 1 4@ We note

that ¢(a,1;z)=z/(+ z) and ¢(2,1;z) is the Koebe n " m
$@lz)=z/(x 2) $(2,1;2) jim [L+Ar] @ i @@ || @
function. neo (b),| n-= (0), | | (b),
Corresponding to the functiow(a,b;z), Carlson ] i
and Shaffer introduced 'fh a convolution operator on aa@t1h Pa- 1)(i
A involving an incomplete beta function as: —imlt (b), (b),
=lim|- .
. () et
L(a,b)f(2) :=¢ (a,b;2)*(2) =Zﬁ 2" ) (b),
n=00), L
a+1 a), |"
The Ruscheweyh derivatives off(z) are {)\alni[qo( ®) h_ (a-Lim ((b”
L(B+1.1)f(z), (B=-1). = o "
jim 2k
MATERIALSAND METHODS n-=(b),

Using the Hadamard product (or convolution), we dthe | . 11 since:
define a new bijective convolution operator acts ord"d the last expression equal 1 since:
analytic functions inU. Then we state some of its

properties and its special cases which will be uged lim (@), -1

this study. Corresponding to our operator, we aefin n-=|(b),

classes of analytic functions look like the classés

starlike and convex functions of order (0O<a <1). Hence, J(m\,a,b) mapst into itself. So, we shall

Subordination principle and known results of 35sume, unless other wise stated, tha -1, -2,...)
subordination factor sequence will be used in oury g (b% 0,-1,-2,...). We denote by twhere @ A , the
investigation of that classes. function which satisfiesy(z)*g™(z)=z/1- z; (zOU).

Definition 1: Let the functionp be given by: Fora>0andb>0, X=0, then:
<p(m,)\,a,b;z)::i (B A n’F@ Vi J(m,0,a,b)f(z) = L(a,b)f(z) = z *z F(1,1,b,2)(k).
"o (b), (1-zy

where, (b#0,-1-2,..;2U )2 0'_@Z anq (X is the If A > 0, then the operator J(m\,,a,b)f(z) can be
Pochhammer symbol. One defines a linear operatdjepresented by:

J(m\,a,b):A - A by the following Hadamard product

(or convolution): z z z
J(mA ,a,b)f(z) -(1_Z)a *z, F(1,1,b,2)* 1 * & 1
J(mA ,a,b)f(z):=p (M) ,a,b;z)*f(z) -2 @-2"*
- 4 m-times
:Z(lﬂ\n)m@ahzm (4) 2 F(LLIA,2)*.*2,E(LLLIA ,2)*(2)
n=0 b h m-times
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if(m=0,1,2,...) and

4

(1-zy

*z, E(LLb,z)t 2 * %

. 1
1-zp  (-2p
(-m)-times
*z F(1,1,1+ 1\ ,2)*.. %z, F (1,1, 1X ,z)*f(z
(—m)- times

M\, a,b)f(2) z

if (m=-1,-2,...).

Note that J(OA,a,a) = J(m,0,a,a) is the identity
operator and if & 0,-1,-2,..., thenJ(mA ,a,b) has a
continuous inverseJ(-mA ,b,a] and is a one-to-one
mapping of4 onto itself. Hence J(mA ,a,b) maps A
onto itself, infact it maps the class of analytindtions
in U into itself. It also provides a convenient
representation of differentiation and integratiddy
specializing the parametersXyg and b, one can obtain
various operators, which are special
J(mA ,a,b) studied earlier by many authors, such of
those operators:

J(m,0,a,b)f(z) = J(Q ,a,b)f(z) = L(a,b)f(

The Ruscheweyh derivatives
J(0,0B+ 1,1)f(2) =B f(z) B=-1F

J(MA,1,1)f(z); mON due to Al-Oboudf’
J(M,1,1,1)f(z) mON due to Sil agear”

The fractional operator due to Owa and
Srivastava

J(0,0,2,2y)f(2) Q' f(z) T (Zy )2 D f(z) DY(2)
is the fractional derivative of f of ordery;
y#2,3,4,.5°.

Also, note that the operators(0,0,2,n+ 1)f(z)
nON due to Nodf®) and J(0,0,b,a)f(z) a>0,b>0
due to Choial et are special cases of the inverse
operatorJ(-mA\ ,b,a)f(z).

We prove now the following two identities which
will be used in this study.

