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Abstract: Problem statement: Many authors have studied k-out of-n repairable system with 
dependent failure and standby support. The question was raised whether the repair and standby units 
support increase the reliability of the system. Determine the efficiency of repair and standby support on 
the reliability of the system. Approach: In this study the statistical analysis of k-out of-n repairable 
system with dependent failure and standby support were discussed. Several reliability characteristics 
are obtained by using Kolmogorov’s forward equations method. After the model is developed a 
particular case study is discussed to validate the theoretical results, a numerical computation are 
derived. Tables and graphs have been also given in the end. Results: The results indicated that the 
system with repair and standby support is better than the system without repair and standby support. 
Conclusion: These results indicated that the system with repair of its failed parts and standby 
redundancy facility increased the reliability of the system. 
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INTRODUCTION  
 
 When a system is constructed, it is assumed that 
the failure of any unit in k-out of-n systems does not 
affect the functioning of the system. Nevertheless, in 
practice, the failure of any working unit of a system 
results in the reduction of the efficiency of the whole 
system. It increases stress on the others ones and as the 
result, the failure rate of functional ones increased and 
the reliability of the system reduced. Thus, dependence 
occurs and as a result the failure rates of the units 
degrade. 
 The system with standby redundancy facility has 
been studied for many different system structures. In a 
redundant system, some additional parts are connected 
to the system. On the failure of the operating unit, a 
standby unit is switched on by perfect switching device. 
The redundancy in a system is usually employed to 
design highly reliable systems. Also the repairing failed 
component increases the reliability of the system. If 
resources are allocated to repair failed components, we 
should be able to keep for a much longer time.Thus 
introducing redundant parts and repairing a failed units 
may achieve high degree of reliability. 
 Many authors have discussed k-out of-n system 
with dependent failure rates[1,2]. The system reliability 
of modeling shared load was investigated by Shao and 
Lamberson et al.[3]. Moustafa[4] studied a transient 
analysis of reliability with and without repair for k-out 

of-n G systems. Pham[5] studied availability and Mean 
Life Time of degraded system with partial repair. Who 
Kee Chang[6], studied reliability analysis of a repairable 
parallel system with standby involving human and 
common-cause failure. Madhu Jain et al.[7] studied k-
out of-n repairable system with dependent failure and 
standby support, but they didn't consider the cost 
analysis of the system.  
 The purpose of this study is to discuss cost analysis 
of k-out 0f-n: G system with active standby redundancy 
components and repair facility. The system is failed if 
(k+1) of its n components are failed. If resources are 
allocated to repair failed components, we should be 
able to keep the number of failed components below 
n+s-k+1 for a much longer time. The failure and repair 
rate times follow exponential distribution. We analyze 
the system by using Kolmogorov’s forward equations. 
Initially one unit is operative and the other is kept as 
cold standby. A particular case when no repair and 
standby support have been discussed. Tables and graphs 
have been also given in the end.  
 
System description: 
 
• The system consists of a main unit, n-subsystem 

and s-standbys  
• The entire system is working if at least k of its n 

subsystems are operating  
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• The system is failed when the number of working 
components goes down below k  

• All active components are follow exponential 
distribution 

• The system is failed when the number of working 
components goes down below k or the number of 
failed components has reached n+s-k+1 

• The failure and repair rate times follow exponential 
distribution  

• The failure of main unit, which supervises the 
system, causes the total system failure and has a 
constant failure rate λp  

• The failure of fault coverage is constant and equal 
to λc 

• The failure rates of all subsystems are constant and 
same and depend on the number of working units 
and equal to λj, (j = 1, 2. …..n) 

• When any of the operating subsystem fails, it is 
replaced by standby unit and failed unit goes to 
repair mode with rate µi. The standby units have 
constant failure rates β 

• If all the standbys are consumed, the system works 
as degraded system until k-subsystems works  

