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Abstract: Problem statement: Let T be a set of n distinct positive integers, x1, x2, ..., xn. The n×n 
matrix [T] having (xi, xj), the greatest common divisor of xi and xj, as its (i,j)-entry is called the 
greatest common divisor (GCD) matrix on T. The matrix [[T]] whose (i,j)-entry is [xi, xj], the least 
common multiple of xi and xj, is called the least common multiple (LCM) matrix on T. Many aspects 
of arithmetics in the domain of natural integers can be carried out to Principal Ideal Domains (PID). In 
this study, we extend many recent results concerning GCD and LCM matrices defined on Factor 
Closed (FC) sets to an arbitrary PID such as the domain of Gaussian integers and the ring of 
polynomials over a finite field. Approach: In order to extend the various results, we modified the 
underlying computational procedures and number theoretic functions to the arbitrary PIDs. Properties 
of the modified functions and procedures were given in the new settings. Results: Modifications were 
used to extend the major results concerning GCD and LCM matrices defined on FC sets in PIDs. 
Examples in the domains of Gaussian integers and the ring of polynomials over a finite field were given 
to illustrate the new results. Conclusion: The extension of the GCD and LCM matrices to PIDs provided 
a lager class for such matrices. Many of the open problems can be investigated in the new settings. 
 
Key words: GCD matrix, lcm matrix, factor-closed sets, principal ideal domain 

 
INTRODUCTION 

 
 Let T = {x1, x2, ..., xn} be a set of n distinct positive 
integers. The n×n matrix [T] having (xi, xj), the greatest 
common divisor of xi and xj, as its (i,j)-entry is called 
the Greatest Common Divisor (GCD) matrix on T. The 
matrix [[T]] whose (i,j)-entry is [xi,xj], the least 
common multiple of xi and xj, is called the least 
common multiple (LCM) matrix on T. The set T is said 
to be factor closed (FC) if it contains every divisor of x 
for any x∈T. In 1876, Smith[11] showed that the 
determinant of the GCD matrix [T] on a FC set T is the 

product 
n

i
i 1

(x )
=

ϕ∏ , where ϕ is Euler's totient phi-

function. Moreover, Smith considered the determinant 
of the LCM matrix on a FC set and showed that it is 

equal to the product 
n

i i
i 1

(x ) (x )
=

ϕ π∏ , where π is a 

multiplicative function defined for a prime power pr by 
π(pr) = −p. Since then many papers related to Smith's 

results have been published. Recently, this field has 
been studied intensively. This new inspiration started in 
by Beslin and Ligh[3,4]. 
 In[3], Beslin and Ligh obtained a structure theorem 
for GCD matrices and showed that, if S is FC, then 

n

i
i 1

det[T] (x )
=

= ϕ∏ . They conjectured that the converse is 

true. In[10], Li proved the converse and provided a 
formula for the determinant of an arbitrary GCD 
matrix. Beslin and Ligh[4,5] generalized these results by 
extending the FC sets to a larger class of sets, gcd-
closed sets. In[1], a structure theorem for [[T]] was 
obtained from the structure of the reciprocal GCD 
matrix 1/[T], the (i,j)-entry of which is 1/(xi, xj). Given 
a FC set T, Bourque and Ligh[6] calculated the inverses 
of [T] and [[T]] and showed that [[T]][T]−1 is an 
integral matrix. In that study, they stated their famous 
conjecture that the LCM matrix on any gcd-closed set is 
invertible. Bourque and Ligh[7,8] investigated the 
structures, the determinants and the inverses associated 
with classes of arithmetical functions. For a brief 
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review of papers relating to Smith's determinant, we 
refer to[9]. Using the language of posets, the authors 
gave a common structure that is present in many 
extensions of Smith’s determinants. Beslin and El-
Kassar[2] extended the results in[3] to unique 
factorization domains. 
 The purpose of this study is to extend many of the 
recent results concerning GCD and LCM matrices 
defined on factor-closed sets to arbitrary Principal Ideal 
Domains (PID) such as the domain of Gaussian integers 
and the ring of polynomials over a finite field. 
 

