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Abstract: Problem statement: The population problem is the biggest problem in the world. In the 
global and regional context, Bangladesh population has drawn considerable attention of the social 
scientists, policy makers and international organizations. Bangladesh is now world’s 10th populous 
country having about 140 million people. The recent experience of Bangladesh shows that fertility can 
sustain impressive declines even when women’s lives remain severely constrained. Recent statistics 
also suggest that, despite a continuing increase in contraceptive prevalence rate (56%), the expected 
fertility decline in Bangladesh has stalled. Approach: The purpose of this study was to explore the 
possibility of further fertility decline in Bangladesh with special attention to identify some social and 
demographic factors as predictors which are responsible to desire for more children using stepwise and 
best subsets logistic regression approaches. The study had compared two approaches to determine an 
optimum model for prediction of the outcome. Results: It had been found, excess desire for children is 
solely responsible for the stalled fertility. Conclusion: To overcome the situation, the policy makers of 
Bangladesh should pay their attention to eliminate the regional variations of desire for more children 
and introduce awareness programs among rural women about the positive impact of smaller family.  
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INTRODUCTION 

 
 The population problem is the biggest problem in 
the world today. It makes every other problem worse 
and harder to solve. The world’s population is expected 
to grow by another 2.3 billion, from 6.8 billion in 2009 
to 9.1 billion in 2050. Most of this growth will take 
place in the developing countries. In global and 
regional context, Bangladesh population has drawn 
considerable attention of the social scientists, policy 
makers and international organizations. Bangladesh is 
now world’s   10th   populous  country having about 
140 million people. According to the United Nations 
and other agencies, the population growth rate of 
Bangladesh is still 1.65%. If this rate continues, the 
population of Bangladesh will double in 2050. Unless 
action is taken to accelerate the reductions in the rates 
of growth, the population of the world will not stabilize 
and certain region and countries like Bangladesh will 
go far beyond the limits consistent with political 
stability and acceptable social and economic conditions. 
However, recent statistics suggest that, despite a 
continuing increase in contraceptive prevalence rate 
(55.8%), the fertility decline in Bangladesh has stalled. 

The total fertility rate is still 3.1 and it is far beyond the 
replacement level fertility rate 2.1. Further fertility 
decline is required to achieve stable population in 
Bangladesh[14]. 
 The purpose of this study is to explore the 
possibility of further fertility decline in Bangladesh 
with special attention to identify some crucial social 
and demographic factors as predictors which are 
responsible to desire for more children. The study 
provides a simple explanation and demonstration of 
how to obtain a best subsets solution in logistic 
regression and interpret the results. 
 The criteria for including a variable in a model may 
vary from one problem to the next and from one 
scientific discipline to another. The traditional approach 
to statistical model building involves seeking the most 
parsimonious model that still explains the data. There 
are several steps one can follow to aid in the selection 
of variables for a logistic regression. The present study 
will discuss stepwise and best subset logistic regression 
for variable selection and compare them to determine a 
parsimonious model. Variables must be selected 
carefully so that the model makes accurate predictions, 
but without over fitting the data. Selecting variables by 
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hand is a laborious task and can over look important 
predictors. Thus, it is important that variable selection 
be automatic. The problem of variable selection is often 
addressed by sequential methods that start with a set of 
variables and attempt to grow or shrink the set by 
selecting which predictor should be added or removed 
from the set. This approach has been traditionally called 
stepwise selection. The method is frequently employed 
in sociological, demographical, educational and 
psychological research, both to select useful subsets of 
variables and to evaluate the order of importance of 
variables[3,10].  
 A crucial aspect of using stepwise logistic 
regression is the choice of an ‘alpha’ level to judge the 
importance of variables. Let pe denote the level of entry 
for the important variables. The choice of pe determines 
how many variables eventually are included in the 
model. Bendel and Afifi[1] have studied the choice of pe 
for stepwise linear regression and Costanza and Afifi [2] 
have studied the choice for stepwise discriminant 
analysis. More recently by using Monte Carlo 
simulation Lee and Koval[8] examined the issue of 
significance level for forward stepwise logistic 
regression. The results of this research have shown that 
the choice of pe = 0.05 is too stringent, often excluding 
important variables from the model. Choosing a value 
for pe in the range from 0.15-0.20 is highly 
recommended by Hosmer and Lemeshow[4]. On the 
other hand the program requires the second pre-chosen 
level pr to remove the variable from the model, which 
indicates some minimal level of continued contribution 
to the model. Whatever value one may chose for pr, it 
must exceed the value of pe to guard against the 
possibility of having the program enter and remove the 
same variable at successive steps. Since there is no 
theory Hosmer and Lemeshow[4] strongly 
recommended to use pe = 0.15 and pr = 0.20 for 
stepwise logistic regression program to locate the 
important variables which are related to the outcome. 
 An alternative to stepwise selection of variables for 
a model is best subsets selection. The procedures 
identify a group of subset models that give the best 
values of a specified criterion without requiring the 
fitting of all possible subset logistic regression. A best 
subsets approach would allow for the identification of 
these competing models. A statistical algorithm is 
adopted which produces some type of summary statistic 
for   every   possible  combination of predictors. 
Hosmer et al.[6] proposed such an algorithm for 
estimating a best-subsets logistic regression. The 
method was reiterated in Hosmer and Lemeshow’s[4] 
popular book on applied logistic regression. 

