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Abstract: Problem statement: Let T be a set of n distinct positive integers, %, ..., %. The nxn
matrix [T] having (x, %), the greatest common divisor of and x, as its (i,j)-entry is called the
greatest common divisor (GCD) matrix on T. The maffiT]] whose (i,j)-entry is [x, x], the least
common multiple of xand ¥, is called the least common multiple (LCM) mato T. Many aspects
of arithmetics in the domain of natural integeas be carried out to Principal Ideal Domains (PID)
this study, we extend many recent results concgr@cCD and LCM matrices defined on Factor
Closed (FC) sets to an arbitrary PID such as thmailo of Gaussian integers and the ring of
polynomials over a finite fieldApproach: In order to extend the various results, we modifiee
underlying computational procedures and numberr#imofunctions to the arbitrary PIDs. Properties
of the modified functions and procedures were givethe new settingsResults: Modifications were
used to extend the major results concerning GCD la®Ml matrices defined on FC sets in PIDs.
Examples in the domains of Gaussian integers andrl of polynomials over a finite field were give
to illustrate the new result€onclusion: The extension of the GCD and LCM matrices to PlRwided

a lager class for such matrices. Many of the opehlpms can be investigated in the new settings.
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INTRODUCTION results have been published. Recently, this fiedd h
been studied intensively. This new inspirationtsthin
by Beslin and Ligh*!.

In®, Beslin and Ligh obtained a structure theorem
for GCD matrices and showed that, if S is FC, then

Let T = {X;, X, ..., %} be a set of n distinct positive
integers. The nxn matrix [T] havingi{x;), the greatest
common divisor of xand %, as its (i,j)-entry is called ;
the Greatest Common Divisor (GCD) matrix on T. The get[T]= |—J ®(x,). They conjectured that the converse is
matrix [[T]] whose (ij)-entry is [xx], the least i=
common multiple of xand % is called the least true. A L proved the converse and provided a
common multiple (LCM) matrix on T. The set T iscai formula for the determinant of an arbitrary GCD
to be factor closed (FC) if it contains every divief x ~ matrix. Beslin and Ligh® generalized these results by
for any XJT. In 1876, SmitH" showed that the extending the FC sets to a larger class of setd; gc

determinant of the GCD matrix [T] on a FC set The  closed sets. I, a structure theorem for [[T]] was
obtained from the structure of the reciprocal GCD

product []¢(x;), where ¢ is Euler's totient phi- matrix 1/[T], the (i,j)-entry of which is 1/(xx). Given

. . _ _aFC set T, Bourque and Lighcalculated the inverses
function. Moreover, Smith considered the deterrmnanOf [T] and [[T]] and showed that [[T]][T]l is an

of the LCM matrix on a FC set and showed that it iSiyioqra) matrix. In that study, they stated theimbus

equal to the productﬁq)(x.)n(x.), where n is a conjecture that the LCM matrix on any gcd-closetdse
4 invertible. Bourque and Ligh® investigated the

multiplicative function defined for a prime powerlyy  structures, the determinants and the inverses iagsdc

n(p) = —p. Since then many papers related to Smith'svith classes of arithmetical functions. For a brief
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review of papers relating to Smith's determinang, w where, g(x) is of degree;r For example, if f(x) = (x>+

refer td”. Using the language of posets, the authorsl)*(x+1)'(x*+x*+x+4) in S = Z[x], then o4f(x)) = 3.

gave a common structure that is present in mang® 13 Now, if B=uBspk..pk, a product of distinct

extensions of Smith’'s determinants. Beslin and El- ; ; o P .

Kassaf! extended the results Bh to unique Gaussian primefy = g+ib;, 1< <1, then:

factorization domains. i
The purpose of this study is to extend many of the (pS(B)zn(aj? + bf)kfl( F +8-)

recent results concerning GCD and LCM matrices 1=

defined on factor-closed sets to arbitrary Prinkcigeal

Domains (PID) such as the domain of Gaussian intege ~ For example, iff = 6+42i ~ 3(1+ij(1+2i)’, then

and the ring of polynomials over a finite field. () = 640.
Let S be a PID and let T ={tt,, ..., t} be a set of
MATERIALSAND METHODS nonzero nonassociate elements in S. Define a linear

