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Abstract: Problem statement: Several researchers have studied the reliability behavior of a three 
state systems, but no attention was paid to the reliability evaluation due to preventive maintenance. 
The better maintenance of the system originates better reliability. Also, standby support increases the 
reliability of the system. Approach: Determine the efficacy of preventive maintenance on the 
reliability and performance of the system. In this study, the MTSF, steady-state availability and costt 
analysis of a two-dissimilar-unit cold standby system with preventive maintenance was discussed. The 
proposed system has been investigated under the assumption that each unit works in three different 
states: Normal, partial failed ad total failure. The failure and repair time distributions are exponential. 
Using linear first order differential equations the system characteristics had been obtained. A special 
case for the proposed system is given in which preventive maintenance was not considered. Results: The 
results indicated that the system with preventive maintenance is better than the system without 
preventive maintenance. Conclusion: These results indicated that the better maintenance of parts of 
the system originated better reliability and performance of the system.  
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INTRODUCTION 

 
 Several researchers[1-4] have studied the reliability 
behavior of a three state systems, but no attention was 
paid to the reliability evaluation due to preventive 
maintenance. The better maintenance of the system 
originates better reliability and performance of the 
system. Also, in a standby redundant system, some 
additional paths are created for the proper functioning 
of the system. The standby units support increase the 
reliability of the system. 
 On the failure of the operating unit, a standby unit 
is switched on by perfect or imperfect switching device. 
Thus introducing redundant parts and providing 
maintenance and repair may achieve high degree of 
reliability. Others researchers have studied cost analysis 
of two-unit redundant systems with preventive 
maintenance assuming only two states of operations, 
namely good and failed[5-8].  
 The purpose of this study is to study the MTTF, 
availability and cost analysis of a t two-dissimilar-unit 
repairable redundant system with three states with 
preventive maintenance. We analyzed the system by 
using linear first order differential equations to obtain 
the following system characteristics: 

• Mean Time to System Failure (MTTF) with and 
without preventive maintenance 

• Steady-state availability with and without 
preventive maintenance 

• Steady-state busy period with and without 
preventive maintenance 

• Profit analysis in steady-state with and without 
preventive maintenance 

 
 A particular case for the results of analyzing the 
MTTF, availability and cost function Vs unit failure is 
discussed. Using the special case study the effect of 
preventive maintenance on the system performance is 
shown theoretically and graphically. 
 
Assumptions: 
 
• The system consists of two-dissimilar units, one is 

main and the other is its standby  
• Initially one unit is operative and the other unit is 

kept as cold standby 
• A perfect switch is used to switch-on standby unit 

and switch-over time is negligible 
• The system has three states: Normal, partial failure 

and total failure 



J. Math. & Stat., 5 (4): 395-400, 2009 
 

396 

• A unit in the normal mode must pass through the 
partial failure mode 

• A unit which is replaced or repaired in total failure 
go directly to the normal mode without passing 
through the partial failure mode  

• Unit failure and repair rates are constants 
• Failure rates and repair rates follow exponential 

distribution 
• A repaired unit works as a good as new 
• The system is down when both units are non-

operative 
 
Mean Time to System Failure (MTSF): In this study, 
the Mean Time to System Failure (MTSF) for the 
proposed system evaluated using the above-mentioned 
set of assumptions and method of linear first order 
differential equations. If we let P(t) denote the 
probability row vector at time t, the initial conditions 
for this problem are: 
 
P(0) = [P0(0)P1(0)P2(0)P3(0)P4(0)P5(0)] = [1 0 0 0 0 0] 
 
 By employing the method of linear first order 
differential equations For Fig. 1 and we can obtain the 
following differential equations: 
 

'
0 1 0 1 1 1 2 5

'
1 1 1 1 1 0

'
2 2 1 2 1 1 2 3 2 4

'
3 2 2 3 2 2

'
4 2 4 2 2 2 3

'
5 5 0

P (t) P (t) P (t) P (t) P (t)

P (t) ( )P (t) P (t)

P (t) ( )P (t) P (t) P (t) P (t)

P (t) ( )P (t) P (t)