 The objective of this study is to pare down a large 
number of predictor variables to a subset which meets 
theoretical or predictive standards on the basis of 
stepwise logistic regression and best subsets 
approaches. After selection of the important predictor 
variables, the study will compare the two approaches to 
identify an optimum model for prediction of the 
outcome.   
 

MATERIALS AND METHODS 
 
 The Bangladesh Demographic and Health Survey 
(BDHS) is part of the worldwide Demographic and 
Health Surveys program, which is designed to collect 
data on fertility, family planning, maternal and child 
health. The BDHS is intended to serve as a source of 
population and health data for policymakers and the 
research community. The study will utilize the data 
from BDHS 2004. Macro International Inc. of 
Calverton, Maryland, USA, provided technical 
assistance to the project as part of its International 
Demographical and Health Surveys program and 
financial assistance was provided by The United States 
Agency for International Development (USAID). A 
total of 10,523 households were selected for the sample 
and 11,440 eligible women were completed their 
interview. The women under sterilization, declared in 
fecund, divorced, widowed, having more than and less 
than two living children are not involved in the 
analysis. Only 2216 eligible women who have two 
living children and able to bear and desire more 
children are only considered here during the period of 
global two children campaign. 
 The variable age of the respondent, region of 
residence, fertility preference, place of residence, level 
of education, expected number of children and sex 
preference are considered in the analysis. The variable 
fertility preference involving responses corresponding 
to the question, would you like to have (a/another) 
child? The responses are coded 0 for ‘no more’ and 1 
for ‘have another’. This variable is treated response 
variable Y as desire for children in the analysis. The 
age of the respondent (X1), region of residence (X2) is 
coded 1 for ‘Barisal, 2 for ‘Chittagong’, 3 for ‘Dhaka’ 4 
for ‘Khulna’ 5 for ‘Rajshahi’ and 6 for ‘Sylhet’, place 
of residence (X3) is coded 0 for ‘urban’ and 1 for 
‘rural’, level of education (X4) is coded 0 for ‘no 
education’, 1 for ‘primary level’, 2 for ‘secondary level’ 
and 3 for ‘higher level’, sex preference (X5) is coded 0 
for ‘no preferences’ and 1 for ‘preferences’ and 
expected number of children (X6) is coded 0 for ‘two or 
less’ and 1 for ‘more than two’. In the study, the 
number of categories for each predictor varies from two 
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to six. For instance, the region of residence (X2) and 
level of education (X4) have more than two categories. 
Both predictors have more than two discrete values and 
the scale of measurement is nominal. We know that it is 
inappropriate to model a nominal scale variable in 
logistic regression as if it were an interval scale 
variable. Therefore, we must form a set of design 
variables to represent the categories of the predictors. A 
reference cell coding technique is used to generate 
design variables. For X2 we have five design variables 
as X2_c, X2_d, X2_k, X2_r and X2_s. For X4, the three 
design variables are X4_n, X4_p and X4_s. 
 There are two methods that may be used to select 
variables from a summary table. The first method is 
based on p-value for entry at each step while the second 
is based on a likelihood ratio test of the model at the 
current step versus the model at the final step. Let q 
denote an arbitrary step in the procedure. In the first 
method we compare 