MATERIALS AND METHODS 
 

 Let S be a PID and let a, b∈S. We say that a and b are 
associates and write a~b, if a = ub for some unit 
element u in S. If b is a nonzero nonunit element, then b 
has a unique factorization, up to associates, into prime 
elements in S. That is, 1 2 i

1 2 ib up p ...pα α α= , where the pj′s 

are distinct primes in S. Also, every finite set {b1, b2, ..., 
bn} admits, up to associates, a greatest common divisor. 
For a nonzero element b in S, define q(b) to be |S/<b>|, 
the order of the quotient ring S/<b>, where <b> is the 
principal ideal generated by b. Note that q(u) = 1, for 
any unit u. Also note that in Z, Z[i] and Zp[x], q(b) is 
finite ∀ b ≠ 0. Throughout the following we consider S 
to be a PID having the property that q(b) is finite ∀ b ≠ 
0. It can be shown that q(ab) = q(a)q(b). Hence, if 

31 i
1 2 ib up p ...pαα α= , then 1 2 i

1 2 iq(b) (q(p )) (q(p )) ...(q(p ))α α α= . 

For a positive integer n, q(n) = n and for a Gaussian 
integer a+bi, q(a+bi) = a²+b². Also, if f(x) is a 
polynomial of degree n in Zp[x], then q(f(x)) = pn. 
Define φs(b) = |U(S/<b>)|, the order of the group of 
units U(S/<b>). Then φs(b) ≥ 1 and the equality holds 
iff b is a unit. Also, φs(b) = q(p)−1 iff p is prime in S. It 
can be shown that φs(b) is multiplicative and 
if 31 i

1 2 ib up p ...pαα α= , then: 

 
1

2 i

1
S 1 1 2

1 1
2 i i

(b) (q(p ) 1)(q(p )) (q(p ) 1)

(q(p )) ...(q(p ) 1)(q(p ))

α −

α − α −

ϕ = − −

−
 (1) 

 
 Now, if S = Z, then φs(b) becomes Euler's phi-
function. Also, if 1 2 i

1 2 if (x) (p (x)) (p (x)) ...(p (x))α α α=  is a 

polynomial of degree n in S = Zp[x], a product of 
powers of distinct irreducible polynomials pj(x), 1 ≤ j ≤ 
i, then: 
 

i
k kk 1 k

i
r (α -1) r

s
k 1

(f (x))=p (p 1)=

=

∑ϕ −∏  (2) 

 

where, pj(x) is of degree rj. For example, if f(x) = (x²+ 
1)4(x+1)4(x3+x2+x+4) in S = Z2[x], then φs(f(x)) = 37. 
25.13. Now, if 1 2 ik k k

1 2 iu ...β = β β β , a product of distinct 

Gaussian primes βj = aj+ibj, 1 ≤ j ≤ i, then: 
 

( ) ( )j
i k 12 2 2 2

s j j j j
j 1

( )= a + b a + b 1
−

=

φ β −∏  

 
 For example, if β = 6+42i ~ 3(1+i)3(1+2i)2, then 
φs(β) = 640.  
 Let S be a PID and let T = {t1, t2, ..., tn} be a set of 
nonzero nonassociate elements in S. Define a linear 
ordering 〈 on T according to the following scheme: If 
q(ti) < q(tj) then ti 〈 tj and if the equality q(ti) = q(tj) holds 
then order  ti and tj according to any scheme depending 
on  the  given  domain S. For instance, if S = Z[i] and 
q(ti) = q(tj), where ti ~ a+ib, tj ~ c+id, a, b, c, d ≥ 0, then 
define ti 〈 tj whenever b < d. In the case S = Zp[i] and 
q(ti(x)) = q(ti(x)), where ti(x) ~xn +an

−1xⁿ−1+...+a1x+a0, 
tj(x) ~ xn +bn

−1xⁿ−1+...+b1x+b0, 0 ≤ aj, bj ≤ p-1, j0 is the 
smallest index j such that aj ≠ bj, then define ti(x) 〈tj(x) 
whenever aj0<bj0. If the set T is ordered so that 
t1〈t2〈...〈tn, we say that T is q-ordered. Two sets T and T′ 
in S are associates, denoted by T~ T′, iff each element 
in T is associate to an element in T′ and vice versa. For 
a nonzero element b, let E(b) be a complete set of 
distinct nonassociate divisors of b in S. Then, 
E(a)∩E(b) ~E((a, b)) and E(pm) ~{1, p1, p2,..., pm}. Note 
that if t~t′, then q(t) = q(t′) and φs(t) = φs(t′). Also, 

S S
d T d T '

(d) (d)
∈ ∈

φ = φ∑ ∑  whenever T~ T′. 