Lemma 1: Let f0A satisfies (4). Then we have the
following:

e z(I(m),a,b)f(z) =ad(m, & 1,b)iE) @ 1)J(
A.a,b)f(2)
For (b#1,0-1,..z(J(m\,a,b)f(z)) = (b—1) I(m,

Aa,b- 1)f(2)- (b- 2)J(m\ ,a,b)f(z

Proof: Let J(mA ,a,b)f(z be as in (4). Then we have:
79

cases of
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Y n@y
aJ(mj ,a+ 1,b)f(z)—§o @A ﬁ“{ ﬂaj o), av
=aJ(mA ,a,b)f(z)
. +in(1+AnP%@£*l
"o (b),

=(a-1)J(mA ,a,b)f(z)

x (a) +1
)(A+Anf'-—23 2
+n;(n+ )3+ n)"(b) )

n

(b-1)I(mA ,a,b- 1)f(z):i @\ M( b )

@,
), "

= (b-2)I(mA ,a,b)f(2)
+i(” +1)(L+ ANy

@,
(b),

+1

+1

a,z

where (b# 1,0~ 1 2,.... Hence, the proof is complete.
Now, we introduce new classes of analytic
functions involving our operata¥(m ,a,b).

Definition 2: A function f 0.A is said to be in the class
S(mA ,a,ba ‘for mOZ, A=0, 0<a <1, if and only if:

d

for all zOU

(%)

zZEMmA a bt @) |
J(mA ,a,b)f(z)

Definition 3: A function f O.A is said to be in the class
C(m,a,ba ‘for mOZ, A>0, O<a <1, if and only if;

°

for all zOU .

(z(I(MA ,a,b)f (z))’)} .- (6)

((mA,a,b)f (z))

Remark 1: f 0S(0,0,2(%-a ),1a if and only if f is pre-
starlike function of ordex .

Definition 41%: Let g be analytic and univalent it .
If f is analytic in U, f(0)=g(0) and f(U) Og(U), then
one says that f is subordinate to gln and we write
f<g or f(z)<g(z). One also says that g
superordinate to firU .

is
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Definition 5% An infinite sequence{b};, of S+ Any 2@+ 1L- (@ra- 1)) la & ta
complex numbers is said to be a subordinating facto o] (b), \
sequence if for every univalent function f in K,eon

has:

and this impliesf OS(mA\,a,ba ). This completes the
proof of Theorem 1.

ibkaki< f(z) (OU;a =1 Let S (mA,a,ba ' denote the class of functions
k=1 f 0.4 whose Taylor-Maclaurin coefficients, aatisfy
the condition (7 and denote

Lemma 2!*: The sequencéb }., is a subordinating

S[mA,a,ba 1=5 (m\ ,a,lo, A 7 . We note that:
factor sequence if and only if:

S (m\,a,ba I S(nd ,a,D,

D{1+2ibj} >0 (A1U)
k=1 Corollary 1: Let f 0.4 be in the classs (m\ ,a,ba .

Then:
RESULTS
Coefficient bounds and Inclusions. we investigate |a, El_—a (B),
sufficient conditions for the functiohJ.A to be in the (n+1-a)I+Anf| (a)

classesS(m)\ ,a,ba ' and C(m,a,ba | by obtaining _ _

the coefficient bounds. Moreover, we study some=*x@mplel: The function fgiven by:

inclusion properties for some subclasses of .

S(mA ,a,by 'and C(mA\,a,bo . f(z)= 2+ g (A-a)a’e,(0),  na
m(n+1-a)@+An) (a)

Theorem 1: Let f OA. If

belongs to the classS (ma,a,bg | for Osas%,
(@),

(b)

S(n+1-a)(@+Any

la 4 Fa (M moz, x20 ande, OC with |¢, |=1.

n

then f OS(m\,a,ba ), where S(m\ ,a,ba ' is defined Example 2. For 0<a<1, A20 and mON,, the
as in Definition 2. following functions defined by:

Proof: Suppose that (7) holds. Then by using Lemma 1

. - (1-0a) () I .
and for allzOU , we have: f”(z)_Zi(n+1—a)(1+)\n)" @) " (n=1,2,..;40
z(J(m) ,a,b)f (z)) “a Jm\ & 1,b)f(2) _ ) ‘
J(m\ ,a,b)f(z) J(My ,a,b)f(z) are in the class (m)\ ,a,ba .
c m (a+ 1)1 - (a)1 +1
I I";(lﬂ\n) (b) 37 Theorem 2; Let f OA. If:
=|la = n
Z(1+)\n)m%an A )
o et ea) S+ 1+ -a)aer g Eh a4 ta ®)
2aranyjafEm e "
< n=1 n
1‘i(1+)‘”7n @5 then f OC(m,A,a,ba ), where C(m\,a,ba | is defined
n=1 (b), as in Definition 3.

