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On Calculating the Hougaard M easure of Skewnessin a Nonlinear
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Abstract: Problem statement: This study presented an alternative computatiagbrithm for
determining the values of the Hougaard measur&efisess as a nonlinearity measure in a Nonlinear
Regression model (NLR-model) with two parametéyspr oach: These values indicated a degree of a
nonlinear behavior in the estimator of the paramétea NLR-model.Results: We applied the
suggested algorithm on an example of a NLR-modelhiich there is a conditionally linear parameter.
The algorithm is mainly based on many earlier g&sidin measures of nonlinearity. The algorithm was
suited for implementation using computer algebrastays such as MAPLE, MATLAB and
MATHEMATICA. Conclusion/Recommendations. The results with the corresponding output the
same considering example will be compared withréiseilts in some earlier studies.
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INTRODUCTION commonly used parameterizations but that, as dtresu
of reparameterizations, become close-to-linear.r& he
We consider the usual NLR-model: are also some NLR-models that never behave in a
close-to-linear fashion, even for relatively laiggmple
yi=f(q ©)tg,i=1,2,....m (1) sizes.

A possible way to analyze the nonlinear behavior
where, (x ©) depends on a vector ®f regression of a model data set combination is the calculatibthe
variables and a vecto® = (6,,6,, ... , 8,) of so called measures of nonlinearity. Previously, a
unknown parameters to be estimated. This respond@!mber of measures and procedures of studying the
function f is a known, scalar-valued function that €stimation behavior of NLR-models is described.Sehe
twice continuously differentiable i® . Here, ydenote included the curvature measures of intrinsic and
to theith response. The erroes i = 1, 2, ... , m are Parameter effects nonlinearity, the b@s measulgoof
usually assumed to be independent and identicallfnd the asymmetry measure of bias of LW,
distributed normal random variables with mean zerg\oreover, a Hougaard measure, which is best toause
and constant variane®. One can write this assumption direct measure of skewness, was de_r|vé9&i n
as &[NID(0, ¢ and refers to this stochastic Computer programs for calculating these mel%sures
assumption as an additive error assumpiofl of nonlinearity are presented in several literadtifé"?!

NLR-models differ greatly among themselves with Specially, a listing of a FORTRAN-subroutine for
respect to the extent to which the behavior ofrthei COMPUting the Hougaard skewness measure for each
least-squares estimators approximates the asymptotParameter in a model appearelin
properties. For example, there are some nonlinear In this study the Hougaard measure of skewness,
regression models whose estimators, even when thhich is familiar in statistics, will be considered/e
sample sizes are relatively small, come close tagbe describe this measure and show how this measure is
unbiased, normally distributed, minimum varianceused to indicate a degree of nonlinear behavioe&wh
estimators. Such NLR-models are termed close-toparameter in a NLR-model. Using MAPLE, a new
linear model$®', Models not possessing these alternative procedure for calculating the Hougaard
properties may be termed far-from-linear. There arameasure of skewness of a special two parameter NLR-
NLR-models that may not be close-to-linear in darta model will be presented.
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Description of the Hougarrd measure of Skewnessin  then an estimate of the third moment&fis given
a NLR-model: Now, we present a description of the

. ! by:
studied measure of skewness and explain how to usey

this measure to indicate a degree of the nonlinear . P
behavior in NLR-model'?*! E[e, —E(GF)J
Consider a NLR-model (1) with P parameters. ., (8)
Here, the following notations are used to simptifie ==(s) ;;ZLTJLFKLH(WM Wy + W)
description method of the Hougaard measure of
skewness. with the indices j, k and | each ranging from 1Ro
For a nonlinear model: Here $ is the estimate of the residual variance based on
F(%,0) = (F(xy ©), F(X,,0),..., F(X,.,0)) @) the residual sum of square®SSE) at © and also

based on (m-P) degree of freedom. It is given gy th

the mxP Jacobian matrix @() of first derivatives with  form $*=RSS@ )/(m- P with:
respect to the parameters is written as:

J(é){dfége)}e_é 3)