• When the system is down, no farther units can failed 
• The state of the system is defined to be the number 

of failed components 
 
 The  system state transition diagram is given in 
Fig. 1. State i indicating that exactly i subsystems are 
failed at time 't', (i = 1, 2,….., n + s - k). The failure rate 
from state i to state i+1 given by ∆i. The state transition 
rate of the system is given by: 
 

n
i

n s i

n (s i) 0 i s

(n s i) s 1 i n s k+ −

 λ − − β ≤ ≤∆ = 
+ − λ + ≤ ≤ + −

 (1) 

 
 The following system characteristics are obtained: 
 
• Mean time to system failure (MTTF) with and 

without repair  
• Steady state availability with and without repair 
• Profit function  

Formulation of mathematical model: If we let P (t) 
denote the probability row vector at time t, the initial 
conditions for this problem are: 
 

P0(0) = 1, Pi(0) = 0, i = 1, 2,……, n + s – k + 1 
 
 By employing the method of linear first order 
differential equations For Fig. 1 and, we can obtain the 
following differential equations: 
 

0 0 p c 0 1 1P' (t) ( )P (t) µ P (t)= − λ + λ + λ +  (2a) 

 

0 i p i i i 1 i 1 i 1 i 1P' (t) ( )P (t) P (t) µ P (t),

1 i n s k
− − + += − ∆ + λ + µ + ∆ +

≤ ≤ + −
 (2b) 

 

n s k 1 n s k 1 n s k 1 n s k n s kP' (t) (µ )P (t) P (t)+ − + + − + + − + + − + −= − + ∆  (2c)  

 
Where: 

0 4

1 4

2 4

3 3

4( ) 2 ,

4( ) ,

4 ,

3

∆ = λ + β

∆ = λ + β

∆ = λ

∆ = λ

  

 
 This can be written in the matrix form: 
 

P* = QP 
 
Where: 

0 0

1 1

n s k n s k

n s k 1 n s k 1

P '(t) P (t)

P '(t) P (t)

P* ,P

P' (t) P (t)

P ' (t) P (t)
+ − + −

+ − + + − +

   
   
   
   
   
   = =   
   
   
   
   
      

⋮ ⋮

⋮ ⋮

⋮ ⋮

⋮ ⋮

 

 

0 p c 1

1 p i0 2

2 p 2 31

3 p 32

n s k p n s kn s k 1 n s k 1

n s k n s k 1

( ) µ 0 0 0 0 0

( µ ) µ 0 0 0 0

( µ ) µ0 0 0 0

( µ ) 0
Q

0

0

0

( µ ) µ0 0 0 0
(µ )0 0 0 0 0

+ − + −+ − − + − +

+ − + − +

 − ∆ + λ + λ
 

− ∆ + λ + ∆
 

− ∆ + λ +∆ 
 

− ∆ + λ +∆ 
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 
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 − ∆ + λ +∆ 
 ∆ − 

⋯

⋯

⋯

⋮ ⋮ ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

⋯

⋯

 



J. Math. & Stat., 5 (4): 401-407, 2009 
 

403 

 
 

Fig. 1: State transition diagram 
 
Particular case: If we put n = 4, k = 3, s = 2, in 
equations (3-1) – (3-3), we obtain the matrix form: 
 

P* = QP 
 
Where: 

0

1

2

3

4

0

1

1

1

1

2

2 p 2 3

3 p 32 4

3 4

0 p c 1

1 p i0

1

P '(t)

P '(t)

P* P '(t)

P '(t)

P '(t)

P (t)

P (t)

P P (t)

P (t)

P (t)

0 0 0
µ 0 0

( µ ) µ 0

( µ ) µ

µ0Q
( ) µ

( µ )

0

0 0

0 0

 
 
 
 =  
 
 
  

 
 
 
 =  
 
 
  

 
 
 
 − ∆ + λ +
 
 − ∆ + λ +∆
 

∆ − =  − ∆ + λ + λ
 − ∆ + λ +∆
 ∆



 









 

 
Mean Time to System Failure (MTSF): Using the 
above-mentioned set of assumptions and method of 
linear first order differential equations,  the mean time 
to system failure (MTSF) for the proposed system can 
be evaluated. To calculate the MTSF we take the 
transpose matrix of Q and delete the rows and columns 

for the absorbing state, the new matrix is called A. the 
expected time to reach an absorbing state is calculated 
from: 
 