P (t) ( P (t) h P (t) P (t)

P (t) P (t) P (t)

= −λ + β + µ + δ

= − α + β + λ

= − λ + µ + α + β + µ

= − α + β + λ

= − µ + + α

= −δ + γ

 (1)  

 
 The above system of differential equations can be 
written in the matrix form as: 

 
P* = Q×P 

 
Where: 

 

1 1 i

1 1 1

1 2 1 2 2

2 2 2

2 2

Q

0 0

0( ) 0 0 0

00 ( )

00 0 ( ) 0

00 0 0

0 0 0 0

=

δ −λ + γ β µ
 λ − α + β 
 α − λ + µ β µ
 

λ − α + β 
 α −µ
 

−δ γ 

 

 
 
Fig. 1: State of the system 

 
 To calculate the MTSF we take the transpose 
matrix of Q and delete the rows and columns for the 
absorbing state, the new matrix is called A. the 
expected time to reach an absorbing state is calculated 
from: 

 

1

1

1

MTSF P(0)( A ) 1

1

1

−

 
 
 
 = −
 
 
 
 

  (2)  

 
Where: 

 

1 1

1 1 1 1

i 2 1 2

2 2 2

A ( ) 0 0

( ) 0 0

0 ( ) 0

0 0 ( ) 0

0 0 0

 = − λ + λ λ γ
 β − α + β α 
 µ − λ + µ λ
 

β − α + β 
 δ −δ 

 

 
 The steady state mean Time to System Failure 
(MTSF)is given by: 

 

1 2

3

a a
MTSF

a

 +=  
 

 

 
Where: 

2 2 2 1 2 1 1 1
1

1 1 2 2 2 2 1 2 1 1
2

3 1 2 1 2

a ( )( )( )

a ( ( ) ( ) ( ))

a ( )

= γ + δ α λ − α µ + β µ α + β

= δλ α α + λ + α λ + µ + β α + µ

= δ α α λ λ

 (3) 

 
Availability analysis: The initial conditions for this 
problem are the same as for the reliability case. 
 P(0) = [1, 0, 0, 0, 0, 0, 0, 0, 0],the differential 
equations form can be expressed as: 
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*
0 01 1 i
*
1 11 1 1
*

22 21 2 1 2
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3 32 2 2
*

24 42
*
5 5

0P P( ) 0

0 0P P( ) 0 0

0P P0 ( )

0 0P P0 0 ( )

0P P0 0 0

0P P0 0 0

   δ − λ + λ β µ
    λ − α + β    
    µα − λ + µ β

=    
λ − α + β    

    −µα
    

−δ    γ    

 

 
 In the steady state, the derivatives of the state probabilities become zero, i.e.: 
 
QP(∞) = 0 (4) 
 
 Then the steady state probabilities can be calculated as follows: 
 
A(∞) = P0 (∞)+P1(∞)+P2(∞)+P7(∞) (5) 
 
 Then the matrix form became: 
 

01 1 i

11 1 1

21 2 1 2 2

32 2 2

42 2

5

0P( ) 0 0

0P( ) 0 0 0 0

0P0 ( ) 0

0P0 0 ( ) 0 0

0P0 0 0 0

0P0 0 0 0

  − λ + λ β µ δ  
    λ − α + β     
    α − λ + µ β µ

=    
λ − α + β     

    α −µ
    
  γ −δ      

 

 
to obtain P0 (∞)+P1(∞)+P2(∞)+P7(∞) we solve the Eq. 4 by using following normalizing condition: 
 
P0 (∞)+P1(∞)+P2(∞)+P3(∞)+P4(∞) = 1  (6) 
  
 We substitute the equation (6) in any one of the redundant rows in equation to (4) yield: 
 

01 1 i

11 1 1

21 2 1 2 2

32 2 2

42 2

5

0P( ) 0 0

0P( ) 0 0 0 0

0P0 ( ) 0

0P0 0 ( ) 0 0

0P0 0 0 0

1P1 1 1 1 1 1

  − λ + λ β µ δ  
    λ − α + β     
    α − λ + µ β µ

=    
λ − α + β     

    α −µ
    
        

