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On Sixtic Lacunary Spline Solutions of Second Ordemitial Value Problem
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Abstract: Problem statement The lacunary problem, which we had investigatadthis study,
consider in finding the spline function of degréeS(x) of deficiency four, interpolating data given

the function value and third, forth order in theéemval [0,1]. Also, on the extra initial conditiomas
prescribed on the first derivative. Other purpo$ehis construction was to solve the second order
initial value problem by one example showed that $pline function being interpolation very well
compare to [1]. The convergence analysis and Hialisy of approximation solution were investigated
and compared with the exact solution to demonstitaeprescribed lacunary spline (0,3,4) function
interpolation.Approach: An approximation with spline functions of degree and deficiency four is
developed for solving initial value problems, wipnescribed nonlinear endpoint conditions. Under
suitable assumptions with applications showedgpime of the type (0,3,4) are existences, unigsene
and error bounds of the deficient of the soluti@asult: Numerical example showed that the presented
spline function their effectiveness in solving ttecond order initial value problem and also showed
that our result more well to result in [1]. Alsogwote that, the better error bounds were obtdmed
small step size hConclusion: In this study we showed that the lacunary data,4{Q,are more well
approximate to the given second order initial vgtueblem compare with the lacunary data (0,3,5)
used in [1].

Key words: Spline function, mathematical model, second ordéfsrential equations

INTODUCTION is a solution of the lacunary data (0, 1, 3 anchd3
been investigated {7 °.

The lacunary interpolation problem we investigate We approximate the problem (1) by the six degr

in this paper consists in finding the sixtic spliBé) of
deficiency four, interpolating data given on thedtion

spline functions as the first boundary conditioapect
to known third and fourth order derivatives andrfdu

and its Cauchy’s problem for second derivative at &he best error bound with convergence analysis.

given set of nodes of the interval [0, 1]. The ialit

This study is organized as follows: Firshsider

value problems play an important role in mathenadtic the spline function of six degree is presented twhic
physics. As the models considered in applied seienc interpolates the lacunary data (0,3,4). Some tliieaie
and engineering are nonlinear in nature, only saldo results about existence and uniqueness of theesplin
are analytical solutions availafle Siddigi and function of six degree an introduced and also
Akrant” used the quintic spline to find approximation convergence analysis is studied. To demonstrate the
solution of fourth order boundary-value problems. | convergence of the prescribed lacunary spline fanct
several years various authors have been used splimeimerical example presented, finally we prescrim t

functions for finding an approximate solution oftied
value problem including &¢! studies the for third and
fourth order boundary value problem.

Consider the second order initial value problem:

Y =106y, Y), Y (%) = Yo o Y (X0) = Yo 1)

And assume thatf OC"*([0,1]xR?) and that f is
Lipschitz continuous in y and.ySpline function been
studied by Sallam and Hussf&nwhich is used

difference way with deficiency three. Uniquenessl an
error bounded of deficient splines of degree siictvh
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conclusion and discussion of the result.
MATERIALS AND METHODS

Description of the method: we present sixtic spline
interpolation for one dimensional and given suéfitly
smooth  function f(x) defined on [I. And
A,:0=X,<X,<X,<..<X,=1 denote the uniform
partition of 1 = [0,1] with knots x= ih where i = 0,
1,2,...,n, we denote by, the class of sixtic splines

S(x) such that:
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~ X=X , | (X=%o)° And from the conditions (5), can be written Eq. 2-
S )=y + (x=X)a, e VﬁT Yo 4, where the coefficients of these polynomialstarbe
Y () determined by the following conditions:
+(X ) @ 4 (x—x.)%a, .+ (X=X
o Yo o) s o) Qe
S (%)= Sq (%)= Y »
. ] =g — Q] (6)
On the interval [x,,x,] where a,,,j=15,6 are 3 (%)= S0 (%0 )= Ya
unknowns we need to determine. Where:
And for [X,,X,,] is examine now the inner r=3,4
interval A,. By taking the interpolating conditions, we 1=0,1,2,....,n-1
define §(x) as: S'(Xi+1) = Siva(Xiv1)
S (X)= Y + (X=X )3, + (X )%)2@,2 and:
(x=x)° (x=x)" @ 3
P ®) s 002y, 8,0 ()= ¥ ()