ordering( on T according to the following scheme: If
Let S be a PID and let a[i$. We say that a and b are q(t) < q(t) then t( t and if the equality gt= q(t) holds
associates and write a~b, if a = ub for some unithen order jtand f according to any scheme depending
element uin S. If b is a nonzero nonunit elemi@m b on the given domain S. For instance, if S = Zjfd
has a unique factorization, up to associates, pnitme  q(t) = q(t), where t~ a+ib, { ~ c+id, a, b, ¢, & O, then
elements in S. That isp=ug" g .9, where the g5  define {( § whenever b < d. In the case S ilZand
are distinct primes in S. Also, every finite set,{b, ..., 9t(X) = qfi(x)_)l' where {(x) ~x+g X"+ +axta,
by} admits, up to associates, a greatest commonativis §(X) ~ X+b, X"+ +hx+o, 0< g, § < p-1, p is the
For a nonzero element b in S, define q(b) to bebjsy;  Smallest index j such thaf b, then define;fx) (t(x)
the order of the quotient ring S/<b>, where <bthis  Whenever g<bp. If the set T is ordered so that
principal ideal generated by b. Note that q(u) fat, tt..{t,, we say that T is g-ordered. Two sets T ahd T
any unit u. Also note that in Z, Z[i] and,[Z], q(b) is in S are assqmates, denoted by T~iff e_ach element
finite O b# 0. Throughout the following we consider S N T is associate to an element ihahd vice versa. For
to be a PID having the property that q(b) is fiitb# @ nonzero element b, let E(b) be a complete set of

0. It can be shown that g(ab) = q(a)q(b). Hence, idistinct nonassociate divisors of b in S. Then,

P, _ ) . E(aNE(b) ~E((a, b)) and E() ~{1, p", p*...., 7"}. Note

For a positive integer n, q(n) = n and for a Gassi _ _
integer atbi, qlath) = a+be. Also, if f(x) is a (@7 200 whenever T~T
polynomial of degree n in J&], then q(f(x)) = p.
Define o4b) = |U(S/<b>)], the order of the group of Theorem 1: Let S be a PID and let b be a nonzero
units U(S/<b>). Therp(b) > 1 and the equality holds element in S. If E(b) is a complete set of distinct
iff b is a unit. Also,p4b) = q(p)* iff p is prime in S. It  nonassociate divisors of b, theyb) = > @ (d).
can be shown thateg(b) is multiplicative and dOE(b)
if b=ug g ...5 , then:
Proof: Let b # 0. The result is true when b is a unit.

d<(b) = (a(p,)- D@@)¥™ @@ > 1) Suppose that b is a nonunit so thatug" g .. .
@(p,))= .. > Hap )™ @ Since g, is multiplicative, the functiof(b)= Y ¢4(d)

dOE (b)

, . _is also multiplicative. For any prime element fi)
Now, if S = Z, thene¢b) becomes Euler's phi- gives:

function. Also, if f(x) =(p,(X))* (p,(x))*...(p (X)f' is a
polynomial of degree n in S =], a product of f(P)) = 2 ds(d) =05+ ds(p)+ -+ 05 (F)

powers of distinct irreducible polynomialfp, 1<j < AR

i, then: =1+(q(p)- D+ (@@ > D@ )r -+ (P I
_ @)™

0.6100)=p™ 2 [ (- @ =) = ()
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By the multiplicativity of f(b), we have 11 1
q(b):dmgb s (d). Example2: Let T ={1, 2, 5}. In Z[i], [T] =|1 4 1
® 11 25
Corollary 1: (Euler's) If n is a positive integer, then Note that T is not FC in Z[i]. Select D = {1, 18, 2+,
”=Z¢(d)- 100000
d50.dJn 1+2i, 5} Then aA={11 2 00 0 and
RESULTS 1oo4at

GCD matrices on FC setsin a PID: Throughout the
following, we consider T = {t t, ..., t} to be a g-
ordered set of nonzero nonassociate elements ¢ba P B=
S Define the GCD matrix on S to be the nxn matrix
[T] = (tj) = a((%, t)). The set T is said to be a factor-
closed (FC) in S iffiIT and djtimplies that d~;tfor
some {LIT. Note that any set T in S is either factor-
closed or it is contained in a factor-closed set D.