 

 
 The steady state availability A(∞) is given by: 
 
A (∞) = P0+P1+P2+P3+P5, or 
 

 4

N
A ( )  1 P   1

D
∞ = − = −   (7) 

 
Where:  
N = δα1α2λ1λ2 
D = (γ+δ)µ1µ2(α1+β1)(α2+β2)+δ(µ2µ1λ1(α2+β2)+ 

µ2λ1α1(β2+λ2)+ λ1α2α1(λ2+µ2))  
 
Busy period analysis: The initial conditions for this 
problem are the same as for the reliability case: The 
differential equations form can be expressed as 

availability case. Then the steady state busy period 
B∞ is given by: 
 

0 7

M
( ) 1 (P ( ) P ( )) 1

D
β ∞ = − ∞ + ∞ = −   (8)  

 
where, M = µ1µ2(γ+δ)(α2+β2) (α1+β1). 
 
The expected frequency of preventive maintenance: 
The initial conditions for this problem are the same as 
for the reliability case. Then the steady state, the 
expected frequency of preventive maintenance per unit 
time K∞ is given by: 
 
K(∞) = P5(∞) = µ1µ2γ(α2+β2) (α1+β1)/D)  (9)  
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Cost analysis: The expected total profit per unit time 
incurred to the system in the steady-state is given by: 

 
Profit = Total revenue-total cost 
PF  = R×A(∞)-C1×B(∞)-C2×K(∞) (10)  

 
Where: 
PF = The profit incurred to the system 
R = The revenue per unit up-time of the system 
C1 = The cost per unit time which the system is under 

repair 
C2 = The cost per preventive maintenance 
  
Special case: When the preventive maintenance is not 
available,  
 The mean time to system failure is given by: 

 

1 2

3

b b
MTSF

b

 +=  
 

  (11) 

 
Where: 

1 2 2 2 1 2 1 1 1

2 1 1 2 2 2 2 1 2 1 1

3 1 2 1 2

b ( )( )

b ( ( ) ( ) ( ))

b

= α λ + α µ + β µ α + β

= λ α α + λ + α λ + µ + β α + µ

= α α λ λ

 

 
 The steady state availability of the system is given 
by: 
 
A(∞) = P0+P1+P2+P3 or 
 

1
1 4

1

N
A ( ) 1 P 1

D
∞ = − = −   (12) 

 
Where:  
N1 = α1α2λ1λ2 
D1 = µ1µ2(α1+β1) (α2+β2)+µ2µ1λ1(α2+β2)+ 

µ2λ1α1(β2+λ2)+ λ1α2α1(λ2+µ2) 
 
 The steady state busy period of the system is given 
by: 
 

1
1 0 5

1

M
( ) 1 (P P ) 1

D
β ∞ = − + = −   (13) 

 
where, M1 = µ1µ2(α1+β1) (α2+β2). 
 The expected total profit incurred to the system in 
the steady-state is given by:  

 
PF = R×A1(∞)-C1×B1(∞) (14) 

MATERIALS AND METHODS 
 
 Many authors have studied two-unit cold standby 
system with two types of operation and repair. The 
question was raised whether the preventive 
maintenance increases the reliability of the system. 
 In this study the MTTF, availability and cost 
analysis of a two-dissimilar-unit repairable redundant 
system with three states and preventive maintenance 
were discussed to show the system with preventive 
maintenance increase the reliability of the system.  
 We analyze the system by using Kolmogorov’s 
forward equations method. After the model is 
developed a particular case study is discussed to 
validate the theoretical results. Next, some numerical 
computations are derived to show the effect of 
preventive maintenance on the reliability of the system. 
 

