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Abstract:  Problem statement: In literature, a classic method which has been used to recognize the 
distribution so far is the measurement of its skewedness and kurtosis. However, there remains a 
question: how would these measurements work for skewed normal distribution when the size of the 
sample is large? Approach: This research aimed to determine the asymptotic distribution of 
skewedness and kurtosis measures in skewed normal distribution. In conducting this research, two 
groups of inferential findings will help. First, skewed normal distribution which has already been 
studied by a lot of researchers and we apply its characteristics. Second, there is the U-statistics theory 
which guides us to the determining of asymptotic distribution measures for skewedness and kurtosis. 
The combination of these two will solve the problem of this study. Results: Asymptotic distribution of 
measures for skewdness and kurtosis falls in the normal families. With the size of large samples, the 
values of expectation of these measures are also determined. By letting zero for skewedness parameter, 
asymptotic distribution for normal distribution can also be obtained. Conclusion: The findings of this 
study show new characteristics for skew normal distribution and this results in a new way for skew 
normal distribution recognition. 
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INTRODUCTION 

 
 It is well know the criteria of skewness and 
kurtosis are made function of sample variance, 3rd and 
4th central moments of sample. The U-statistics help to 
find best estimators of central moments. 
 In the theory of U-statistics, we consider a 
functional θ defined on a set F of distribution functions 

on ℜ: θ = θ(F), F∈F . The (F)θ∈ θ  estimated by using 
a sample from the random variables 1 2 nX ,X , ,X…  which 

are independently and identically distributed with 
distribution function Halmos[4] proved that the 
functional θ admits an unbiased estimator if and only if 
there is a function h of k variables such that: 
  

1 k 1 kh(x , ,x )dF(x ) dF(x )
+∞ +∞

−∞ −∞
θ = ∫ ∫⋯ … …  (1) 

  
 A functional satisfying Eq. 1 for some function h is 
called a regular statistical functional of degrees k and 
the function h is called the kernel of the functional. If a 
functional can be written as a regular statistical 
functional then optimal unbiased estimators can be 
constructed. 
 For a distribution function F let:  

 
r

r x dF
+∞

−∞
′µ = ∫   

 The rth moment about 0 and let:  
 

r
r 1(x ) dF

+∞

−∞
′µ = − µ∫   

 
the rth central moment. Heffernan,[5] obtained an 
estimator of the rth central moment of a distribution, 
which unbiased for all distributions for which the first r 
moments exits. There is a unique symmetric unbiased 
estimator of rµ : 

 

1 rr 1 n r i i

(n r)!
U (x , ,x ) h (x , ,x )

n!

−= ∑… …  

  

where, the sum extends over all 
(n r)!

n!

−
 permutations 

( )1 ri , ,i…  of r distinct integers chosen from 1,2, ,n…  

and: 
  

1 r 1 2 j 1

r 2
j r j

r i i i i i
j 0

r 1
1 r

1
h (x , ,x ) ( 1) x x x

r j

( 1) (r 1)x x

+

−
−

=

−

= −
−

+ − −

∑ ∑… …

⋯

 (2) 

 
where, the second summation is over 1 j 1i , ,i 1+ =…  to r 

with 1 2 j 1i i i +≠ ≠ ≠…  and 1 2 j 1i i i +< < <⋯ . 

 Consider a symmetric kernel h satisfying: 
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2
F 1 kE (h (X , ,X )) < ∞…  

 

 We shall make use of the function ch  and khɶ . 

kh h= and for 1 c k 1≤ ≤ − : 

 

c F 1 c c 1 kh E (h(x , , x ,X , ,X ))+= … …  

 

 That h h= − θɶ , c ch h= − θɶ , Define 0 0ξ =  and, for 

1 c k 1≤ ≤ − : 

 

c F c 1 cvar (h (X , ,X ))ξ = …  

  
 The following theorem were established by 
Hoeffding[6]. 