RSSO)=3 [ v - (5 &) (9

The third moment may conveniently be
with typical element: standardi_zed using the apgropriatg element of the
asymptotic covariance matrix™'s" to give:
- 0f(x,0) (4) . g
LFT) SKEWNESS, =E[er -E, j B 1L, Y? (10)

evaluated at® . Also, the mxPxP second derivative which provides a direct measure of the skewnes of
array (Hessian array) df(x, ©) with respect to the Because of the close link between the extent of

parameters is written &$(© ) with typical elements:  nonlinear behavior of an estimator and the extdnt o
, nonnormality in the sampling distribution of the
_071(x;,0) ) estimator, it is relatively easy to devise a ruléhmumb
‘06,08, for asserting whether the estimatér, as assessed by
the Hougaard measuBKEWNESS for the parameter

evaluated a® . Here, i runs from 1 to m while r and q . . . .
6,, is close-to-linear or contains considerable
run from 1 to P.

In matrix notation, each row o3(®) is the nonlinearity. Thus, referring 3" the absolute value
gradient of one coordinate df (x, ®) with respect to ‘SKEWNES% ‘ of SKEWNESS in Table 1 indicates a

© and each faced, of H(©) is a complete PxP degree of a nonlinear behavior of the estimaaf the
second derivative matrix (or Hessian matrix) of Oneparameter®. in a NLR-model (1).
element off (x, ©) with respect to@ 91314 '

Now, let a term likeL, . r, k=1, 2....,P denote an Application 1: As an application for calculating the

element of: Hougaard measure of skewness, we choose the so
called Michaelis-Menten model. This model is a mode
L =[ ()3 (é)]‘l (6) with two parameters and may be written as:
AN - - f(x,0) =X (11)
where,J'(©) is the transpose of the Jacobian matrix ™=/~ g
3(6), i
If W, is aterm defined by: where, f is predicated,©=(6,,6,) is a 2x1 vector of

parameters (i.e., P = 2). This model is an exaropke
W =i3 H ) model in which there is conditionally linear pardere
Jd T g Tk 6, . For more details on this chosen m&det'2*!
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Table 1: The standard absolute value§ Hougaard measure A suggested algorithm to compute the Hougaard
SKEWNESS, ~ for the parametef, measure of Skewness in a NLR-model with two

parameters. To calculate the Hougaard measure of

skewness for the illustrative example with respecthe

‘SKEWNES%r ‘ 0(0.00,0.10):  The estimator is very close-to-

linear in behavior. NLR-model with two parameters (11) in Application 1
‘SKEWNES%r ‘ 0(0.10, 0.25):  The estimator is reasonably an alternative algorithm is explained and its MAPLE
close-to-linear in behavior. procedure is formulated using MAPLE 9.5 as follows:

‘SKEWNES%r ‘ 0(0:25, 1.00): The skewness is very apparent. Algorithm 1:

‘SKEWNES%r ‘ 0(1.00,  ): These values indicate
Step 1: Describe the parameter space as two
dimensional spaces.

considerable nonlinear behavior.

Table 2: The used data set (observations)

X 20000 20000 0.6670 0.6670 0.4000  0.4000 Step 2: Define the considering 2-parameter model as
y 00615 00527 00334 00258 00138  0.0258 model equation.

x 02860 02860  0.2220 0.2220 0.2000  0.2000

y 00129 0.0183 0.0083 0.0169 0.0129  0.0087

Step 3: Define the expectation surface as a (1, 12)-
Table 3: The computed Hougaard measure of skewfmsghe  VECLOT through calculation of the model functionr fo
parameter in the considering model (11) and thergvata ~ €ach mass-point.
set
Parameter 6, 62 Step 4: Define the Jacobian-matrix "JAC" (i.€l(©))
SKEWNESS, 0.989 1180  of the model function with respect to the parameter
vector and calculate this matrix for the estimated
The working data set in this application consggtin Parameters.
of twelve observations (i.e., m12) that appeared!t ) ) )
are shown in Table 2. These data yielded leastrequaStep S: Define "L" as the inverse matrix of the
estimate® =(8, , 6,)=(0.1056427059222,1.702689979 multiplication p7(6) J(©)] of the transpose matrix
RBSE J'(©) and the matrixi(© ).