O o0 o0 oo R
O 0O R R PR
R P, P O O

Theorem 3: The GCD matrix [T] is the product of an
nxm matrix A and its transpose AThe nonzero entries

Theorem 2: The GCD matrix [T] can be decomposed of A are of the form,/¢s(d) for some d in a FC set D
into a product of an nxm matrix A and an mxn matriXcontaining T.
B, for some n> n. The nonzero entries of A are equal

to ¢(d) for some d in a FC set D containing T and B isproof: Let D = {d;, d,, ..., ds} be a FC set containing
an incidence matrix. T. Define the nxm matix A = (x by

Proof: Let D = {dy, &, ..., d,} be a FC set containing T _JNos(d) if d;DE() Hence, the product A'Ais
in the PID S Define the nxm matrix A =;faby y 0 otherwise | '

3 :{¢S(dj) TAOER) ong et = () be the incidence  9iven by:

0 otherwise
matrix corresponding to the transpose of A, where n
L Ceoponang P (AAT),= Ya b = 3 o (W6, (@)
= {0 " a‘j'i _ o- Hence, the product AB is given by: K $oEL)
= Z o,(dy) = Z ¢s(dk):q((ti'tj))
dDE(ENE) dOEQ £)

(AB),=>ab = Y 6.d)>= Y 6.d)r

$oE) “UEGDN EG) Note that Theorem 2 and 3 hold even if T is not g-
> o d)=al(t.t)) ordered. In the case when both T and D are g-addere
W@y v B becomes in raw-echelon form.

Example 1: Let T = {1,1+x,1+X,(1+x)} in Z,[x].  Corollary 2: (Smith's Determinant over a PID) If T is

FCin S, thendef 1] = |i|¢s(; )

Then [T] = . Let D = {1, 1+x, (1+4,

[ENFEN NN
© NN B

11
2 2
2 8
2 2 Proof: Let T be a FC set. Choose D to be g-ordered and
1+x+¢, 1+, (1+x)%. Then, [Tlxa= AsxeBexa Where: D ~ T. From Theorem 2, the GCD matrix [T] = AB,
where A is an nxn lower triangular matrix and Bais
upper triangular matrix such that=ap4t) and h =1, 1

1111
100000 0111 <i < n. Therefore, det[T] = det[AB] = det[A]det[B] =
A= 110 0 0 0 and B=/0 0 0 1 bs(t)do(t). bt
110330 0010 We note that if T = {t,t,..t} is any
112004 0010 arrangement of the elements of T 5, {, ..., t} in S,
0 001 then det[T] = det[1. This can be verified as follows.
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The matrix [T] can be obtained from by switching n) is det[E(1, 2, ..., byt os(to)... ¢s(tn) = @gts)
the rows and the columns of TTThus, [T] = BE,...  ¢4t)... p«t,). Therefore, det[H ¢ (t)d(t,).. o (t,)-
E[T], where the Es are elementary matrices with

det[E] = 1, 1<j <. Hence, [T] and [T are similar  Theorem 5: Let [T] be the GCD matrix defined on T in

matrices and det[T] = det[Il S. Then, det[T] =¢.(t)0(t,)..9 (t,)if and only if T is
Next, we consider the converse of Corollary 2. Lete, o ciosed in S

S be a PID and let T ={tt,, ..., t} be a nonempty set

of nonzero nonassociate elements in S Withy . The syfficient condition holds from Corollary 2.

def T]= 0. (). Is it true that T is factor-closed in S? Conversely, suppose that det[T] &(t).(t,). 0 (t,).
" . For contradiction purposes, suppose that T is 1t F

COI’]SI_d(.EI‘ a minimal FC set D ={t, ..., by thedy oo Let D = {ts, & ..., b tos, ...y hed bE @ minimal FC set
twe} CONAINING T = {4, &, .., B} With t1 (L (.. (thand  ontaining T in S such that(tt, { ... ( ty and te (o ..
te (e (- {toer. Define an nx(n+r) matrix A by ¢ gince T is not FC, D is not associate to T in S.
(A)ij = & os(t), whereg; is 1 if t0E(t) and O  Then, t.,is in D but not in T and,,OE(t) for some t
otherwise. Denote the matrix;jfxnn by E, a {0,1}- N T. Now, let t be the first element in T such that
matrix. Note that the matrix A is the same matrix At,.:0E(t). Then, the submatrix A, ... .