 
Theorem 1: Let S be a PID and let b be a nonzero 
element in S. If E(b) is a complete set of distinct 
nonassociate divisors of b, then S

d E(b)

q(b) (d)
∈

= φ∑ . 

 
Proof: Let b ≠ 0. The result is true when b is a unit. 
Suppose that b is a nonunit so that 1 2 i

1 2 ib up p ...pα α α= . 

Since φs is multiplicative, the function S
d E(b)

f (b) (d)
∈

= ϕ∑  

is also multiplicative. For any prime element pj, (1) 
gives: 
 

n
j

n 0 1 n
j S S j S j S j

d E(p )

j j j j

n 1
j

n n
j j

f (p ) (d) (p ) (p ) ... (p )

1 (q(p ) 1) (q(p ) 1)(q(p )) ... (q(p ) 1)

(q(p ))

(q(p )) q(p )

∈

−

= ϕ = ϕ + ϕ + + ϕ

= + − + − + + −

= =

∑
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 By the multiplicativity of f(b), we have 

S
d E(b)

q(b) (d)
∈

= ϕ∑ .  

 
Corollary 1: (Euler's) If n is a positive integer, then 

d 0,d|n

n (d)
>

= ϕ∑ . 

 
RESULTS 

 
GCD matrices on FC sets in a PID: Throughout the 
following, we consider T = {t1, t2, ..., tn} to be a q-
ordered set of nonzero nonassociate elements of a PID 
S Define  the  GCD matrix on S to be the n×n matrix 
[T] = (tij) = q((ti, tj)). The set T is said to be a factor-
closed (FC) in S iff ti∈T and d|ti implies that d~ tj for 
some tj∈T. Note that any set T in S is either factor-
closed or it is contained in a factor-closed set D. 
 
Theorem 2: The GCD matrix [T] can be decomposed 
into a product of an n×m matrix A and an m×n matrix 
B, for some m ≥ n. The nonzero entries of A are equal 
to φs(d) for some d in a FC set D containing T and B is 
an incidence matrix. 
 
Proof: Let D = {d1, d2, ..., dm} be a FC set containing T 
in the PID S Define the n×m matrix A = (aij) by 

s j j i
ij

(d ) if  d E(t )
a

0 otherwise

ϕ ∈
= 


 and let B = (bij) be the incidence 

matrix corresponding to the transpose of A, where 

ji
ij

ji

1 if  a 0
b

0 if  a 0

≠=  =
. Hence, the product AB is given by: 

 

k i k i j

k j

k i j

n

ij ik kj s k s k
k 1 d E(t ) d E(t ) E(t )

d E(t )

s k i j
d E((t ,t ))

(AB)  = a b = (d ) (d )

(d ) q((t , t ))

= ∈ ∈ ∩
∈

∈

ϕ = ϕ =

ϕ =

∑ ∑ ∑

∑
 

 
Example 1: Let T = {1,1+x,1+x3,(1+x)3} in Z2[x]. 

Then [T] = 

1 1 1 1

1 2 2 2

1 2 8 2

1 2 2 8

 
 
 
 
 
 

. Let D = {1, 1+x, (1+x)2, 

1+x+x2, 1+x3, (1+x)3}. Then, [T]4×4 = A4×6⋅B6×4 where: 
 

A = 

1 0 0 0 0 0

1 1 0 0 0 0

1 1 0 3 3 0

1 1 2 0 0 4

 
 
 
 
 
 

 and  B = 

1 1 1 1

0 1 1 1

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 
 
 
  

 

Example 2: Let T = {1, 2, 5}. In Z[i], 
1 1 1

[T] 1 4 1

1 1 25

 
 =  
  

. 

Note that T is not FC in Z[i]. Select D = {1, 1+i, 2, 2+i, 

1+2i, 5}. Then 
1 0 0 0 0 0

A 1 1 2 0 0 0

1 0 0 4 4 16

 
 =  
  

 and 

1 1 1

0 1 0

0 1 0
B

0 0 1

0 0 1

0 0 1

 
 
 
 

=  
 
 
 
  

. 