 
Theorem 1: If 2

FE h < ∞  and 1 0ξ > , then: 

 

 
D

2
n 1n (U ) N(0 , k )− θ → ξ  

 
 Heffernan obtained an estimator, rU , of rth central 

moment of a distribution, which unbiased for all 
distributions for which the first r moments exits. But the 
form of rU does not have a presentation of the role of 

sample moments on estimation of  µr  obviously. 
Abbasi[1] has been tried to establish a connection 
between U-statistics and sampling moments and also to 
studied their asymptotic distribution. This study was 
done for r = 3, 4.  
 In this article we study two measured that indicate 
the value of skewness and the value of kurtosis in skew 
normal distribution.  
 The univariate skew normal distribution has been 
considered by several authors. Azzalini[3] introduced 
this distribution. A random variable X is said to be 
skew normal distribution if: 
 

2x

2
X

2
f (x) e ( x), x R

2

−
= Φ λ ∈

π
 

 
where, Φ cumulative distribution function of standard 
normal distribution. The skew normal distribution is 
allows for continuous variation from normality to non-
normality, which is useful in many practicat 
situations[2,8,10] generated skewed probability density 
function of the form 2f (u)G( u)λ , where , f is taken to 

be a normal pdf while the cumulative distributive 
function G  is taken to come from one of normal, 
Student's  t, Cauchy, Laplace, logistic or uniform 
distribution. In particular, expressions for the nth 
moment and characteristic function were derived. In 
skew normal distribution, the nth moment of X about 
zero turns out to be: 
 

( ) ( )
( ) ( )

n 1n 2
1 nn 22 k2n 2 2k2

3
k 0 2 k

2 n 2
E(X ) ( ) 1

2

−+
−−

=

λ += Γ + λ −λ
π ∑  (3) 

 
if n is odd and: 
 

n

2
n 2 n 1

E(X ) ( )
2

+= Γ
π

 (4) 

 
for n even, where, ( )k

c c(c 1) (c k 1)= + + −⋯ . 

 In point estimation, estimator be a UMVU 
(uniform minimum variance unbiased) estimator is a 
advantage. The U-statistics admits UMVU 
estimator[7,9]. 

 
MATERIALS AND METHODS 

 
 The form of U-statistics for 2nd, 3rd and 4th 
central moment equal to: 

 

2 2 2
2 2

n n
U S (x x ) M

n 1 n 1
= = − =

− −
 

 
2

3 2 3
3

2

3

n
U x 3x x 2x

(n 1)(n 2)

n
M

(n 1)(n 2)

 = − +
 − −

=
− −

 

 
3

4 1 n 4

2
4

2
3

2 2
2

n
U (x , , x ) M

(n 1)(n 2)(n 3)

2n 3n
x

(n 1)(n 2)(n 3)

8n 12n
x x

(n 1)(n 2)(n 3)

6n 9n
x

(n 1)(n 2)(n 3)

=
− − −

− ++
− − −

−−
− − −

− ++
− − −

…

 

 
Where: 

n
2

2 i
i 1

1
M (x x)

n =

= −∑  
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n
3

3 i
i 1

1
M (x x)

n =

= −∑  

n
41

4 in
i 1

M (x x)
=

= −∑  

 
 Are sample central moments. Obviously r rU M→  

as n → ∞  for r = 2,3,4. Also by theorem 1 we can show 
that: 
 

2 2 4
4n (S ) ~ AN(0 , ),)− σ µ − σ  (5) 

 

3 3 3,1n (U ) ~ AN(0 , 9 )− µ ξ  (6) 

 

4 4 4,1n (U ) ~ AN(0 ,16 )− µ ξ  (7) 
 
Where:  
 

3 2 2
3,1

2 2 3 2
2

2 3
2

2 2
2

1
[4 var(X ) 36 var(X )

36

(12 6 ) var(X ) 2(6 )cov(X ,X )

2(12 6 )cov(X ,X )

2(6 )(12 6 ) cov(X ,X )]

′ξ = + µ

′ ′ ′+ µ − µ − µ
′ ′+ µ − µ

′ ′ ′− µ µ − µ

 

 
and 
 

4 ' 2 3 ' 4 2
1 1

' ' ' ' 3 2
3 2 1 1

' 4 3 ' 2 4 2
1 1

' ' ' ' 3 4
3 2 1 1

' 3 3 2
1

' ' ' ' ' 3 3
1 3 2 1 1

1
4,1 [var(X ) 16 var(X ) 36 var(X )

16

( 4 12 3 ) var(X)

2(4 )cov(X ,X ) 2(6 )cov(X ,X )

2(4 12 3 )cov(X ,X)

2(24 )cov(X ,X )

2(4 )( 4 12 3 )cov(X ,

ξ = + µ + µ

+ − µ + µ µ − µ

− µ + µ

+ µ + µ µ − µ

− µ

− µ − µ + µ µ − µ

( )' 2 ' ' ' ' 3 2
1 3 2 1 1

X)

2(6 ) 4 12 3 cov(x ,X)]+ µ − µ + µ µ − µ

 

 
RESULTS 

 
 Nadarajah et al.[10] in skewed normal distribution 
show that how to compute the value of central moment. 
For our aims, we have: 
 