defined in Theorem 3. ~_ consisting of thes 2 ..., (7Y™ (n+1)", (r+1)", ...
For an nxm matrix M, n > m and any set of indicesgng ¥ columns  of Axorsy IS @ lower triangular
ki, ko, oy g With 1< kg <o <o < k= m, 'tﬁt matrix  of nonzero determinant. Hence,
M. x,.., denote the submatrix consisting af'kk,", Eusorimirs.. IS @ {0, 1}-matrix whose diagonal
. 2oL L 1,
- ko columns of M. elements are equal to 1. Sin&, .., .., can be
Theorem 4: Let D = {ti, by....ty tyes, ..., hed bE @ obtained fromg,, .,,.,. . Py performing a certain
minimal FC set containing T = { tt,,...,t} in S, where numbers of successive column permutations,
t (... (tpand teg( thio( ... ( thes Then: detlBy, raprmmy = TdetlE, iniei.a = £1

From Theorem 4, we have:
det[T]= > (det[§, \, ,,F)o.(t .(t,)0(t,)
e shosms det[T]= Y (detlB \, 1, F)o.(t bt )-9.(t, )

Proof: Since [T] = AA|, Cauchy-Binet formula gives =010 (1) b (€ )+ 0 ()0 (€ )b (1.3 (L)

that:
O (DDt ) > (U [t (t)
— \J
det[ 7] = def AA] This contradicts the necessary condition that the
= Y (detfAy., i ldetlAY ) equality holds.
1<k <k,.<k,sn+s
= > (det[A(kllkwkn)]Z) Inverses of GCD matrices in a PID: Let t be any
1sk <ky<KySnts nonzero element in S. The generalized Mobius foncti

over S is defined by:
The result follows from the fact that:

1 if tisaunit
B p(t) =< (-)™ if tis the product of m nonassot@grimes
detlAy, k... k) = etlBr i, WO (L o(t,)-0 (8, 0 otherwise

Corollary 3: Let [T] be the GCD matrix defined on T Note that:
in S. Then, det[Tk ¢ (t)o(t)..d (t,).
Y k()=

dOE(t)

1 iftisaunit
{ 3)

. . 0 otherwise
Proof: The terms in the summation of Theorem 4 are

nonnegative. Since the submatrk,, , ., is lower  corollary 4: Let [T] be the GCD matrix defined on T
triangular with diagonal elements equal to 1, weeha in S. Then, [T] is invertible and its inverse [T} (ry) is
that the term corresponding toj(ko, ..., k) = (1, 2, ..., given by:
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of T vyield similar reciprocal GCD matrices. For a

Z 0, (tk) b /DR nonzero element t in T, define the functioh
" by&(t) = _E D" q(d, (d). A generalized version of the
Proof: Define the nxn matrices E 5)(e and , e
1 ift DE(t) Mob|us inversion formula can be used to show that
U = (y) as follows: g = T . .
10 otherwise (t) = Y &(d). Since &(t) is the product of two
dOE(t)
_ Rt/ ) ift OE(t) _x -
Uy -{ 0 : othervviée' Then, (EU), -kak % = multiplicative functions% and x(t)= Y. q(d,(d),
dDE(t)
1 ift~t have that(t) is itself multiplicative. Moreover, if
t,/t)= = I . The last We have that P g TP
HDEUUS( ) IKDEZ(L:MUS( 2 {0 otherwise is prime in S, theny(") = 1q(p). Hence,
equality follows from (3). Since the elements inefe  gyny=1- Q(Fi) Therefore:
nonassociate, we have U ='EIf D is the diagonal (a(p))
matrix _diagQyt), _dta), ..., os(t) and A = ED?
then [T] = AA' = (ED)(EDY)T = EDE'. Therefore, _ os(t) .
[T]—l - UTD—l U = (r”) where ﬁ. — (UT —lu)ij - E()_E ( q( ))_ (q(t))2 E(‘)( q(p)) (4)
L1
é%(tk) tafh [‘u; 10 (t o)’ OG- where, the product runs over all prime divisorsf p i

t0E(t E(t).