RESULTS 
 
 If   we    put    λ2 = 0.02,  α1 = 0.03,  α2 = 0.04,  
β1 = 0.05,    β2 = 0.06,   γ = 0.02, δ = 0.08, µ1 = 0.02, µ2 
= 0.03  in  Eq. 3, 7, 8, 10  and Eq. 11-14 we get the 
following: 
 
• Table 1 shows relation between failure rate (λ1) 

and the MTSF of the system (with and without 
preventive maintenance) 

• Table 2 shows relation between failure rate (λ1) 
and availability of the system (with and without 
preventive maintenance) 

 
Table 1: Relation between failure rate (λ1) and the MTSF (with and 
 without PM) 
 MTSF of the system with MTSF of the system without 
λ1  preventive maintenance preventive maintenance 
1.00 1433.30 1200.00 
0.02 850.00 733.33 
0.03 655.56 577.78 
0.04 558.33 500.00 
0.05 500.00 453.33 
0.06 461.11 422.22 
0.07 433.33 400.00 
0.08 412.50 383.33 
0.09 396.30 370.37 
0.10 383.33 360.00 
 
Table 2: Relation between failure rate (λ1) and availability (with and 

without PM) 
 Availability of the system  Availability of the system  
λ1  with preventive maintenance without preventive maintenance 
1.00 0.96970 0.96429 
0.02 0.95122 0.94444 
0.03 0.93878 0.93182 
0.04 0.92982 0.92308 
0.05 0.92308 0.91667 
0.06 0.91781 0.91176 
0.07 0.91358 0.90789 
0.08 0.91011 0.90476 
0.09 0.90722 0.90217 
0.10 0.90476 0.90000 
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Table 3: Relation between failure rate (λ1) and busy period (with and 
without PM) 

 Busy period of the system  Busy period of the system  
λ1 with preventive maintenance without preventive maintenance 
1.00 0.24242 0.28571 
0.02 0.39024 0.44444 
0.03 0.48980 0.54545 
0.04 0.56140 0.61538 
0.05 0.61538 0.66667 
0.06 0.65753 0.70588 
0.07 0.69136 0.73684 
0.08 0.71910 0.76190 
0.09 0.74227 0.78261 
0.10 0.76190 0.80000 
 
Table 4: Relation between failure rate (λ1) and the profit (with and 

without PM) 
  The profit of the system  The profit of the system without 
λ1  with preventive maintenance preventive maintenance 
1.00 939.40 935.72 
0.02 907.32 900.00 
0.03 885.72 877.28 
0.04 870.17 861.54 
0.05 858.47 850.00 
0.06 849.32 841.17 
0.07 841.97 834.21 
0.08 835.95 828.57 
0.09 830.93 823.91 
0.10 826.67 820.00 

 

 
 
Fig. 2: Relation between the failure rate (λ1) and the MTSF 
 

 
 
Fig. 3: Relation between the failure rate (λ1) and the 

availability 
 

• Table 3 shows relation between failure rate (λ1) 
and busy period of the system (with and without 
preventive maintenance) 

• Table 4 shows relation between failure rate (λ1) 
and the profit of the system (with and without 
preventive maintenance) 

 
 
Fig. 4: Relation between the failure rate (λ1) and the busy 

period 
 

 
 
Fig. 5: Relation between the failure rate (λ1) and the 

expected total profit 
 

• Figure 2 shows relation between the failure rate 
(λ1) and the MTSF 

• Figure 3 shows relation between the failure rate 
(λ1) and the Availability 

• Figure 4 shows relation between the failure rate 
(λ1) and the busy period 

• Figure 5 shows relation between the failure rate 
(λ1) and the expected total profit 

 
 DISCUSSION 

 
 By comparing the characteristic, MTSF, 
availability and the profit function with respect to (λ1) 
for both systems with and without preventive 
maintenance graphically, it was observing that:  
 The increase  of   failure   rate   (λ1)   at  constant 
λ2 = 0.02,    α1 = 0.03,   α2 = 0.04,  β1 = 0.05, β2 = 0.06, 
γ = 0.02, δ = 0.08, µ1 = 0.02, µ2 = 0.03, R = 1000, C1 = 
100, C2 = 10, the MTSF, availability and the profit 
function of the system decrease for both systems with 
and without preventive maintenance. 

  
CONCLUSION 

 
 We conclude from the Fig. 1-4 that the system with 
preventive maintenance is greater than the system 
without preventive maintenance with respect to the 
MTSF, availability and the profit function, i.e., the 
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system with preventive maintenance is better than the 
system without preventive maintenance. 
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