The last expression is bounded ly-a) if the  Proof: Suppose that (8) holds. Then by using Lemma 1
following inequality which is equivalent to (7) (i), with differentiating its both sides and fot &0U ,
holds: we have:
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2(J(mA ,a,b)f (2))

(@ I, & 2,b)f(z) 2alfma+1,b)f(2+ (@ 1)I(M ,a,b)f(k

=laf

((mA.a,b)f(2)|

aJ(m\ & 1,b)f(z) (a 1)J0m,
a(a+ 1)(a- 2)- 2& (@ 1 ata 1)@)

,a,b)f(2) |

2.(1+An)" |3
n=1

(b),

1-3 (1 An)" |3,
n=1

The last expression is bounded ~a) if the
following inequality which is equivalent to (8) futs:

a(at 1)(a+ 2)- a(2aa

)
ZY la, |(a+1)1+(a 1)(a+a— 1)(@J

where Y, = (1+An)" and this impliesf C(m,A,a,ba ).
This completes the proof of Theorem 2.

Let C'(m,a,ba ) denote the class of functions
f 0.A whose Taylor-Maclaurin coefficients, satisfy
the condition (8) and denote
C'[mA,a,ba ]=C (m) ,a,lm » 7 . We note that
C (mA,a,ba YO C(m\ ,a,ln

Corollary 2: Let f OA be in the clas< (m,a,ba ).
Then:

1-a
(n+1)(n+ 1-a )(2+A nY

(b),

la, &

Example 3: The function f given by:

n+1

i (1-a)ae, (b),

f(z) =
mi(n+1)(n+1-a )(+A nf (a)

[

belongs to the classC'(mA,a,ba) for O<a<=,

N

mOZ, A20 ande,OC with |g, |=1.

Example 4. For O<a <1, A=20 and mON,, the

following functions defined by:

n+1

(1-a) | (b),
(n+1)(n+ 1-a )2+ A nT‘ (a,)‘

(n=1,2,..;40 )

f(2)=z¢+

are in the clas€ (m,,a,ba ).

81

a(a+ 1) - (& 1))
(b),

We next study some inclusion properties of the
classess (mA ,a,by S and C'(mA,a,ba ).

Theorem 3: Let O0<a,<a,<1, 0<A <A, <1 and
m,,m,07Z with m, <m,. Then:

S(mA,abe, ) O S(m ,ab,
S(mA,,a,ba) O 5(m\, ,ab,
S(mA,aba) OS5 (mA ahb
S(m\,at 1,bg )d S (m\ ,a,b,
S(mA,a,br 1x )J S (m\ ,a,b,

Proof: By using Theorem 1 and Lemma 1.

Theorem 4: Let O<a,<a,<1, 0<A, <A,<1 and
m,,m,0Z with m, <m,. Then:

C(mA,a,bp,) O C(m\ ,a,lo,
C(mA,,a,bp) O C(my, ,ab
C'(myA,abp) O C(m) ,a
C(mA,a+ 1,bo )OI € (my a0,
C(mA,abr 10)0 C(my ,a,b,

Proof: By using Theorem 2 and Lemma 1.

Growth and closure theorems. we prove growth
theorems when fOS(mA,a,bg) and when

fOC (m,A,a,bp ). Furthermore, we prove closure
theorems when f is in the subclasgm,\,a,ba | and
when it is in the subclass’[m,A,a,ba ] respectively.
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Theorem 5: Let f OS (m,\,a,ba ). Then: Theorem 6: Let f OC'(m,A,a,bp ). Then:
1-a b 1-a b
|f(Z)P|Z|m*J|ZZ| |f(Z)P|Z|W*J|ZZ|

1-a

[f(2)Elz |+W

2(2- a)(1+)\)“ EJl 4

% |2 If(2)kElzl+

for a,b0{0,-1-2,..} with |a+ n|br n for all nON, for a,bd0{0,-1~-2,...} with |a+ n%|b+ n for all nON,
mON,, A20, 0Osa<land zUU. mON,, A20, 0Osa<landzOU.