q

(q 1)

x
p −  to a pre-chosen significance 

level such as pe = 0.15. The subscript of p refers to the 
variable that has been added to the model and the 
superscript (q-1) refers to the step. If the value 

q

(q 1)

x
p −  is 

less than pe, then we move to the step q. We stop at the 
step when 

q

(q 1)

x
p −  exceed pe. We consider the model at 

the previous step for further analysis. In this method the 
criterion for entry is based on a test of the significance 
of the coefficient for Xq conditional on X1, X2,…Xq-1 
being in the model. In general, we may test the 
conditional null hypothesis H0:βq = 0 such that X1, 
X2,…Xq-1 in the model, against H1:βq ≠ 0. To test the 
null hypothesis the test statistic 
 

( ) ( ){ }q 1 qG 2ln L 2ln L−= − − −         (1) 

 
where, Lq and Lq-1 are the log-likelihoods for the step q 
and q-1 respectively. G is approximately distributed as 
chi-square with 1 degree of freedom depending on 
whether Xq is continuous or dichotomous and k-1 
degrees of freedom whether Xq is polychotomous with k 
categories. The software SPSS version 11.5 uses the 
score  test  for  selection and the likelihood ratio test for 

removal of covariates. Table 1 presents the p-values as 
a result of applying stepwise variable selection. At each 
step, the p-values from the score test to enter are below 
the horizontal line and the p-values for the likelihood 
ratio test to remove are above the horizontal line. The 
asterisk denotes the maximum p-value to remove at 
each step.  
 In the second method, we compare the model at the 
current step q to the model at the final step. We 
evaluate the p-value for the likelihood ratio test of these 
two models and proceed in this fashion until this p-
value exceeds pe. This tests that the coefficients for the 
variables added to the model from step q to the final 
step s are all equal to zero. That is we would like to test 
the null hypothesis H0:βq = βq+1 =…=βs = 0, s≤p against 
H1: At least two of the coefficients are not zero. To test 
the null hypothesis, the test statistic is: 

  

( ) ( ){ }q sG 2ln L 2ln L= − − −    (2) 

 
where, Lq and Ls are the log-likelihood for the step q 
and the final step s, respectively. The statistic G is 
approximately distributed as chi-square with degrees of 
freedom depending on the number of parameters to be 
tested from step q+1 to the final step s. At any given 
step it has more degrees-of-freedom than the test 
employed in the first method. For this reason the second 
method may possibly select a larger number of variables 
than the first method. The summary statistics for the 
above two methods of variable selection are illustrated in 
Table 2. At each step, each method provides a test of a 
different hypothesis. The number of parameters being 
tested for the second method is larger than the first 
method except for the last step. The second method may 
possibly select more variables than the first method. In 
cases where this occurs, one should carefully examine 
the additional variables and include them if they seem 
socially relevant to the outcome. In such case we would 
undoubtedly opt for the richer model selected by second 
method. In the   present   study,   both   methods select 
the    same    set   of      variables     for  further   analysis.