+(X =X ) 85 + (X=X )
(X=X + (X=X ) e where, r = 3. 4,

To find uniquely the coefficients of Eq. 2 with

where, a,;.k=11)(n- 2),F 1,2,5,unknowns we need apply the condition (5) where i = 0, we obtain the

to be determine. following:
And on the endpoint on the interval can be written
1(x) in the end of the interval as: h> , h h*
$a(¥) hay,+ oo+ fiae= y- w— %o B-2, %
(X =%,0)* 60h?g, ,+ 120fi g,= - § - hff

Sn—]_(x): yn—1+ (X_ Xn—1)a'n— 1,1+T y"ﬁ' :

360 a .+ 120 ha.= §- ¢

+ (X ~ Xn—1)3 "o (X - >(n—1)4 y(4) (4) %'6 as (9 y
6 n-1 24 n-1

+(x _Xn—l)san—l,s"' (x=x,)a, 16

And from the boundary condition we have:

h2
The existence and unigueness theorem for spIinezOhB"’o,s+ 30H go= - ¥~ hf)'? ¥ (®)
function of six degree which interpolated the lagun
data (0,3,4) are presented and examined. Eliminating these equations we obtain the

following:
Theorem 1: “Existence and Uniqueness of Spline

Function” given the real numbers y“(x,),

8, ==[y,- 1- Dy o s ayey
r=0,2,3,4 and £ 0,1,2,...nthen there exist a unique °* h~°' "% 2°°% 307 * 0

spline of degree six as Eq. 2-4 such that: +L3[y<4> —oy®
120°* ° )
S7(6)=y"(x) ©) N ORI S WO NP
805 = 5o IV~ 91— Iy + 2y ]

Where:
r=0,23,4
i=0,1,2,3...,n

1 1
P A AR CH et VA

We shall find the coefficients of &) where i = 1,

Proof: let we defined the spline function with respect?2: 3-...n-1, from Eq. 6 we obtain:

the interval [0, 1] as:
ha,+a,+ Fa+ Aa

S (x) when X1 [ ,x ]
S(x)=9S (x) when X3 [x,%, ], F 12,...,
S,-1(x) when 3 [%,_,,%,] 60h"g, + 120A g, = §i—- §- hff’
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h? h*
=YiaTYi ™ ?yi(S) - ﬁyim) (10)
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and: n-1
S(X) - y(x)=2.§ (¥)- y(x)
i=0
120K g, + 360h g = ¢ - § (11)
To estimate upper bound error it will be enough to
Eliminating these three equations above us obtai§Stimate each term, by Taylor's formula:
the following:

L A 09 y0/ = 15 66)- ¥ )]w
&, = _F a,+ ra Vi~ ¥ 1= %[y.‘ﬂ +4y?] . " (14)
+ h—2[4y?i‘i - 2y] < 2JS" -y Xﬁ

a,= 20h2 Iy -y~ [Y.(‘” 2y The bounds on the terms on the right-hand side are
obtained by Theorem 2.
a (@) 4 @ @ _y 6
e = 120h2 y1= GOH’[y' vl Theorem 2: Let yOC®[0,1] and S(x) be a spline

function of six degree in previous theorem then for
Substituting the values ofi@ as and @ in the  x0[x,,x,,] wherei=0, 1, 2... n-1:
(10), we obtain the following relation between aand

awhere $(x) wherei=1, 2, 3,... n-2: 3w, (h)
h 4hWw (h)
ai+l,2 = 2312 + E [ j)l + yg?’) ] [y|(4) + y(4)] (12) Hsl(m) (X)_ yi(m) (Xi‘ S ghzwe(h)
Thus all coefficients are uniquely determined, so h*W (h)

the coefficients matrix of the systems (9) and (hGhe
unknown a, where = 1,2,3,..,r is a non-singular and:

matrix to determine uniquely. Finally, for the eno# 4
. . . 85h
interval we obtain the following: 360 ——W(h)
From Eq. 4 and the conditions (7) we have: 6t
[S™ 00y 0 £ 55 W ()
ha, .+ g o+ Ba 6= Y Ve o
h> , h* 53K
7yn1 7y(ns)1 73’@1 720 o
2 ) — ) — )
60h’a_, + 120f q ,,= ¥ - ¥ - h{P. To proof this theorem we need the Lemma 1.