Proof: If fOS (m\,aba) with a,bd{0-1-2,..}, Corollary 4: Under the hypothesis of Theoremf§z)
la+ ng|b- n for all nON, A20, O<a<l and Isincluded in a disc centered at the origin watlius r

mON 0{0} , then in view of Theorem 1, we have: given by:
ale - ”1*170%
'“BHZ:;I% 15;1(1”\ nYy 22-a)(1+ A )
a(a+ 1) _(t(jra ~ D@ la, k 1I-a Corresponding to the subclassg&gm,,a,ba | and
" C'[m,A,a,bp ], we introduce the following closure
This yields: theorems.

Theorem 7: Let f,(z) =z and:

b
Z'a" Fe- a)(m)'“ J
1-a

(n+1-a)@+An)

(B),]

@) ", (n=1,2,..)

Now:

Then fis in the class [m\,a,ba ]if and only if it

f e
[f(2) Izl |ZZIHZ:; la | can be written as:

ek ey ,
f(z)= Zunfn(z),
Also: "
1og b wherep, >0 (n20)and) " n, =1.
[f(z)Elz |+W;J | 2]

Proof: Assume thaf(z)=>""_u,f,(z) . Then:
This completes the proof of Theorem 5.

Corollary 3: Under the hypothesis of Theoremf§z) f(2) = of o(2) + D 1. f (2)
is included in a disc centered at the origin wiHius r i

given by: _ Uo”i}l{ 1-a (b)

!

5 T nr - o)1+ Ay | @)
1-a b w
_qs 1o b _ 1-a (D]
' +(2—a)(1+A)”"J =Rz * 22 Z“"m @)
1-a (b)

By using the same proof technique of Theorem 5,

- 2- Zun—
we can prove the following result. (n+1-a)(+An)

@)l
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Thus: f.(z)=z- 1-a bl (n=1,2,.
(n+1)(n+1-a )2+ A nY'| (a)
S ( 1-a (b), ]
= ((n+1=a)A+An)] (a) Then fis in the clas€'[m,A,a,ba ] if and only if it
((n +1-a)(d+AnT EZI;”] - (- )iun can be written as:

=(1-a)(1-Yy)<1-a f(2) =iunfn(z)

Conversely, suppose fis in the cla&&gm\,a,ba .

Since: where,p, 20 (n20)and ) " p, =1.
1-a (b), .
a, S+1——1+?\)“ , (n21) Corollary 6: The extreme points of the class
(n ca)(T+An)] (a) C'[m,A,a,bp ] are the functions(z) =z and:
We may set:
f.(z)=2- 1-a Ohlpa (n=1,2,..
(n+1-a)(1+An)| (a) (n+1)(n+1-a )(I+A n)'| (a)
e a, (nZ 1)
1-a (b),
and Subordination resultss we obtain a sharp
o subordination results associated with the classes
“ozl_nzi“n S (mA,a,by ' and C'(m\,a,ba ) by using the same
Then - technique as ™. Some applications of those main
results which give important results of analytic
" functions are also investigated.
f(2)=z->a,7"
n=t Theorem 9: Let fOS(mM,aba) where
=2-Su B Sl S () st a,bd{0-1-2,.) with |a+nk|br n for all nON,
S (n+1-a)@+An)| (a)

mON,, A=20 and0<a <1. Then:
=z-31,(z-1,(2)
n=1

:(1— wunJHiunfn(z)
1 n=1

n=

= iunfn(Z)

@-a)a+ay 2

(9@ =<9(@) (0U) )
2(1-a)+2(2-a )1+ A )‘"‘6‘

for every g in K and:
This completes the proof of Theorem 7.
1-a

Of(z)> —[1+
(2-a)@+A)"

)

The constantl+((1-a)/(@2-a)(@+A )")E

Corollary 5. The extreme points of the class
S[m,A,a,bp " are the functions (z) =z and:

cannot
1-a

C(n+1-a)(1+An)

(b),

f =

"', (n=1,2,..)

be replaced by a larger one.