1

1

1
MTSF P(0)( A )

1

1

−

 
 
 = −
 
 
 

 (3a)  

 

0 p c 0

11 p i1

2 p 22

3

2

3 p 3

( ) 0

( µ )µ
( µ )µ0

µ0 0Q
0

0

( µ )

 − ∆ + λ + λ ∆
 

∆− ∆ + λ + 
 − ∆ + λ +
 
 

=  
 
 
 
 ∆
 

− ∆ + λ +  

 

 
 

1 2 3

4

(a a a )
MTTF

a

+ +=  (3b) 

 
Where: 
a1 = ((∆1+µ1+λp)((∆2+µ2+λ−{p})( ∆3+µ3+λp)-∆2µ3)- 

∆1µ2(∆3+µ3+λp)) 
a2 = ∆0((∆2+µ2+λp)(∆3+µ3+λp)-∆2µ3) 
a3 = ∆0∆1((∆3+µ3+λp)+∆2) 
a4 = (∆0+λp+λc)((∆1+µ1+λp)((∆2+µ2+λp)(∆3+µ3+λp)- 

∆2µ3)-∆1µ2(∆3+µ3+λp))-∆0µ1((∆2+µ2+λp)(∆3+µ3+ 
λp)-∆2µ3 

 
 When repair is not available, the Mean Time to 
System Failure (MTTF) is given by: 
 

1 2 3

4

(b b b )
MTTF

b

+ +=  (3c) 
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Where: 
b1 = (∆1+λp)(∆2+λp)(∆3+λp) 
b2 = (∆2+λp)(∆3+λp)∆0 
b3 = ∆0∆1(∆2+∆3+λp) 
b4 = (∆0+λp+λc)(∆1+λp)(∆2+λp)(∆3+λp) 

Availability analysis: The initial conditions for this 
problem are the same as for the reliability case: 
 

P (0) = [1, 0, 0, 0, 0,] 
 
the differential equations form can be expressed as: 

 
*

0 p c0 01

*
1 11 p i0 2
*
2 22 p 2 31
*
3 33 p 32 4
*
4 43 4

( )P Pµ 0 0 0
P P( µ ) µ 0 0
P P( µ ) µ0 0
P P( µ ) µ0 0
P Pµ0 0 0

 − ∆ + λ + λ   
    

− ∆ + λ + ∆   
    = − ∆ + λ +∆    
    − ∆ + λ +∆    
    ∆ −    

 

 
 In the steady state, the derivatives of the state probabilities become zero, i.e.: 
 
QP(∞) = 0 (4a) 
 
 Then the steady state probabilities can be calculated as follows: 
 
A(∞) = P0(∞) + P1(∞) + P2(∞) + P4(∞) (4b) 
 
 Then the matrix form became: 
 

*
0 p c 01

*
11 p i0 2
*
22 p 2 31
*
33 p 32 4
*
43 4

( ) Pµ 0 0 0 0
P( µ ) µ 00 0
P 0( µ ) µ0 0

0P( µ ) µ0 0
0Pµ0 0 0

 − ∆ + λ + λ         − ∆ + λ + ∆         =− ∆ + λ +∆          − ∆ + λ +∆          ∆ −   

 

 
 To obtain P0(∞) + P1(∞) + P2(∞) + P4(∞) we solve the Eq. 3a by using following normalizing condition: 
 
P0(∞) + P1(∞) + P2(∞) + P3(∞) + P4(∞) = 1 (4c) 

 
 We substitute the Eq. 3c in any one of the redundant rows in equation to (3a) yield: 

 
*

0 p c 01

*
11 p i0 2
*
22 p 2 31
*
33 p 32 4
*
4

( ) Pµ 0 0 0 0
P( µ ) µ 00 0
P 0( µ ) µ0 0

0P( µ ) µ0 0
0P1 1 1 1 1

 − ∆ + λ + λ         − ∆ + λ + ∆         =− ∆ + λ +∆          − ∆ + λ +∆            

 