 
Table 1: The p-values to enter (below the horizontal line) and p-values to remove (above the horizontal line) the covariates 
Variable\step 0 1 2 3 4 5 
Expected number of children (X6) 0.000 0.000 0.000 0.000 0.000 0.000 
Age of respondent (X1) 0.000 0.000 0.000 0.000 0.000 0.000 
Region of residence (X2) 0.000 0.000 0.000 0.000 0.000 0.000 
Place of residence (X3) 0.000 0.002 0.063 0.017 0.017* 0.015 
Sex preference (X5) 0.000 0.087 0.102 0.169 0.150 0.145* 
Level of education (X4) 0.000 0.076 0.433 0.204 0.366 0.380 
Note: *: Denotes the maximum p-value to remove the explanatory variable at each step 
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Table 2: The log-likelihood and likelihood ratio test statistics (G), degrees of freedom (df) and p-values for two methods of selecting variables 
for a final model 

   Method 1   Method 2 
   ------------------------------------------ ------------------------------------------------ 
Step Variable entered -2 log-likelihood G df p-value G df p-value 
0  2761.26    882.85 9 0.0000 
1 Expected number of children (X6) 2051.68 709.58 1 0.000 173.27 8 0.0000 
2 Age of respondent (X1) 1953.23 98.45 1 0.000 74.82 7 0.0000 
3 Region of residence (X2) 1886.26 66.97 5 0.000 7.85 2 0.0197 
4 Place of residence (X3) 1880.53 5.73 1 0.017 2.12 1 0.1450 
5 Sex preference (X5) 1878.41 2.12 1 0.145    

 
The conclusion of the stepwise selection process has 
only identified a collection of variables which seem to 
be statistically important because the procedure 
identifies variables as candidates for a model solely on 
statistical grounds. We can observe from Table 2 that 
the stepwise procedure for variable selection terminates 
at step 5, because no further predictors can be added 
with the resulting p-values less than 0.15. Thus the 
variables X6, X1, X2, X3 and X5 have been selected by 
stepwise logistic regression procedure for further 
analysis.  
 On the other hand Hosmer et al.[6] have shown that 
best subsets logistic regression may be performed in a 
straight forward manner using any program capable of 
best subsets linear regression. Applying best subsets 
linear regression software to perform best subsets 
logistic regression is most easily explained using vector 
and matrix notations. Let X denotes the n×(p+1) matrix 
containing the values of all p covariates with the first 
column containing 1 to represent the constant term. The 
n×n diagonal matrix is denoted as V with general 
element i iˆ ˆ(1 )ν = π − π  where iπ̂ be the estimated logistic 

probability computed using maximum likelihood 
estimate of is  ̂β . Symbolically: 
 

11 12 1p

21 22 2p

n1 n2 np

1 X X X

1 X X X
X

1 X X X
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and 
 

 

1 1

2 2

n n

ˆ ˆ(1 ) 0 0 0

ˆ ˆ0 (1 ) 0 0
V

ˆ ˆ0 0 0 (1 )

 π − π
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 
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π − π  

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯

 

 
 Pregibon[12] verified that 1ˆ (X 'VX) X'VZ−β =  where 

1ˆZ X V r−= β +  and r is the vector of residuals given by 

ˆr (Y )= + π . This representation of  β̂  provides the basis 
for use of linear regression software. It is easy to verify 
that any linear regression package, that allows weights, 
produces coefficient estimates identical to β̂  when used 
with zi as the dependent variable and case weights vi, 
equal to the diagonal elements of V. To replicate the 
results of the maximum likelihood fit from a logistic 
regression package using a linear regression package, 
we calculate for each case, the value of a dependent 
variable and the corresponding case weight are as 
follows: 
 

i i i
i

i i i

ˆ ˆy
z In

ˆ ˆ ˆ1 (1 )

 π − π= + − π π − π 
  (3) 

 

i i iˆ ˆ(1 )ν = π − π   (4) 

 
 It can be shown that the weighted residual sum 
squares produced by the program is: 
 

n n2 2
i i i i i ii 1 i 1

ˆ ˆ ˆ ˆ(z z ) (y ) / (1 )
= =

ν − = − π π − π∑ ∑    (5) 