1 2
2

23
2

3 3
2 2

4

2 484
3 5

5 5
2 2

6

2 4 616 32
5 7

5 7
2 2

8

2
,

1, 1

(1 )2
3 ,

(1 )3,

(1 )2
15 ,

(1 )15,

(1 2 )2
105

(1 )105,

λ′µ =
π′µ = + λ

λ − λ′µ =
π + λ′µ =

λ − λ + λ′µ =
π + λ′µ =

λ − λ + λ − λ′µ =
π + λ′µ =

 

2
2

2 2

2
1 ,

(1 )

λµ = σ = −
π + λ

 

( )3

3 3 3
22 2

2 2 2 2 4 2 4 4

4 2 2 2

2 5 4

(1 )

3 6 3 12 28 12

(1 )

− λ π −
µ =

π + λ
π + π λ + π λ − πλ + πλ − λµ =

π + λ

 

 
 The following values determine the distributions in 
(1), (2) and (3): 

 

( )
4

4 22 2

2 2 2 2 4 2 4 4

2

1

{ 2 4 16 8 }

µ − σ =
π + λ

π + π λ + π λ − πλ + πλ − λ

 

 

( )
( )
( )

6 3 2
3,1 3 2 3

4 3 2

2 2 3 3

1
{ 15 302 798 288

9 (1 )

45 84 72

18 45 15 }

ξ = λ π − π + π −
π + λ

+λ π + π − π

+λ − π + π + π

 

 

2 3 2 3 4
4,1 3 2 4

2 7 2 3 2

2 3 2 2 2

7 2 2 5 2

5 2 2 8 7

6 3 6 7 2

3 5 3

8 6 2 6 2

8

1
( 32 48 72

2 (1 a )

60 1 120 1

180 1 60 1

120 1 180 1

48 1 967 627

72 48 48 1

12 480 288

675 498 653 64

108

ξ = − π + π λ + π λ
π +

+ π λ + λ − πλ + λ

+ π λ + λ + π + λ

+ πλ + λ + π λ + λ

− λ + λ + π λ + π λ

− λ + π λ − λ + λ
+ π − π λ + π λ
− π λ + π λ − π λ − π λ
+ λ 2 2 2 4

4 3 8

269 405

507 12 )

− π λ + π λ
− π λ + π λ

 

 
Asymptotic distribution of skewness: By Stlusky's 
theorem and tending of S2 to σ2 with probability one, 
we have: 

 

3 3
3 6

n(M ) 9
~ AN(0 , )

S

− µ ξ
σ

 

 
 Therefore the approximate of expectation of 
skewness is: 
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( )

( ) ( )

( )
( )

3

3 3
22 2

3
33

2 2

2

3
2 2

3 3
22 2 2

2

3
22

3 2
2

2 5 4

M (1 )
E( )

S
2

1
(1 )

1
2 5 4

(1 )
2

(1 )

T
2 5 4 , (T )

(1 )2T

− λ π −

π + λ≅
 λ− π + λ 

λ
= − π −

 λ+ λ π − + λ 

λ= − π − =
+ λπ −

 

 
Asymptotic distribution of kurtosis:  Again use the 
Stlusky's theorem and tending of S2 to σ2 with 
probability one, then we have: 
 

( )

4
4

2 2 2 2 4 2 4 4

2 2 2

22

2

2 2 2 2 4 2 4 4

22 2

M
E( )

S

3 6 3 12 28 12
(1 )

2
1

(1 )

3 6 3 12 28 12

2

≅

π + π λ + π λ − πλ + πλ − λ
π + λ

 λ− π + λ 

π + π λ + π λ − π λ + π λ − λ=
π + πλ − λ

 

 
DISCUSSION 

 
  In special case, when λ tends to infinity, limiting 
distributions and approximate of expectation change to: 
 

2
2

2 16
n (S 1 ) ~ AN(0 , 2 )− + −

π π
 

 
2

3 3

5 2 302 798 288
n (U ) ~ AN(0 ,15 )

− π + π −+ +
ππ

 

 

( )
( )

3
33
2

2 5 4M
E( )

S 2

− π −
→

π −
 

 

( )
2

4
24

M 28 12 3
E( )

S 2

π − + π≅
π −

 

 
CONCLUSION 

 
 By these results, for large numbers of observation, 
the expected values of coefficients of skewness and 

kurtosis, in skewed normal distribution, are obtained. 
The results rewrite when the mean and variance of 
normal distribution are not zero and one respectively. 
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