 
 The steady state availability A(∞) is given by: 

 
N

A( )
D

∞ =  (4d) 
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Where: 
N = B0B1B2µ4+µ3µ4(B0(B1+µ2)-µ1(∆0+µ2))- 

µ4(∆1µ2B0+∆0µ1B2) 
D = B0B1(B2(B3+µ4)-∆2µ3+µ3µ4)+µ4µ3µ2(B0+µ1)+ 

µ3µ1∆0(∆2-µ4)-(B3+µ4)(∆1µ2B0+∆0µ1B2) 
 
Where: 
B0 = (∆0+λp+λc) 
B1 = (∆1+λp+µ1) 
B2 = (∆2+λp+µ2) 
B3 = (∆3+λp+µ3) 
 
 When there is no repair, the steady state 
availability of the system is given by: 
 

A(∞) = 0 
 
Busy period analysis: The initial conditions for this 
problem are the same as for the reliability case: the 
differential equations form can be expressed as 
availability case. 
 Then the steady state busy period B(∞) is given by: 
 

1 2 3 4
0

µ µ µ µ
B( ) 1 P ( ) 1

D
∞ = − ∞ = −

⋯

 (4e)  

 
 When there is no repair, the steady state busy 
period of the system is given by: 
 

B(∞) = 0 
 
Cost analysis: The expected total profit per unit time 
incurred to the system in the steady-state is given by: 
 

Profit = total revenue - total cost 
 

PF = RA(∞)-CB(∞) 
 
 When there is no repair, the steady state profit of 
the system is given by: 
 

PF = 0 
 
Where: 
PF = The profit incurred to the system 
R = The revenue per unit up-time of the system, 
C1 = The cost per unit time which the system is under 

repair> 
 

MATERIALS AND METHODS 
 

 Many authors have studied k-out of-n repairable 
system with dependent failure and standby support. The 
question was raised whether the repair and standby 
units support increase the reliability of the system.  In 

this study the statistical analysis of k-out of-n repairable 
system with dependent failure and standby support 
were discussed to show the system with repair and 
standby support increase the reliability of the system.  
 We analyze the system by using Kolmogorov’s 
forward equations method. After the model is 
developed a particular case study is discussed to 
validate the theoretical results. Next, some numerical 
computations are derived to show the effect of repair 
and standby support on the system. 
 

RESULTS 
 
 If   we    put:   λp = 0.002, λc = 0.003,  λβ = 0.005, 
λ4 = 0.01, λ3 = 0.03, µ1 = 0.1, µ2 = 0.2, µ3 = 0.3, µ4 = 
0.4 in Eq. 4b and c; 5d and e we get: ∆0 = 0.05, ∆1 = 
0.045, ∆2 = 0.04, ∆3 = 0.09 and obtain the Table 1-4: 
 
• Table 1 show relation between failure rate λp and 

MTSF of the system (with repair and standby and 
with repair and without standby and without repair 
and standby) 

• Table 2 show relation between failure rate λp and 
steady state availability of the system (with repair 
and standby and with repair and without standby) 

• Table 3 show relation between failure rate λp and 
busy period of the system (with repair and standby 
and with repair and without standby) 

 
Table 1: Relation between failure rate λp and the MTSF (with and 

without standby) 
 MTTF of the MTTF of the MTTF of the 
 system system system 
 with repair with repair and without repair 
λp and standby without standby and standby 
0.001 287.90 285.41 70.451 
0.002 223.53 221.98 67.259 
0.003 182.68 181.62 64.297 
0.004 154.45 153.68 61.545 
0.005 133.78 133.19 58.984 
0.006 117.99 117.52 56.595 
0.007 105.53 105.15 54.363 
0.008 95.456 95.132 52.276 
0.009 87.135 86.859 50.320 
0.010 80.148 79.910 48.485 
 