 
 The expression in (5) is a Pearson chi-square 
statistic from a maximum likelihood logistic regression 
program. The subsets of variables selected for best 
models depend on the criterion chosen for best. Hosmer 
and Lemeshow[4] recommended using the best subsets 
linear regression that was developed by Mallow[11]. 
This is a measure of predictive squared error denoted 
by Cq. This measure is originally denoted by Cp. We 
use q instead of p because p refers to a total number of 
possible variables while q refers to some subsets of 
variables. Hosmer et al.[6] justified that when best 
subsets logistic regression is performed via a best 
subsets linear regression package Mallow’s Cq has the 
same intuitive appeal as it does in linear regression. 
They showed that for a subset of q of the p variables: 
 

2

q 2

*
C 2(q 1) n

n p 1

χ + λ= + + −
χ

− −

   (6) 
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Where: 
χ2 = The Pearson chi-square obtained from (5) 
λ* = The multivariate Wald test statistic for the 

hypothesis that the coefficients for the p-q 
variables not in the model are equal to zero 

  
 Under the assumption that the model fit is the 
correct one, the approximate expected value of χ2 and 
λ* are (n-p-1) and (p-q) respectively. Substitution of 
these approximate expected values into the expression 
for Cq yields Cq = q+1. Hence models with Cq near q+1 
are candidates for a best model. The best subsets linear 
regression program selects as best that subset with the 
smallest value of Cq. If the Cq criterion is to be 
employed, the five best subsets according to this 
criterion are to be identified. This algorithm search for 
the five subsets of predictors variables with the smallest 
Cq values using much less computational efforts than 
when all possible subsets are evaluated. Table 3 
represent the results of the five best models selected 
using Cq as the criterion obtained from the output of 
Statistical Analysis System (SAS) 9.1 for windows. 
Using only the summary statistics, we would select 
model 3 as the best model since it has the smallest 
value of Cq.  
 Hosmer and Lemeshow[5] also show how an 
approximation to Mallow’s Cq can be obtained from 
score test output in a survival time analysis. A similar 
approximation can be obtained from Cq for logistic 
regression. First, Pearson chi-square statistic is replaced 
by its mean χ2 ≈ (n-p-1). Next the Wald statistic for the 
p-q excluded covariates may be approximated by the 
difference between the values of the score test for all p 
covariates and the score test for q covariates, namely 

*
q p qs sλ ≈ − . These results produce an approximation to 

(6) as follows: 
 

q p qC s s 2q p 1≈ − + − +   (7) 

 
 The value of sp is the score test for the model 
containing all p covariates and is obtained from the 
computer output. The value of sq is the score test for the 
particular subset of q covariates and its value is also 
obtained from the output. Table 4 illustrated the five 
best models that are identified based on score test and 
Mallows Cq criterion. 
 The results of Table 4 selected the five best models 
using Cq, as the main criterion and we would select 
model 3 as the best model since it has the smallest 
value of Cq. We observed that the best subsets selected 
by both approximation and stepwise logistic regression 
procedures identified the same set of predictors. 

Table 3: Five best models identified using Mallow’s Cq.  
Model Model covariates Mallows Cq 

1 X1, X5, X6 67.32 
2 X1, X2_c, X2_d, X2_k, X2_r, X2_s, X3 10.04 
3 X1, X2_c, X2_d, X2_k, X2_r, X2_s, X3, X5, X6 10.01 
4 X1, X2_c, X2_d, X2_k, X2_r, X2_s, X3, X4_n, 12.94 
 X4_p, X4_s, X6 
5 X1, X2_c, X2_d, X2_k, X2_r, X2_s, X4_n, X4_p,  15.39 
 X4_s, X5, X6 
 
Table 4: Five best models identified using the score test 

approximation to Mallow’s Cq (s12 = 850.11) 
Model Model covariates Score sq Cq 

1 X1, X5, X6 796.20 48.91 
2 X1, X2_c, X2_d, X2_k, X2_r, X2_s, X3 331.11 522.00 
3 X1, X2_c, X2_d, X2_k, X2_r, X2_s, 848.32 8.79 
 X3, X5, X6 
4 X1, X2_c, X2_d, X2_k, X2_r, X2_s, X3, 848.79 12.32 
 X4_n, X4_p, X4_s, X6 
5 X1, X2_c, X2_d, X2_k, X2_r, X2_s, 847.35 13.76 
 X4_n, X4_p, X4_s, X5, X6 