By using the same proof technique of Theorem 7Proof: Let f OIS (mA,a,bo  and let:
we can prove the following theorem.

— < +1
Theorem 8: Let f (z) =z and: 9(@) =2+ HZ:;C“ z
83



J. Math. & Stat., 5 (1): 77-87, 2009

be any function in the class K. Then we readilyehav is subordinating factor sequence, wighFal. In view of
Lemma 2, this is equivalent to the following inelifya

(2-a)(@+A)"

a
b
2(1-a)+22-a )(I+A T

Fr9@ o (2-a)@EA) a

b 041+
1-a+ (2—a)(1+)\)f“‘g‘

a7 >0 (4U) (11)

(2-a)@+A)"

a
b
2(1-a)+ 2(2-a )+ T g

[++50e7]

Now, since:

Thus, the subordination result (9) will hold trifie (n+1-a)(L+An)’ (a),

the sequence: (b),
(2-a)@+A)" %‘% is an increasing function of n fomON,, A=0,
a O<a <1 anda,bd{0,-1-2,..} with |a+ nk|br n for
2(1-0)+ 2(2-a )(I+A T b every nON, we have:
n=1
@-a)a+ay 2
b
@-a)(1+A)" |2 o EN
01+¥ a%zﬁl -0 1-a+(2-a)(l+ Y"B
"01—q+ (2-a)(1+ A Y| - S
U+( U)(+ y"b + (2 G) Z(1+A)méanz1+1
a b
1—0(+(2—0()(1+)\I“‘B n=t
@-a)a+Ay|
>1- r
1—01+(2—O()(1+)\)“%1
- L i(n+1—a)(l+)\ ny" @), g f**
1-a+ @-a)d+a)" |3 = (®),

b
(2—0()(1+)\)"‘%

1-a

I-a+ (2-a )(+A T‘a

>1- r— r>0 (|z|=r).

1—0(+(2—a)(1+)\)“‘%

This proves the inequality (11) and hence also ghbordination result (9) asserted by Theorem % Th
inequality (10) follows from (9) by taking:

z
z)=——0K
9(2) -7

Next, we consider the function:

(1-a)

f1(2) = Z_(Z—G)(l"')\)m

ij 7
which satisfies the assumption of Theorem 9. Thensing (9), we have:
84
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@-a)a Ay

f(2)<—2— (zOU)
2(1-a)+ 2(2-a )(1+ A )"‘% 1-z

It can be easily verified for the functio{#) that:

@-a)a+ay 2

inf <40

z0OU

L@ | =% @ov)
2(1- )+ 2(2- 0 )(1+ A )"‘% 2

which completes the proof of Theorem 9.
By taking A=0 in Theorem 9, we have the
following corollary.

Corollary 7: If the function f defined by (1) satisfies:

b la £ Fa

i(n+l—a)

(a)n
)

where a,b0{0,-1-2,..} with |a+ n%|br n for all
nON and 0<a <1, then for every function g in K, one

has:
2-da (F*0)2)<9(z) (zOU)
21-a)—|{+2(2-a)
a
and
Of(z) > —(1+ 17a b]
2—-0|a

The constant 1+ (1-a)

9‘ /(2-a) cannot be
a

replaced by a larger one.
PuttingA =0 anda=b in Theorem 9, we have the
following corollary.

Corollary 8: If the function f defined by (1) satisfies:

o

d(n+1-a)|g ¢ Fa, (Ea <1

n=1
then for every function g in K, one has:

2-qa
2(3- )

(f*9)(2)<g9(2) (zOD)
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and

I]f(z)>—(32__2:(j

The constant(3-2a)/(2-a) cannot be replaced
by a larger one.

Letting A=0, a=2 and b=2-a; 0<a<1 in
Theorem 9, we have the following corollary related
the starlikeness of the fractional derivative and
fractional integral operatoQ®f(z) due to Owa and
Srivastava which is mentioned above.

Corollary 9: If the function f defined by (1) satisfies:

i(n+1—a)

(n+1)!
2-a), |la £ Fa O« <1

then for every function g in K, one has:
1
3-q 9@ =0(@) (z0U)
-a

and

3-a
Df(z)>—(?j

The constant(3-a)/2 cannot be replaced by a

larger one.
It is clear from the proof of Theorem 9 that the

function f(z)=z—;_—mz2 (0<a <1;z0U) is an
-

extremal function of Corollary 8. Also the follovgn
example gives a non-polynomial function satisfiee t
same corollary.