 
Theorem 3: The GCD matrix [T] is the product of an 
n×m matrix A and its transpose AT. The nonzero entries 
of A are of the form S(d)ϕ  for some d in a FC set D 

containing T. 
 
Proof: Let D = {d1, d2, ..., dm} be a FC set containing 
T. Define the n×m matrix A = (aij) by 

s j j i
ij

(d ) if  d E(t )
a

0 otherwise

 ϕ ∈= 


. Hence, the product A AT is 

given by: 
 

k i

k j

k i j k i j

n
T

ij ik kj s k s k
k 1 d E(t )

d E(t )

s k s k i j
d E(t ) E(t ) d E(( t , t ))

(AA )  = a b = (d ) (d )

= (d ) = (d ) = q((t , t ))

= ∈
∈

∈ ∩ ∈

ϕ ϕ

ϕ ϕ

∑ ∑

∑ ∑
 

 
 Note that Theorem 2 and 3 hold even if T is not q-
ordered. In the case when both T and D are q-ordered, 
B becomes in raw-echelon form. 
 
Corollary 2: (Smith's Determinant over a PID) If T is 

FC in S, then [ ]
n

S i
i 1

det T   (t ).
=

= ϕ∏  

 
Proof: Let T be a FC set. Choose D to be q-ordered and 
D ~ T. From Theorem 2, the GCD matrix [T] = AB, 
where A is an n×n lower triangular matrix and B is an 
upper triangular matrix such that aii = φs(ti) and bii = 1, 1 
≤ i ≤ n. Therefore, det[T] = det[AB] = det[A]det[B] = 

S 1 S 2 S n(t ) (t )... (t )ϕ ϕ ϕ . 

 We note that if T′ = 
1 ni i2 i{t , t ,..., t }  is any 

arrangement of the elements of T = {t1, t2, ..., tn} in S, 
then det[T] = det[T′]. This can be verified as follows. 
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The matrix [T] can be obtained from [T′] by switching 
the rows and the columns of [T′]. Thus, [T] = E1E2... 
Ei[T ′], where the Ej′s are elementary matrices with 
det[Ej] = ±1, 1 ≤ j ≤ i. Hence, [T] and [T′] are similar 
matrices and det[T] = det[T′]. 
 Next, we consider the converse of Corollary 2. Let 
S be a PID and let T = {t1, t2, ..., tn} be a nonempty set 
of nonzero nonassociate elements in S with 

[ ]
n

S i
i 1

det T (t ).
=

= ϕ∏  Is it true that T is factor-closed in S? 

 Consider a minimal FC set D = {t1, t2, ..., tn, tn+1, ..., 
tn+r} containing T = { t1, t2, ..., tn} with t1 〈 t2 〈 ... 〈 tn and 
tn+1 〈 tn+2  〈 ...〈 tn+r.  Define  an  n×(n+r)  matrix  A  by 
(A) ij = εij S j(t )ϕ , where εij is 1 if tj∈E(ti) and 0 

otherwise. Denote the matrix (εij)n×(n+r) by E, a {0,1}-
matrix. Note that the matrix A is the same matrix A 
defined in Theorem 3. 
 For an n×m matrix M, n > m and any set of indices 
k1, k2, ..., kn with 1 ≤ k1 < k2 < ... < kn ≤ m, let 

1 2 n(k ,k ,...,k )M  denote the submatrix consisting of k1
th, k2

th, 

... kn
th columns of M. 

 
Theorem 4: Let D = {t1, t2,...,tn, tn+1, ..., tn+s} be a 
minimal FC set containing T = { t1, t2,...,tn} in S, where 
t1 〈 t2 〈 ... 〈tn and tn+1 〈 tn+2 〈 ... 〈 tn+s. Then: 
 

( )
1 2 n 1 2 n

1 2 n

2
(k ,k ,...,k ) s k s k s k

1 k k ... k n s

det[T] det[E ] (t ) (t ).. (t )
≤ < < ≤ +

= ϕ ϕ ϕ∑  

 
Proof: Since [T] = AAT, Cauchy-Binet formula gives 
that: 
 