Example 3: Let S = Z[x] and let T = {1,1+x,1+%
(1+x)%,1+x+x%}, which is a g-ordered FC set of nonzero

In the following two theorems we obtain two
factorizations for the reciprocal GCD matrices.

nonassociate elements in 4. Then,  Theorem 6: Let D = {ch, &b, ..., d} be a FC set
11111 containing T in S. The reciprocal GCD matrix define
122 21 on T is the product of an nxm matrix A 5 adefined
T] = . By corollary 4, [TT" is obtained Y ifd DE(t o _
(=1 2 4 4 1.8y y4 [ I by a = &) lfd’DEq) and an mxn incidence matrix
12 481 ' 0 otherwise
11114 B corresponding to A
as follows:
Proof: Let A be as defined and let B be the mxn matrix
1 1 1 1 7 . 1 ifa, #0
= =1+ 1+—=— - E . :
00 000 0arxrX) 3 8 wih b, {0 fa, =0 1"
-1
a, = =-1
ds(1+x) u
s (AB); :zaik by = z E(q )= z €(d)
a,=a :o,q:_ilz;l k=1 g qUEGEN EGt)
3 4 2 ¢S(1+X+X2) 3 ('1)
= §d)=———"+=
and so forth. Therefore: dlDE(z(L,I, R (((R )]

3= 0 0 - In a similar manner we prove the second

-1 3/2 -1/2 0 0 factorization given in the following theorem.
[MI*=| 0 -1/2 3/4 -1/4 O
0 0 -1/4 14 O Theorem 7: Let D = {d, &, ..., &} be a FC set
-1/3 0 0 0 1/3 containing T in S and let C be the the nxn mativeqg

Reciprocal GCD Matrices in a PID: The reciprocal by g ={“E(dj) " deE(.q ) Then [T =cC.
GCD matrix on T in S is the nxn matrix 1/[T] whose 0  otherwise

(ij)-entry is 1/q((t §)). It is clear that 1/[T] is The proof of the following theorem is similar to
symmetric. Furthermore, permutations of the elesientthose of Theorems 4 and 5.
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Theorem 8: Let T be a set in S. Then, det(1/[T]) =
E(t)E(ty).. &(ty) iff T is factor-closed in S.

LCM Matrices on FC Sets in a PID: The least
common multiple (LCM) matrix defined on T in S is
the nxn matrix [[T]] = (f), where § = q([t, t]) and [t

t;] is the least common multiple gfend {in S.

Theorem 9 If T is FC in S, then

polynomials over a finite field may give new insigh
some open problems.

CONCLUSION

The extension of the GCD and LCM matrices
to PIDs provide a lager class for such matricesnya
of the open problems can be investigated in the new
settings. For future study, we suggest the probdém
extending GCD and LCM matrices defined on gcd

de{[ 1] = ﬂ[cb o[ (—q(p»] .

Proof: Since [t t]~(tit)/( t;t), we have and gt
t1) = a(®)adt)/a(( tit)). Now q(t) can be factored out
from the I" row and q) from the |" column to obtain
1/[T]. Hence, [[T]] = D.(1/[T]).D, where D is thexm

diagonal matrix with diagonal entries g(tq(t), ..., 2.
q(t,). From 4, we have that:
det[[S]] = det(D.(1/[T]).D) = det(D)2det(1/[T])
= (aw)*(a(®))>.--(ah))?E(t)&(t2). &(tn) 3
= ﬁ(%(ti) )(—q(p))]
1= pLE(Y
4,

Cauchy Binet formula yields a formula for the
determinant of the LCM matrix defined on a set T
which is not necessarily FC. The formula is givgn b

> det(Ey i)

1<k <ky..<k,sn+s

(at,)ac, )--at, ) & @ B¢, )& &)

det[[T]] =

6.

From Theorem 9, we have that the determinant of
the GCD matrix on S divides the determinant of the
LCM matrix whenever T is FC in S.

DISCUSSION 8
Most of the existing results related to GCD and
LCM matrices are obtained in the domain of natural
integers. The results are based on certain number
theoretic functions such as Euler's phi function dme 9
Mobius function. These function and their propertie
can be generalized to principal ideal domains. By
describing the underlying computational procedures
and the various properties in the new settings, thd 0.
existing results related to GCD and LCM defined on
factor closed sets are extended to PIDs. This gesva
large class of such matrices where many new examplell.
can be constructed. In particular, examples in the
domains of Gaussian integers and the ring of
347

closed sets to PIDS.
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