095) with the residual sum of squares
2010567x104 at é and the estimate of the residual Step 6: Define a (12, 2, 2)-ten50r (Hessian ma‘[rix)

variance § = 2010567"1(51512'2) = 0.00002010567 "HES" (i.e., H(©®)) of the 2nd order derivatives of the
based on 10 degree of free 8nBy using a listing of & odel function with respect to the parameter-veatat
FORTRAN-subroutine for computing the Hougaard cgcylate this matrix for the same estimated paterse
measureSKEWNESSg, for the paramete,, r = 1, 2 in

the considering Michaelis-Menten model and for ¢hes
given datd™, yielding the following values of
SKEWNESSg, in Table 3.

With regard to Ratkowsky's results in Table 3sit Step 8: Formulate the third moment "TM[i]" (i.e.,
clear that the skewness for the estimator of the&E[8 - E (6, )]°) of the paramete; as in (8).
parameterf, is very apparent and the value of the
skewness for the estimator of the parameféndicates  Step 9: Formulate the Hougaard measure of skewness
considerable nonlinear behavior. This means that th"SK[i]" (i.e., SKEWNESS ) of the paramete8; as it
estimators of the two parameters in this exampee ar '
far-from-linear in their estimation behavior.

Now, we will compute again the values of the
Hougaard measure of skewneSKEWNES%r for the

Step 7: Formulate the terms "W [j, k, I]"(i.e., M) as a
multiplication form in (7) of the Jacobian matriAQ
and the Hessian matrix HES.

appeared in (10).

Step 10: Give the using variables 9 (i.e., "Par") and

s (i.e., "ssq") in the procedure to proceed the
parameteB,, r = 1, 2 in the model (11) but by using an calculation for each element in the previous sisjtl
alternative suggested computational algorithm withrespect to the considering model.

MAPLE-procedure and the results will be compared

with the previous obtained values of the HougaardStep 11: Evaluate the Hougaard measure
measure of skewenees in Table 3. SKEWNES%i for each ith parameter.
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The results of the previous algorithm provide two
values. The first value iSKEWNES%1 and the second

one isSKEWNES%2 .

Stackmatrix (H[1], H[2], H[3], H[4], H[5], H[6], HT]I,
H[8], H[9], H[10], H[11], H[12]));

for s from z by z to z*m do

HESS[s/2]: =submatrix(HES, s-1 .. s, 1 .. 2);

The proposed MAPLE-procedure to calculate theod:

Hougaard measure of skewness for the parafeter
r =1, 2 in the model (11) with its output will lggven

below. To verify the aim of the calculation for the W[ 1, 2,1]:
Hougaard measure of skewness through the previold[ 2, 1,1]:
algorithm, we consider the data in Table 1 with theW[2, 2, I]:

obtained least square estimatesand also the obtained
estimate of the residual varianceas above. With this
suggested MAPLE-procedure, the program produce
the values 0.9887703882 and 1.180088401 o
SKEWNES%1 and SKEWNES%2 respectively. In

addition, these results are identical to the pnevio
results in Table 3 which were obtained from anigtof

a FORTRAN-subrotine for computing the Hougaard
skewness measure'i,

MATERIALSAND METHODS

The so called Michaelis-Menten model with two
parameters have been selected to apply our alieznat
computational algorithm  through its proposed
procedure for calculating the values of the Houdaar

for | from 1 to z do

W[ 1,1, 1] =sum(JAC[r, 1 *HESS[r][ 1, I ], r=1 m);
=sum(JAC[ r, 1 *"HESSIr][ 2, | ], r=1 m);
=sum(JAC[ r, 2 *"HESSIr][ 1, | ], r=1 m);
=sum(JAC[ r, 2 *"HESSIr][ 2, | ], r=1 m);

od:
==

rifromltozdo

%?M[i]: = -((ssq)2)*sum(sum(sum(L[ i, j I*L[ i, kK TL[ i,
PIWLj k p #WI[ Kk, j, p #W[ p, k j]),j=1.. 2),
k=1..2),p=1..2);

od:

=i

forifrom1tozdo

SKIi[:=TMI[i}/((ssq*L[ i, i )\(3/2)):

od;

print(SKEWNESS|[theta[1]]=SK[1]);
print(SKEWNESS|[theta[2]]=SK][2]);

end:

> X: = vector([ 2, 2, 0.667, 0.667, 0.4, 0.4, 0.286
0.286,0.222 , 0.222,0.2,0.2]):

> par:=vector([ 0.1056427059222, 1.702689979095 ]):

measure of skewness. The procedure is formulated 3sg:= 0.00002010567 : SK(X, par, ssq);

using MAPLE 9.5 as follows:

A MAPLE-procedure for calculating the Hougaard
measur e of skewness:

> restart: Digits: =10: with(linalg):

> SK: =proc(X::vector, par::vector, ssq::float)

local i, j, k, p, s, ¢, |, 1, X, J, H, JAC, HES, BE, W,
T™, L;

global Theta , m, z, f, F, SK;

m: = vectdim(X): z: = 2 : Theta: = array(1 .. z)=f(x,
Theta)->Theta[1]*x/(Theta[2]+x);

F: =array(1 .. m): J: =array(1 .. m): H: =array(in):
for i from 1 to m do

F[i]: = f(X[i], Theta);

od:

for c from 1 to m do

J[c]: = jacobian(vector([F[c]]), [Theta[1], Thetd[R
H[c]: = hessian(F[c], [Theta[1], Theta[2]]);

od:

JAC: = subs(Theta[1]=par[1], Theta[2]=par[2],
stackmatrix(J[1], J[2], I[3], J[4], J[5], J[6],

J[71, J[8], J[9], J[10], J[11], J[12]));

L: =inverse(evalm (transpose(JAC)* JAC)):

HES: = subs(Theta[1] = par[1], Theta[2]=par[2],
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SKEWNES%l =0.9887703882

SKEWNES%2 =1.180088401

Also, we used the data set which consisting of
twelve observations and the results have been amuipa
with the results which were obtained from a listofga
FORTRAN-subrotine. The obtained least square

estimates® of ©@=(6,,0,) by using these data with the

value of RSSP ) at © and the estimate of the residual

variance § based on 10 degree of freedom was
considered.

RESULTS

Our alternative suggested computational algorithm
with MAPLE-procedure gave values of the Hougaard
measure of skeweneeSKEWNES%lz 0.9887703882

and SKEWNES%2 = 1.180088401 which are identical

to the previous obtained values of this studied suea
by using a listing of a FORTRAN-subrotine.
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DISCUSSION 5.

Our study presented an alternative computational
algorithm for calculating the Hougaard measure of
skewness as a nonlinearity measure in a NLR-model
with two parameters. These obtained values indieate
degree of a nonlinear behavior in the estimatothef 6.
parameter in the studied model. Our suggested
algorithm was applied on an example of a NLR-model
in which there is a conditionally linear paramefEhis 7.
proposed algorithm was applied using MAPLE.

By using optimal accuracy in the application the
proposed algorithm with its procedure will be very
effective. The suggested algorithm is availabledibrer
NLR-models which have not any conditionally linear
parameter and in this case the used procedure lmaust 8.
changed in some functions. Similarly one can akedu

the same algorithm with a suitable procedure foRNL
models with numbers of parameters more than two.

CONCLUSION

The described algorithm in this study with its

MAPLE-procedure is very effective by using optimal 10.

accuracy. The suggested algorithm with its congider
MAPLE-procedure indicates a method for calculating
the Hougaard measure of skewness as a nonlinearity
measure in a two parameter NLR-model, in whicheher
is conditionally linear parameter. This proposedhod

is competitive to other methods with the same ainll.

which appeared in previous literature.
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