] [
( )
( )

1 2 n 1 2 n

1 2 n

1 2 n

1 2 n

T

T
(k ,k ,...,k ) (k ,k ,...,k )

1 k k ... k n s

2
(k ,k ,...,k )

1 k k ... k n s

det T  = det AA

det[A ]det[A ]

det[A ]

≤ < < ≤ +

≤ < < ≤ +

  

=

=

∑

∑

 

 
 The result follows from the fact that: 
 

1 2 n 1 2 n 1 2 n(k ,k ,...,k ) (k ,k ,...,k ) s k s k s kdet[A det[E ] (t ) (t )... (t )= ϕ ϕ ϕ  

 
Corollary 3: Let [T] be the GCD matrix defined on T 
in S. Then, det[T] ≥ s 1 s 2 s n(t ) (t )... (t )ϕ ϕ ϕ . 

 
Proof: The terms in the summation of Theorem 4 are 
nonnegative. Since the submatrix 

1 2 n(k ,k ,...,k )E  is lower 

triangular with diagonal elements equal to 1, we have 
that the term corresponding to (k1, k2, ..., kn) = (1, 2, ..., 

n) is det[E(1, 2, ..., n)]2φs(t1) φs(t2)... φs(tn) = φs(t1) 
φs(t2)... φs(tn). Therefore, det[T]≥ s 1 s 2 s n(t ) (t )... (t )ϕ ϕ ϕ . 

 
Theorem 5: Let [T] be the GCD matrix defined on T in 
S. Then, det[T] = s 1 s 2 s n(t ) (t )... (t )ϕ ϕ ϕ if and only if T is 

factor-closed in S. 
 
Proof: The sufficient condition holds from Corollary 2. 
Conversely, suppose that det[T] = s 1 s 2 s n(t ) (t )... (t )ϕ ϕ ϕ . 

For contradiction purposes, suppose that T is not FC. 
Let D = {t1, t2, ..., tn, tn+1, ..., tn+s} be a minimal FC set 
containing T in S such that t1 〈 t2 〈 ... 〈 tn and tn+1 〈tn+2 〈 ... 
〈 tn+s. Since T is not FC, D is not associate to T in S. 
Then, tn+1 is in D but not in T and tn+1∈E(t) for some t 
in T. Now, let tr be the first element in T such that 
tn+1∈E(tr). Then, the submatrix (1,2,...r 1,n 1,r 1,...,n)A − + +  

consisting  of the 1st, 2nd, ..., (r−1)th, (n+1)th, (r+1)th, ... 
and  nth columns  of  An×(n+s) is  a lower triangular 
matrix of  nonzero  determinant. Hence, 

(1,2,...r 1,n 1,r 1,...,n)E − + +  is a {0, 1}-matrix whose diagonal 

elements are equal to 1. Since (1,2,...r 1,r 1,...,n,n 1)E − + +  can be 

obtained from (1,2,...r 1,n 1,r 1,...,n)E − + +  by performing a certain 

numbers of successive column permutations, 

(1,2,...r 1,r 1,...,n,n 1)det[E ]− + +  = ± (1,2,...r 1,n 1,r 1,...,n)det[E ]− + +  = ±1. 

From Theorem 4, we have: 
 

( )
1 2 n 1 2 n

1 2 n

2
(k ,k ,...,k ) s k s k s k

1 k k ... k n s

s 1 s 2 s n s 1 s 2 s r 1 s r 1

s n s n 1 s 1 s 2 s n

det[T] det[E ] (t ) (t )... (t )

(t ) (t )... (t ) (t ) (t )... (t ) (t )

... (t ) (t ) ... (t ) (t )... (t )

≤ < < ≤ +

− +

+

= ϕ ϕ ϕ

= ϕ ϕ ϕ + ϕ ϕ ϕ ϕ
ϕ ϕ + > ϕ ϕ ϕ

∑
 

 
 This contradicts the necessary condition that the 
equality holds. 
 