Example5: Let the function h be defined by:
z

1-a
2(3-2n)

h(z) = (0sa <1;,30)

z

the above function is analytic ii and it is equivalent to:

CROE = ks

Then we have:
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a-1 " & " 1-a
<H 2 =
2(3-2n) nzl

= <l-a
4 8

i(n+1—a)

a-1
2(3 2
Therefore, the Taylor-Maclaurin coefficients oéth
function h satisfy the condition in Corollary 8.

By the same proof technique of Theorem 9, we can

prove the following theorem.

Theorem 10: Let fOC(mA,a,bp)  where
a,b0{0,-1-2,..} with |a+ nk|b+ n for all nON,
mON,, A=0 and0<a <1. Then:

@-a)a+Ay |2

(9@ =<9 (0U) (12)
1-o+2(2-0a)1+A )“‘B‘
for every g in K and:
0f(z)>- 1+1_7°% (13)
22-a)(@+A)"
The constantL+((1-a)/2(2-a )(1+ A )")‘g cannot

be replaced by a larger one.
By taking A=0 in Theorem 10, we have the
following corollary.

Corollary 10: If the function f defined by (1) satisfies:

(a)n
(b),

i(n+l)(n+1—a* la g ta

where a,b0{0-1-2,..] with |a+ nk|b+ n for all
nON and 0<a <1, then for every function g in K, one
has:

2 (9@ <9(2) (0V)
2(2—a)+(1—a)7‘
a
and
Df(z)>—(l+ 1-a jj
2(2-a)
The constant 1+(1—a)§‘/2(2—a) cannot be

replaced by a larger one.
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PuttingA=0 and a = b in Theorem 10, we have
the following corollary.

Corollary 11: If the function f defined by (1) satisfies:

o

d(n+1)(n+1-a)|g ¢ *a

n=1

(®a <1

then for every function g in K, one has:

2-a
5-3un

(f*9)(2) <9(z) (zOU)

and

5-30
D f(Z) > _[m)

The constant(5-3a)/(4- 2x) cannot be replaced
by a larger one.

Letting A=0,a=2 and b=2-a, O<a<l in
Theorem 10, we have the following corollary related
the convexity of the fractional derivative and fianal
integral operatorQ®(z) due to Owa and Srivastava
which is mentioned above.

Corollary 12: If the function f defined by (1) satisfies:

Soennea) i 1g 4 ra @a <1

then for every function g in K, one has:
2 *
g\ 9@)=0(2) (200)
-a

and
0f(z)>-(5-a)

The 5-a cannot be replaced by a larger one.

that the 1-a
2(2-a)
(0<a <1;z0U) is an extremal function of Corollary

11. Also the following example gives a non-polynami
function satisfies the same corollary.

Note function f(z)=z-

Example 6: Let the function h be defined by:
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g(z) = (0<a <1;Z0U) 2.
1-a
1+ z
43-a)
The above function is analytic i@ and it is
equivalent to:
3.
9(2) = Z+i a-1 Y 41
n=1 4(3_G)
4,
Then we have:
> a-11]"_& a-1 "_ 1I-a 5
;(n+1)(n+1—a*4(3_a) 5;4‘ 4(3—ch —2(2_0()5101 5.
Therefore, the Taylor-Maclaurin coefficients oéth
function g satisfy the condition in Corollary 11. 6.
DISCUSSION

LetA denote the set of functions f of the form !
f(z) = z+az*+az>+..., which are analytic in the open g
unit disk. A new bijective convolution linear optra '
defined ond is introduced, which is a generalization of g
Carlson-Shaffer operafdr and various well known
operators and classes of analytic functions invgjvi
that operator are studied. Mainly, several propsertf
some subclasses are investigated, like coefficienfq
bounds, inclusions, growth and closure theorems.
Furthermore, main subordination results with some

applications are investigated as well. The proof;q

thechnique of those subordination results is useliee
by many researchers, namely Srivastava, Attyia, Ali
Ravichandran and Seenivasagan.

CONCLUSION

We conclude this study with some suggestions for
future research, one direction is to study othass#s of
analytic functions involving our operatar(mh ,a,b).
Another direction would be studying other propertié
the classes(mA ,a,ba 'and C(mA\,a, b .
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