Table 2: Relation between failure rate λp and steady state availability 
 Availability of the system Availability of the system with 
λp with repair and standby repair and without standby 
0.001 0.98871 0.54005 
0.002 0.98552 0.53450 
0.003 0.98235 0.52907 
0.004 0.97921 0.52376 
0.005 0.97610 0.51856 
0.006 0.97302 0.51347 
0.007 0.96995 0.50848 
0.008 0.96692 0.50360 
0.009 0.96391 0.49881 
0.010 0.96092 0.49412 
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Table 3: Relation between failure rate λp and the Busy Period of the 
system  

 Busy period of the system Busy period of the system  
λp with repair and without standby with repair and standby 
0.001 0.42485 0.37431 
0.002 0.43562 0.38636 
0.003 0.44611 0.39810 
0.004 0.45635 0.40954 
0.005 0.46634 0.42070 
0.006 0.47609 0.43158 
0.007 0.48560 0.44218 
0.008 0.49488 0.45253 
0.009 0.50394 0.46261 
0.010 0.51279 0.47246 
 
Table 4: Relation between failure rate λp and the profit (with and 

without standby) 
 The profit with The profit with repair 
λp repair and standby and without standby 
0.001 946.23 502.62 
0.002 941.96 495.86 
0.003 937.74 489.26 
0.004 933.58 482.81 
0.005 929.47 476.49 
0.006 925.41 470.31 
0.007 921.39 464.26 
0.008 917.43 458.35 
0.009 913.52 452.55 
0.01 909.64 446.87 
 

 
 
Fig. 2: Relation between the failure rate λp and the 

MTSF 
 

 
 
Fig. 3: Relation between the failure rate λp and the 

steady state availability 
 
• Figure 3 show relation between the failure rate λp 

and steady state availability 
• Figure 4 show relation between the failure rate λp 

and busy period 
• Figure 5 show relation between the failure rate λp 

and expected total profit 

 
 
Fig. 4: Relation between the failure rate λp and the 

busy period 
 

 
 
Fig. 5: Relation between the failure rate λp and the 

expected total profit 
 
• Table 4 show relation between failure rate λp and 

expected total profit of the system (with repair and 
standby and with repair and without standby) 

• Figure 2 show relation between the failure rate λp 
and MTSF 

 
DISCUSSION 

 
 By comparing the MTTF with respect to failure 
rate λp  theoretically  and graphically. It was 
observing that: The increase of failure rate λp at 
constant   λc = 0.003, λβ = 0.007, λ4 = 0.01, λ3 = 0.03, 
µ1 = 0.1, µ2 = 0.2, µ3 = 0.3, µ4 = 0.4, R =1000, C = 100, 
the MTTF of the system decreases for both systems 
with repair and standby and with repair and without 
standby and without repair and standby. We conclude 
that: the MTTF of the system with repair and standby is 
longer than the system without repair and standby, i.e., 
the system with repair and standby is better than the 
system without repair and standby.  
 By comparing the busy period with respect to 
failure rate λp theoretically and graphically. It was 
observing that: The increase of failure rate λp at 
constant  λc = 0.003,  λβ = 0.007, λ4 = 0.01, λ3 = 0.03, 
µ1 = 0.1, µ2 = 0.2, µ3 = 0.3, µ4 = 0.4, R =1000, C= 100, 
busy period increases for both systems with repair and 
standby and with repair and without standby. We 
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conclude that: the busy period of the system with repair 
and standby is greater than the system with repair and 
without standby.  
 Also, by comparing the steady state availability 
and the profit with respect to failure rate λp 
theoretically and graphically. It was observing that: The 
increase  of  failure  rate  (λp), at constant, λc = 0.003, 
λβ = 0.007,  λ4 = 0.01,  λ3 = 0.03,  µ1 = 0.1,   µ2 = 0.2, 
µ3 = 0.3, µ4 = 0.4, R =1000, C = 100, the steady state 
availability and the profit function of the system 
decreases for both systems with repair and standby and 
with repair and without standby.  
 

CONCLUSION  
 
 We conclude also that: the steady state availability 
and the profit of the system with repair and standby is 
greater than the system with repair and without standby. 
i.e., the system with repair and standby is better than 
the system with repair and without standby. 
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