 
Intensive analysis: Consider a collection of q 
predictors selected with stepwise logistic regression 
approach be denoted by the vector X'= (X1, X2 …Xq). 
Suppose the conditional probability that the outcome is 
present be denoted by P(y = 1X) = π. Then the log-
odds of having Y = 1 is modeled as a linear function of 
the predictor variables as: 
 

i
0 1 1 2 2 q q i

i

In X X ... X ;0 1
1

 π = β + β + β + β ≤ π ≤ − π 
   (8) 

 
where, the function 

0 1 1 2 2 q q
i

0 1 1 2 2 q q

exp( X X .... X )

1 exp( X X .... X )

β + β + β + + β
π =

+ β + β + β + + β
 is known as 

logistic function. The most commonly used method of 
estimating the parameters of a logistic regression model 
is the Maximum Likelihood (ML). Suppose (y1, 
y2….yn) be an independent random sample of size n 
from the corresponding independent random variables 
(Y1, Y2…Yn). The response Yi is a Bernoulli random 
variable with probability mass function 

i iY 1 Y
i i if (Y ) (1 ) −= π − π ; Yi = 0 or 1; i = 1, 2…n. Since the 

Y i’s are assumed to be independent the sample 
likelihood function is defined as the joint probability 
function of the random variables as 

i i
n Y 1 Y

i 2 n i ii 1
g(Y ,Y ,...Y ) (1 ) −

=
= π −π∏ , the log-likelihood 

function as L(β0, β1,… βq) = Li (say): 
 

{ }

n

i 0 1 1 q qi 1

n

0 1 1 q qi 1

Y ( X .... X )

In 1 exp( X .... X )

=

=

= β +β + + β

− + β + β + + β

∑

∑
         (9) 

 
 In multivariable logistic regression, the likelihood 
equations are non-linear explicit function of unknown 
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parameters. Therefore, we use a very effective and well 
known Newton-Raphson iterative method to solve the 
equations which is known as iteratively reweighted 
least square algorithm. The solution of the likelihood 
equations requires special software that is available in 
most statistical packages. In the study, SPSS 11.5 for 
windows is used. 
 

RESULTS 
 
 Once the particular multiple logistic regression 
model has been fitted, we should begin the process of 
model assessment. This usually involves formulation 
and testing of a statistical hypothesis to determine 
whether the predictors in the model are significantly 
associated to the response variable. Fortunately, the 
likelihood ratio test for the overall significance of all 
coefficients for the predictors as well as significance of 
single predictor in the model is shown in Table 2. 
Considering the results from Table 2 we may conclude 
that except the predictor sex preference (X5) all other 
four predictors are significantly associated with the 
response variable at 5% level of significance. 
 In order to find the overall goodness-of-fit, Hosmer 
and Lemeshow[7] and Lemeshow and Hosmer[9] 
proposed grouping based on the values of the estimated 
probabilities. Using this grouping strategy, the Hosmer-
Lemeshow goodness-of-fit statistic, Ĉ is obtained by 
calculating the Pearson chi-square statistic from the g×2 

table of observed and estimated expected frequencies. 
A formula defining the calculation of Ĉ is as follows: 
 

' 2
g k k k

'k 1
k k k

(o n )
Ĉ

n (1 )=

− π=
π − π∑       (10) 

 
Where: 
g  = Denotes the number of groups 

'
kn  = The number of observations in the kth group 

ok  = The sum of the Y values for the kth group  

kπ  = The average of the ordered π̂ for the kth group 

 
 Hosmer and Lemeshow[7] demonstrated that under 
the assumption the fitted logistic regression model is 
the correct model and the distribution of the statistic 
Ĉ is well approximated by the chi-square distribution 
with g-2 degrees of freedom. The value of the Hosmer-
Lemeshow goodness-of-fit statistic computed from the 
frequencies in Table 5 is ̂C  = 6.61 and the 
corresponding p-value computed from the chi-square 
distribution with 8 degrees of freedom is 0.58. The 
large p-value signifies that there is no difference 
between the observed and the predicted values of the 
outcome. This indicates that the model seems to fit 
quite well. A comparison of the observed and expected 
frequencies in each of the 20 cells in Table 5 shows 
close agreement within each decile.  