120h %-1,5+ 360A A6~ S? - 82-)1
Lemma 1: Let:

and:
y[C®[0,1] then

4
e ez 2|5+ 1 W)
R Vo= Yod-= 7y';1— f%[y(f\) +4y(3r2 |
where, e,=a,- Y. Wg(h) denotes the modules of

[y<4) 2y continuity of y® and x, < 6,,6, < x.,,

Eliminating these equations we see thatProof of lemma: if yOC®[0,1] then using Taylor's
&g where i= 1,2,5, are determined nonzero, a Unique expansion formula we have:

solution exists, hence the proof of Theorem 1 is

(X)

complete. X,) + (X =% )Y (%) + XDy
To find error bounds of the spline S(x) which Y0 =yl Y y'(x)

solution to the (6).We begin by estimating the eim x=x)% .. (x X)° (6

the interpolation. From (6): * 6 yro) et 72 ¥y e)
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Where: or:
X <8 <X, 19 159 (- v (x) =[1208, - ¥ (9
Now from Eq. 9 and 12 with apply (13), we obtain: +h[7203 - ¥ (x) (18)
< (h+3h) W, (h)
4 4
€.~ 26, = Y- Dy e, )+ h—2 w =4 (h)
: (16)
(8,) + %yg)(eg) and we have alsg?¥ (x)- y“(x)=0 then:

where, i=1,23..,n-1 and X, <0, < X,
where, s= 1,2,3,.

It's easy the system of Egq. 12 and 13 in the
unknown e,,i=1,2,.,n- . has unique and exist

solution so d¥:

IS ()= y @ (x)f =

(8?0~ y® ) )
. (19)
sjhwe(h)dt= 4K W (h)

From Eqg. 15 with apply Taylor's expansion
h* formula as:
|+12 2(:1\ 2| |);i2)|+§| )/4)01)_ ),(4)021

B (y) = @ _ (4 (x=x)°
where, x, < a,a, < x., yIX) =y + (X = %)y (%) + > Y

This is proof Lemma 1. x) +( i) yO(x)
Proof of Theorem 2:Let:
yi“) +60h'g, +2 ¥y (x)+ 120 Y & )

XO[X;,Xi,4] (x- X)

8700y 00 ==y (x)= (x= X )y )+ =2

where,i=0, 1, 2..., n-1. (x-x)°
We have from Eq. 3 with apply Taylor's expansion y(x,) +le(6)([32)
formula we have:

2
<—[120g,- ¥ (x )+
S® (x) = 7203, 2 1208 }

By o) -y, < h°We )
and:

where, x, <B,,B, < X,
S (x)= 12034, - 720h N
o (X) 45 P It's clear to show that:

SO: h?
2 00-y @00 =]y - 23,5+
I (x)= ¥ () =[ 7208, = ¥ ()
=[3y,9©,)-2y"@,)-y"@,)  (17)
|2 ()= y® (x} < 3 W ()