Inverses of GCD matrices in a PID: Let t be any 
nonzero element in S. The generalized Mobius function 
over S is defined by: 
 

m
s

1 if t isa unit

(t) (-1) if t is the product of m nonassociate primes

0 otherwise


µ = 



 

 
 Note that: 
 

s
d E(t )

1 if t isa unit
(d)

0 otherwise∈


µ = 


∑  (3) 

 
Corollary 4: Let [T] be the GCD matrix defined on T 
in S. Then, [T] is invertible and its inverse [T]−1 = (rij) is 
given by: 
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i k

j k

ij s k i s k j
t E( t ) s k
t E(t )

1
r (t / t ) (t / t )

(t )∈
∈

= µ µ
ϕ∑  

 
Proof:   Define   the    n×n     matrices    E = (eij)    and 

U = (uij) as follows: i j
ij

1 if t E(t )
e

0 otherwise

∈
= 


 and 

s i j i j
ij

(t / t ) if t E(t )
u

0 otherwise

µ ∈
= 


. Then, 
n

ij ik kj
k 1

(EU) e u
=

= =∑
 

j k k i j

i j
s i j s k

t E(t ) t E( t / t )

1 if t ~t
(t / t ) (t )

0 otherwise∈ ∈


µ = µ = 


∑ ∑ . The last 

equality follows from (3). Since the elements in T are 
nonassociate, we have U = E−1. If D is the diagonal 
matrix  diag(φs(t1),   φs(t2), ..., φs(tn)) and A = ED1/2, 
then [T] = AAT = (ED1/2)(ED1/2)T = EDET. Therefore, 
[T] −1 = UTD−1 U = (rij), where rij = (UTD−1U)ij = 

i k

j k

n

ki kj s k i s k j
k 1 t E(t )s k s k

t E(t )

1 1
u u (t / t ) (t / t )

(t ) (t )= ∈
∈

= µ µ
ϕ ϕ∑ ∑ . 

 
Example 3: Let S = Z2[x] and let T = {1,1+x,1+x2, 
(1+x)3,1+x+x2}, which is a q-ordered FC set of nonzero 
nonassociate elements in Z2[x]. Then, 

1 1 1 1 1

1 2 2 2 1

[T] 1 2 4 4 1

1 2 4 8 1

1 1 1 1 4

 
 
 
 =
 
 
  

. By corollary 4, [T]−1 is obtained 

as follows:  
 

11 2
S S S

1 1 1 1 7
a 1 1

(1) (1 x) (1 x x ) 3 3
= + + = + + =

ϕ ϕ + ϕ + +

12
S

1
a 1

(1 x)

−= = −
ϕ +

 

13 14 12 2
S

1 1
a a 0, a

(1 x x ) 3

− −= = = =
ϕ + +

 

 
and so forth. Therefore: 
 

1

7 / 3 1 0 0 1/ 3

1 3 / 2 1 / 2 0 0

[T] 0 1 / 2 3 / 4 1 / 4 0

0 0 1 / 4 1 / 4 0

1 / 3 0 0 0 1 / 3

−

− − 
 − − 
 = − −
 

− 
 − 

. 

 
Reciprocal GCD Matrices in a PID: The reciprocal 
GCD matrix on T in S is the n×n matrix 1/[T] whose 
(i,j)-entry is 1/q((ti, tj)). It is clear that 1/[T] is 
symmetric. Furthermore, permutations of the elements 

of T yield similar reciprocal GCD matrices. For a 
nonzero element t in T, define the function ξ 

by s
d E(t)

1
(t) q(d) (d)

q(t) ∈

ξ = µ∑ . A generalized version of the 

Mobius inversion formula can be used to show that 

d E(t)

1
(d)

q(t) ∈

= ξ∑ . Since ξ(t) is the product of two 

multiplicative functions 
1

q(t)
 and s

d E(t )

(t) q(d) (d)
∈

χ = µ∑ , 

we have that ξ(t) is itself multiplicative. Moreover, if p 
is prime in S, then χ(pn) = 1q(p). Hence, 

n
n

1 q(p)
(p )

(q(p))

−ξ = . Therefore: 

 

S
2

p E(t ) p E(t )

1 (t)
(t) (1 q(p)) ( q(p))

q(t) (q(t))∈ ∈

ϕξ = − = −∏ ∏  (4) 

 
where, the product runs over all prime divisors p of t in 
E(t). 
 In the following two theorems we obtain two 
factorizations for the reciprocal GCD matrices. 
 