 
Table 5: Contingency table for Hosmer and Lemeshow goodness-of fit test 
  Desire for no more children Desire for more children  
  ---------------------------------- --------------------------------------- Total   

Deciles kπ  Observed Expected Observed (ok) Expected '
k(n )  

2Ĉ χ∼  df p-value  

1 0.0459 208 207.04 9 9.96 217   
2 0.0784 206 208.29 20 17.71 226    
3 0.1051 194 199.57 29 23.44 223    
4 0.1309 186 191.20 34 28.80 220    
5 0.1588 184 180.85 31 34.15 215 6.61 8 0.58 
6 0.1977 183 179.72 41 44.28 224    
7 0.2702 170 162.75 53 60.25 223    
8 0.4902 118 113.17 104 108.83 222    
9 0.7644 45 52.30 177 169.71 222    
10 0.8968 24 23.11 200 200.89 224    
 
Table 6: Analysis of maximum likelihood estimates 
Predictors Coefficients β S.E Wald chi-square statistics df p-value Odds ratio exp (β) 
X6 2.915 0.188 241.252 1 0.000 18.443 
X1 -0.087 0.010 68.528 1 0.000 0.9170 
X2 - - 68.539 5 0.000 - 
X2_c 0.695 0.217 10.221 1 0.010 2.0000 
X2_d -0.191 0.205 0.8630 1 0.353 0.8260 
X2_k -0.434 0.226 3.7010 1 0.050 0.6480 
X2_r -0.502 0.210 5.7050 1 0.017 0.6050 
X2_s 0.804 0.257 9.8050 1 0.002 2.2350 
X3 0.306 0.127 5.8650 1 0.015 1.2350 
X5 -0.297 0.206 2.0690 1 0.150 0.7430 
Constant 0.574 0.351 2.6820 1 0.101 1.7750 
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 Table 6 shows the coefficients β’s, their standard 
errors, the Wald chi-square statistics, associated p-
values, odds ratio i.e., exp (β). In order to determine the 
worth of the individual regressor in logistic regression, 

the Wald statistic denoted as 
2
1

2

i

ˆ
W

ˆS.E( )

β=
 β 

[13]. Under 

the null hypothesis H0:βi = 0, the statistic W is 
approximately distributed as chi-square with single 
degree of freedom. The Wald chi-square statistic from 
Table 6 almost agree reasonably well with the 
likelihood ratio test for individual predictors that all the 
coefficients except X2_d (Dhaka region) and X5 (sex 
preference) have significant contribution to predict the 
response variable. In order to interpret the results of 
Table 6 we need to introduce a measure of association 
named ‘odds ratio’. The odds of the outcomes being 
present among individuals with x = 1 is defined as π1/1-
π1. Similarly, the odds of the outcome being present 
among the individuals with x = 0 is defined as π0/1-π0. 
The odds ratio, denoted as OR, defined as the ratio of 
the odds for x = 1 to the odds for x = 0 and given 

by 1 1

0

0

1
OR

1

π − π=
π

−π

. In general, the relationship between 

the odds ratio and the logistic regression coefficient is 
OR = exp (β) and the relationship is widely used to 
interpret the fitted values. 
 The odds ratio corresponding to the estimated 
coefficient for the variable expected number of children 
(X6) is 18.44 indicates the change in log-odds of desire 
for more children among the women having more than 
two desired children. The result suggests those women 
who expect more than two children are 18 times as 
likely to desire another child as other women in the 
study population. 
 The odds ratio for the variable age of respondent 
(X1) is 0.917, indicates the change in log-odds of desire 
for more children per one year increase in age among 
the study population. The odds ratio suggests the desire 
for more children significantly goes down by 8% for 
one year increase in age. 
 The odds ratio corresponding to the estimated 
coefficient for design variables X2_c (Chittagong), 
X2_d (Dhaka), X2_k (Khulna), X2_r (Rajshahi) and 
X2_s (Sylhet) are 2.000, 0.826, 0.648, 0.605 and 2.235 
respectively. Except X2_d (Dhaka) all the coefficients 
are statistically significant at 5% level of significance. 
The results indicate the regional change in log-odds of 
desire for more children with respect to the reference 
region. The results suggest the desire for more children 
is approximately 2 times as likely as prevail among the 