4
|y —12Oe}<v5‘+1h?)‘ o - 7204,

SO:
WS(h) Denotes the modules of continuity &Py ) 2
From Eq. 6 we have: lvi-23,,| <z Wi (20)
[$200-¥? () =[1208, - ¥ O+ h 7208~ § (& We obtain:
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(2) (Y v (2 (y) = hj 5) _ Lh“
S () -y @ (x) o+ - 1202 o7 el
(6) _ . 261°
120‘3' 7204, | o IO E o0 e
<h? (—+ + JW 5(h) 13h6W (h)
45 6 4 720 6
<ﬁ)h Wo(h) Proof:
(6) —
and we have: So” (x)= 7208,
so:
1, h4
S 00y f = -aa+ Y- aql+5,; IS (0~ 9 (x] =| 7208~ ¥P ()< 3W (h
ly® ~1203 Hi\ ¥ - 7204, S (0)- ¥ (x) < 3w (h)
(22)
chi s et Dwm Similar we obtain:
T 45 60 40 22
<%hsw (h) ‘3)5) x)- y(5)(xj |5 () - y(A)(Xi W (h)
Similar way to find|S (x)- v (x] we obtain: ‘3’3) ()= W)(Xi < NV (h), ‘S’Z) ()= y(Z)(Xj Sﬂws(h)
But for the first derivative and the function we
, h? , have:
S 00 yoj<hfa =y o+ 28 - 9 ()
h4
120\120:45 ¥ (x +—3 7208, § (x)) 1S,00= Y (¥) <] &~ V(Xo)+§1\ 1203~ § (%))
- 15.09- yool < v )+ 2T w i) e J7208,- ¥ (3 o0
h6 h® 53K
# o Wa(h)+ W)= =2 W (h) (23) -~[sM)- Y(XX<@W(h) —W(h)
L 15 00-yoo < 2w (n) 1wy =220 v

720

And for the error bounds of the function with

This is proof theorem 2. . .
spline function:

Theorem 3: Let yOC®[0,1] and S(x) be a spline

function of six degree in previous theorem then forlS ()= y(x} < Hjay, = ¥ (% )+ ‘120‘35 y (’8‘:
X O[Xgq,X,] he
—5g 7203~ ¥ (%)
3W; (h) (25)
i< 4hW, (h) - 1S00-y(x) < 180W(h) W(h)

S ()= ¥ (x) <15h2 he 13K

—We(h —W,(h)= W, (h

2 * 240" =750 e ()

h* W (h)

Similarly we can show that for the interval

and: [X,1.X,] as the initial interval.
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Table 1: An absolute maximum error for S(x) andigsivative order 6 for given problem

h [SC)- y(x)., IS )=y (x)., S (x)= Y (x)., S"(x)=y" (X)),
0.1 1.x10%° 4x10° 1.8x107° 4.25¢10°°
0.2 9.%x10°® 7.2x10°° 1.9x10° 6.9x10°®

Table 2:Absolute maximum error for S(x) and its derivativeler 6

_ mesh points is available and which unknown denati
for given problem

found by the method are better close to the exact

h s900-v20d, [s?00-y ), [sP00-¥?()|.  solution. Also, may be use the same technique in my

01 4.810° 5 X103 511073 paper but for different lacunary data and may be
0.2 5.&10° 3.7x10°3 11.5¢1072 determine which type of lacunary data best
approximation to initial value problem.
RESULTS

We present numerical results to demonstrate the

convergence of the spline (0,3,4) function of degsix 1.

which constructed before to the second order Initia
value problem.

Problem: Consider the second order initial value
problem:

Y. :%(y' +y) when x1[0,1], y(0) ¥ (O)

ad® who's the exact solution is y(x) = drom Eq. 2 >
it's clear to verify that the spline function pq,x,] and
all other interval satisfies (6).And compare owsulein
Table 1 and 2 for example 1 in [1] we conclude that
result more well with [1]. 4.

DISCUSSION

Before proceed with discussion of the numerical

results, in this paper have also been treated ipaper g

[1]. While solving second order initial value prel in
that paper, a continuous from of invariant imbeddin
has been employed, after removing the boundary

conditions, which has been solved with step size h. g

CONCLUSSION

The numerical example for different values of
mesh size h is presented in Table 1 and 2. These
approximations corresponds to the iteration indéy i

taking y = y(0) = 0 as the initial approximation. We g

see that the absolute error criteri\gﬁ*“ -y <10°® for

all I is appeared and various this value with resper.

As is evident from the numerical results, thettmod
gives O(f) accuracy, spline solution has its own
advantages, once the solution has been computed; th
information required for spline interpolation betme
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