Theorem 6: Let D = {d1, d2, ..., dm} be a FC set 
containing T in S. The reciprocal GCD matrix defined 
on T is the product of an n×m matrix A = (aij), defined 

by j j i
ij

(d ) if d E(t )
a

0 otherwise

ξ ∈
= 


 and an m×n incidence matrix 

B corresponding to AT. 
 
Proof: Let A be as defined and let B be the m×n matrix 

with ij
ij

ij

1 if a 0
b

0 if a 0

≠=  =
. Then: 

 

j i j i j

j j

j i j

m

ij ik kj j j
k 1 d E(t ) d E(t ) E( t )

d E(t )

j
d E((t ,t )) i j

(AB) a b (d ) (d )

1
(d )

q((t , t ))

= ∈ ∈ ∩
∈

∈

= = ξ = ξ

= ξ =

∑ ∑ ∑

∑
 

 
 In a similar manner we prove the second 
factorization given in the following theorem. 
 
Theorem 7: Let D = {d1, d2, ..., dm} be a FC set 
containing T in S and let C be the the n×n matrix given 

by j j i
ij

(d ) if d E(t )
a

0 otherwise

 ξ ∈= 


. Then 1/[T] = CCT. 

 The proof of the following theorem is similar to 
those of Theorems 4 and 5. 
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Theorem 8: Let T be a set in S. Then, det(1/[T]) = 
ξ(t1)ξ(t2)...ξ(tn) iff T is factor-closed in S. 
 
LCM Matrices on FC Sets in a PID:  The least 
common multiple (LCM) matrix defined on T in S is 
the n×n matrix [[T]] = (tij), where tij = q([ti, tj]) and [ti, 
tj] is the least common multiple of ti and tj in S. 
 
Theorem 9: If T is FC in S, then 

[ ]
i

n

S i
i 1 p E(t )

det T  (t ) ( q(p))
= ∈

 
  = ϕ −    

 
∏ ∏ . 

 
Proof:  Since  [ti, tj]~(titj)/( t,itj),   we  have  and q([ti, 
tj]) = q(ti)q(tj)/q(( t,itj)). Now q(ti) can be factored out 
from the ith row and q(tj) from the jth column to obtain 
1/[T]. Hence, [[T]] = D.(1/[T]).D, where D is the n×n 
diagonal matrix with diagonal entries q(t1), q(t2), ..., 
q(tn). From 4, we have that: 
 
det[[S]] = det(D.(1/[T]).D) = det(D)²det(1/[T]) 
 = (q(t1))²(q(t2))²...(q(tn))²ξ(t1)ξ(t2)...ξ(tn) 

 = 
i

n

S i
i 1 p E(t )

(t ) ( q(p))
= ∈

 
ϕ −  
 

∏ ∏  

 
 Cauchy Binet formula yields a formula for the 
determinant of the LCM matrix defined on a set T 
which is not necessarily FC. The formula is given by: 
 

( )

( )
1 2 n

1 2 n

1 2 n 1 2 n

2

(k ,k ,...,k )
1 k k ... k n s

2

k k k k k k

det[[T]] det E

q(t )q(t )...q(t ) (t ) (t )... (t )

≤ < < ≤ +

=

ξ ξ ξ

∑
 

 
 From Theorem 9, we have that the determinant of 
the GCD matrix on S divides the determinant of the 
LCM matrix whenever T is FC in S. 
 

DISCUSSION 
 
 Most of the existing results related to GCD and 
LCM matrices are obtained in the domain of natural 
integers. The results are based on certain number 
theoretic functions such as Euler’s phi function and the 
Mobius function. These function and their properties 
can be generalized to principal ideal domains. By 
describing the underlying computational procedures 
and the various properties in the new settings, the 
existing results related to GCD and LCM defined on 
factor closed sets are extended to PIDs. This provides a 
large class of such matrices where many new examples 
can be constructed. In particular, examples in the 
domains of Gaussian integers and the ring of 

polynomials over a finite field may give new insight to 
some open problems.  
 

CONCLUSION 
 
 The extension of the GCD and LCM matrices 
to PIDs provide a lager class for such matrices. Many 
of the open problems can be investigated in the new 
settings. For future study, we suggest the problem of 
extending GCD and LCM matrices defined on gcd 
closed sets to PIDS.    
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