women in Chittagong and Sylhet region. On the other 
hand, women under Khulna and Rajshahi region about 
40% as less likely to desire for more children as 
reference region. 
 The odds ratio corresponding to the estimated 
coefficient for the variable place of residence (X3) is 
1.235 indicates the change in log-odds of desire for 
more children among rural women with respect to 
urban women. The result can be interpreted as the 
desire for more children significantly rise about 24% 
among rural women as compared to urban women. 
 The variable sex preference (X5) is not statistically 
significant. Theoretically there is no advantage to 
include the variable in the model. In fact, sex 
preference is known to be ‘socially important variable’ 
to determine desire for children. The response 
corresponding to the variable may be latent. Son 
preference is the most significant factor which 
continued to exert a great influence on bearing a third 
child even during the period of the two children 
campaign. Hence there is a further scope for analysis 
with such socially significant variable. 
 

DISCUSSION 
 
 Model selection is a fundamental task in data 
analysis. Methods such as stepwise and best subsets 
logistic regression are tools that build and compare suits 
of logistic regression models. Stepwise logistic 
regression is mainly designed to identify the most 
parsimonious set of predictors that are effective in 
predicting the response variable. The procedure 
indicates covariates with statistically significant effect, 
simultaneously adjusting for the other covariates in the 
logistic regression model. So the procedure is best 
viewed as a data screening tool. On the other hand, the 
best subsets technique is versatile because it allows for 
the consideration of a number of issues, statistical and 
theoretical, in comparing candidates models. The best 
subsets procedure is a time saving algorithms and have 
been developed to identify the most promising models, 
without having to evaluate all possible candidate 
models. Though the best subsets approach is introduced 
as time saving, as the number of models to compare 
grows rapidly as increase the number of potential 
predictors, the algorithms may require excessive 
computer time. Selection of best subsets of variables 
based on some criteria like Mallow’s Cq need fitting a 
lots of models. It can be very expensive because each 
fit requires an iterative procedure. So, users should not 
be lured into accepting the variables suggested by a best 
subset strategy without considerable critical evaluation. 
In contrast, stepwise logistic regression outputs only a 
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single set of predictors, thus fostering the notion that 
the chosen model is the best model. Under this 
condition, stepwise logistic regression procedures may 
need to be employed to assist in the selection of 
predictor variables. Stepwise methods are sequential, 
hence cheaper than best subsets methods.  
 The output of the intensive analysis suggest that 
the desire for more children is significantly higher in 
Chittagong and Sylhet regions and significantly lower 
in Khulna and Rajshahi regions as compare to reference 
region. It is also higher among rural women than among 
urban women. It is established in this study that urban 
women have less desire for more children than rural 
women. It is also observed that desired family size is 
still significantly larger among the study population. In 
fact, effective population control cannot be achieved 
until there is a change in the society’s attitude toward 
desired family size. 
 

CONCLUSION 
 
 In this respect, the Government of Bangladesh 
should highlight to the rural women that limiting family 
size has positive effects on the mother’s health, 
domestic peace, happiness and well-being. The 
policymaker should pay their attention ensuring female 
educational programs that can provide young women 
with gainful employment. This strategy also delaying 
age at marriage as well as age at first birth which is 
important for fertility decline. Finally, it is important 
for the Government of Bangladesh, instead of 
propagating the two-child norm across the board, 
emphasize those policies that actively enhance 
women’s status through education as well as involving 
them in the workforce and change their attitudes toward 
family size.  
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